16 research outputs found

    The role of the magnetic field in the fragmentation process: the case of G14.225-0.506

    Full text link
    B-fields are predicted to play a role in the formation of filamentary structures and their fragmentation process. We aim at investigating the role of the B-field in the process of core fragmentation toward the hub-filament systems in the IRDC G14.2, which present different fragmentation level. We performed observations of the thermal dust polarization at 350 {\mu}m using the CSO toward the hubs. We applied the polarization--intensity-gradient method to estimate the significance of the B-field over the G-force. The B-field in Hub-N shows a uniform structure along the E-W orientation, perpendicular to the major axis of the hub-filament system. The I-gradient in Hub-N displays a local minimum coinciding with the dust core MM1a detected with interferometric observations. The B-field orientation is perturbed when approaching the dust core. Hub-S shows 2 local minima, reflecting the bimodal distribution of the B-field. In Hub-N, both E and W of the hub-filament system, the I-gradient and the B-field are parallel whereas they tend to be perpendicular when penetrating the filaments and hub. The analysis of the {\delta}- and {\Sigma} B-maps indicate that, the B-field cannot prevent the collapse, suggesting that the B-field is initially dragged by the infalling motion and aligned with it, or is channeling material toward the central ridge from both sides. Values of {\Sigma} B > 1 are found toward a N-S ridge encompassing the dust emission peak, indicating that in this region B-field dominates over G-force, or that with the current angular resolution we cannot resolve an hypothetical more complex structure. We estimated the B-field strength, the MtF ratio and the A-M number, and found differences between the 2 hubs. The different levels of fragmentation observed in these 2 hubs could arise from the differences in the B-field properties rather than from different intensity of the G-field.Comment: 14 pages, 9 figure

    Unveiling a cluster of protostellar disks around the massive protostar GGD 27 MM1

    Get PDF
    Context. Most stars form in clusters and thus it is important to characterize the protostellar disk population in dense environments to assess whether the environment plays a role in the subsequent evolution. Specifically, it is critical to evaluate whether planet formation is altered with respect to more isolated stars formed in dark clouds. Aims. We seek to investigate the properties of