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Effects of random atomic disorder on the magnetic stability of graphene nanoribbons
with zigzag edges
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We investigate the effects of randomly distributed atomic defects on the magnetic properties of graphene
nanoribbons with zigzag edges using an extended mean-field Hubbard model. For a balanced defect distribution
among the sublattices of the honeycomb lattice in the bulk region of the ribbon, the ground-state antiferromag-
netism of the edge states remains unaffected. By analyzing the excitation spectrum, we show that while the
antiferromagnetic ground state is susceptible to single spin-flip excitations from edge states to magnetic defect
states at low defect concentrations, its overall stability is enhanced with respect to the ferromagnetic phase.
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I. INTRODUCTION

The possibility to induce magnetism in graphene through
sublattice engineering of the honeycomb lattice can poten-
tially lead to a new class of spintronic and magnetic nan-
odevices [1-11]. Indeed, although pure graphene is not ex-
pected to be magnetic, Lieb’s [12] bipartite lattice theorem
for the Hubbard model predicts a finite total spin related to
breaking of the sublattice symmetry. This broken symmetry
can happen, for instance, at the zigzag edges of a graphene
nanostructure [13-27] or around an atomic defect [29-42],
resulting in magnetized localized states.

In zigzag graphene nanoribbons (ZGNRs), as the oppo-
site edge atoms belong to opposite sublattices, one expects
antiferromagnetically coupled zigzag-localized edge states
with zero total spin. The induced magnetic behavior is pre-
dicted by several theoretical models, including density func-
tional theory [14,15,36,37], the mean-field approximation of
the Hubbard model [13,20,22,23,31], exact diagonalization
[11,27], and quantum Monte Carlo simulation [25]. However,
on the experimental side [43-53], the direct observation of
magnetism in graphene nanoribbons is still lacking, most
likely due to limited control over edge structure. Recently,
a semiconductor-to-metal transition as a function of ribbon
width was observed in nanotailored graphene ribbons with
zigzag edges [26], attributed to a magnetic phase transition
from the antiferromagnetic (AFM) configuration to the ferro-
magnetic (FM) configuration, raising hopes for the fabrication
of graphene-based spintronic and magnetic storage devices.
Possible theoretical explanations for the observed AFM to FM
transition in ZGNRs include doping [54—56] and formation of
electron-hole puddles through long-range Coulomb impurities
[20].

Atomic defects also have significant influence on the mag-
netic properties of graphene, as has been shown before in
several theoretical works [29—38,40]. In particular, vacancies
and adatoms are expected to create midgap states [28] and
to lead to magnetic moments localized around the defects
with rich many-body effects [29,38]. Recently, the existence
of magnetism in graphene by using hydrogen atoms was
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observed [33] and another direct experimental evidence of
the magnetism in graphene due to single atomic vacancy in
graphene was detected by using scanning tunneling micro-
scope [40]. An open question is the effect of the induced
magnetic moment by a random distribution of atomic defects
on the stability of the antiferromagnetic phase of the ZGNR.

In this work, we investigate the magnetic phases of ZGNRs
containing 10 010 atoms with randomly distributed atomic
defects using mean-field Hubbard calculations. We show that
the atomic defects stabilize the antiferromagnetic phase of
the ZGNRs. Our finding suggests that it should be easier to
directly observe and control magnetism in ZGNRs through the
generation of randomly distributed atomic defects (vacancies
or adatoms) on the bulk region of the ribbon.

The paper is organized as follows. In Sec. II, we introduce
the mean-field Hubbard Hamiltonian and the vacancy model
that we use in the numerical calculations. In Sec. III, we
present the numerical results showing the robustness of edge
antiferromagnetism against disorder and demonstrate that the
AFM stability increases with increasing defect concentration.
Section IV contains a brief summary.

II. MODEL AND METHOD

Our starting point is the tight-binding model for p, orbitals,
where s, p., and p, orbitals are disregarded as they mainly
contribute to the mechanical stability of graphene. Atomic
defects are modeled as randomly distributed vacancies, where
the p, orbitals are simply removed from the honeycomb
lattice. The vacancy mimics the hybridization of the corre-
sponding p, orbital with a hydrogen adatom. We note that (i)
possible lattice distortion near the defect sites which could
suppress the magnetization [30] are neglected, (ii) zigzag
edges are assumed to be properly hydrogen passivated and
free of edge reconstruction [18,57,58], and (iii) atomic defects
are assumed to be in the nanoribbon’s bulk region only. We
consider defect concentrations of 1%—5% of the total number
of atoms. Moreover, within the extended mean-field Hubbard
model used here, possible correlation effects on magnetic
properties are neglected [11,27,29]. Our model Hamiltonian

©2018 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.115428&domain=pdf&date_stamp=2018-09-17
https://doi.org/10.1103/PhysRevB.98.115428

CAKMAK, ALTINTAS, AND GUCLU

PHYSICAL REVIEW B 98, 115428 (2018)

45 nm

(a)

2 3
y (am)

FIG. 1. (a) Graphene nanoribbon lattice structure with 10 010 atoms and randomly generated 1% defect concentration equally distributed
within the A sublattice (downward pointed triangles) and the B sublattice (upward pointing triangles). (b) AFM (ground state) and (c) FM spin
density profile of a portion of the ribbon. (d) and (e) Average magnetization along the ribbon length for the AFM and FM phases.

is given by

Hyrg = Z(tijcjacjg + H.c.)

ijo
+Ule: <<nirr> - %)nin + ZXJ: Vii((n;y — Dn;. (1)

The first term is for the tight-binding approximation where
the #;; are the hopping parameters and are taken to be t,, =
—2.8 eV for the nearest neighbors and #,,, = —0.1 eV for

the second nearest neighbors [59,60]. The creation, cja, and
annihilation, c¢;,, operators create and annihilate an electron
at the ith orbital with spin o, respectively. The term (n;,) cor-
responds to the expectation values of electron densities. The
second and third terms are on-site and long-range Coulomb
interaction terms, respectively. The on-site Coulomb potential
U is taken to be 16.522/k eV, where x = 6 is an effective
dielectric constant. The long-range interaction parameters V;;
are taken to be 8.64/«x eV and 5.33/« eV for the first two
neighbors and 1/d;;x for distant neighbors [61]. However,
unlike for ZGNRs in the presence of long-range disorder [20],
the effect of long-range Coulomb interactions is found to be
negligible in the presence of atomic defects considered in
current work. This is because the total charge distribution is
nearly constant over lattice sites since there is no potential
variation and the system is taken to be charge neutral.

We consider 45-nm-long and 4.5-nm-wide ZGNRs con-
sisting of 10 010 atoms with various defect configurations.
Figure 1(a) shows a ZGNR configuration with 1% of defects
that are randomly and equally distributed among the two
sublattices of the honeycomb lattice. The downward pointing
(blue color online) and upward pointing (red color online)
triangles correspond to sublattice A-site and sublattice B-
site vacancies, respectively. The self-consistent Hubbard cal-
culations were performed within different S, = (N4-N,)/2

subspaces to find the overall ground state. As one may suspect
a competition between the AFM and FM states [20], we have
scanned the 0 < §; < 130 values, with a focus around the
AFM state S; = 0 and the FM state S; = Negge /2, where the
number of edge states is given by Negge = 138 for the clean
structure. For each value S, the self-consistent calculations
were repeated with different initial density matrices to ensure
the convergence to the global energy minimum.

II1. RESULTS

Figures 1(b) and 1(c) show the spin densities of a portion
of the ribbon, for the lowest-energy AFM and FM states, re-
spectively. Despite the inclusion of long-range electron inter-
actions and second nearest-neighbor hoppings, the mean-field
solution to the Hubbard model leads to the S; = 0 ground state
in all our calculations with equally distributed defects among
the two sublattices, in agreement with Lieb’s theorem. Indeed,
in Fig. 1(b), the A-site and B-site defects lead to spin-up
(red color online) and spin-down (blue color online) magnetic
moments, respectively, in agreement with previous quantum
Monte Carlo calculations for pristine graphene [29]. On the
other hand, the spin density distribution for the lowest FM
state is harder to predict since it is not a ground state consistent
with Lieb’s theorem. Interestingly, the edge ferromagnetism
of the S, = 73 state remains robust [see Fig. 1(c)] and the
bulk atoms have a zero average magnetization as shown in
Figs. 1(d) and 1(e). This simple observation has an important
consequence on the stability of the AFM phase with respect
to the FM phase: For the FM phase, the magnetization of the
defects nearby edge atoms is strictly dictated by the strong
magnetization of the edges, locally obeying Lieb’s theorem.
Hence, far from the edges, one must encounter sublattice spin
frustrations where Lieb’s theorem cannot be locally satisfied,
costing energy. For instance, for the AFM state where the
Lieb’s theorem is globally satisfied, the A-site defects in the
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FIG. 2. Mean-field energy per atom as a function of total spin S,
for the clean and the 1%, 3%, and 5% defect concentration cases.
For the clean case, the ground state is AFM edges with S, = 0, and
the FM phase occurs at S, = 69. The FM-AFM gap increases with
increasing defect concentration.

encircled areas in Fig. 1(b) are ferromagnetically coupled
to each other, whereas their coupling is antiferromagnetic
in Fig. 1(c). Our calculations show that such local violation
of Lieb’s theorem only occurs among defect sites and never
between an edge and a defect site.

As discussed above, local violation of Lieb’s theorem in the
bulk region of the FM phase costs energy. A striking conse-
quence of the energy cost is an increased stability of the AFM
phase with respect to the FM phase. Figure 2 shows the energy
per atom of different magnetic states S, with respect to the
AFM ground state, for various defect concentrations up to 5%.
For the clean structure, the FM phase is at S; = Negge /2 = 69
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and the FM-AFM gap is 3.041x 1073 eV /atom. We note that,
due to the finite-size effects, we see that states with S, = 10
and S, = 20 have lower energy than S, = 69 for the clean
case. Moreover, As the defect concentration is increased, the
FM-AFM gap increases, reaching 1.6x10™* eV for the 5% of
defects. Strikingly, the gap increase with respect to the AFM
phase occurs not only for the FM phase but also for most other
S, states. However, in the vicinity of S, = 0 (see the inset),
i.e., for single and few spin flips, the energy cost is decreased
at 1% defect concentrations, but then increases slightly with
increasing numbers of defects. This reflects the fact that for
low defect concentrations it is easier to flip an edge spin by
moving it into a defect state than into the opposite edge. We
note that similar behaviors were observed for other randomly
generated defect concentrations and a statistical analysis is
presented below in Fig. 4.

Figure 3 shows the mean-field density of states (DOS) for
the AFM ground state, for different concentrations considered
in Fig. 1. The solid lines represent the total DOS, whereas
the dotted and dashed lines represent the contributions from
edge and defect atoms (more precisely, atoms neighboring the
defects and vacancies) to the DOS, respectively. For the clean
nanoribbon, there is an AFM gap opening due to electron-
electron interaction between the edge states, which is about
0.2143 eV, roughly corresponding to the energy required to
flip a single spin. As the defect concentration is increased to
1%, there is an increase of midgap state density [28,29] and
the AFM gap is decreased to 0.1176 eV. This is consistent
with the single spin flips in the vicinity of S, = 0 discussed
in Fig. 1. When the concentration of defects is increased
further [see Figs. 3(c) and 3(d)], the AFM gap starts increasing
slightly. This change of behavior reflects the fact that for
higher numbers of defects the magnetic coupling between
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FIG. 3. Mean-field DOS for the AFM phase for the (a) clean, (b)
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cases. Edge and defect state contributions are plotted with dotted and dot-dashed lines, respectively. Energy gap values of the total DOS are

given for each case.
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FIG. 4. Average (a) single edge magnetization, (b) AFM-FM
energy gap, and (c) AFM energy gap, over ten randomly gener-
ated disorder configurations, as a function of defect concentration.
Bars and symbols represent standard errors over the ten random
configurations.

the defects is enhanced on average, stabilizing the magnetic
configuration and making the spin flips harder. However, we
note that the AFM-FM gap monotonically increases with

increasing midgap states due to the local violation of Lieb’s
theorem, as discussed earlier.

Up to this point, the results presented were obtained for
particular randomly generated defect configurations. For a
statistical analysis of our results, we have repeated our cal-
culations for ten randomly generated configurations at 1%,
3%, and 5% defect concentrations. We have observed similar
behavior in all the disorder configurations and the results are
presented in Fig. 4 as a function of defect concentration. The
average magnetization of edge atoms for the AFM and FM
phases, shown in Fig. 4(a), decreases slightly with increasing
defect concentration. The difference between the AFM and
FM edge magnetizations remains negligible (within the error
bars), consistent with Figs. 1(d) and 1(e). On the other hand,
Fig. 4(b) shows that the AFM-FM gap rapidly decreases
on average with a small error bar, clearly demonstrating an
increased stability of the AFM phase with respect to the FM
phase. Finally, the average AFM gap shown in Fig. 4(c),
indicating the energy cost for a single spin flip, systematically
undergoes a decrease at lower concentrations and then keeps
slowly increasing at concentrations higher than 1% due to a
more stable magnetic lattice formed by defects.

IV. CONCLUSION

In summary, effects of randomly distributed atomic defects
on the stability of magnetic phases of a zigzag-edged graphene
nanoribbon were investigated using a mean-field Hubbard
approach. For an equal distribution of atomic defects among
the two sublattices of the honeycomb lattice, the coupling
between the two edges remains antiferromagnetic with S, =
0. At lower defect concentrations (< 1%), the energy of single
spin flips from the antiferromagnetic ground state is decreased
due to possible electron transfer from edges to defect states.
However, we show that the AFM-FM energy gap remains
well protected and is enhanced as a function increasing defect
concentration. The increased stability of the AFM-FM gap by
controlling defect concentrations opens up new possibilities
for spintronic and magnetic nanodevice applications.
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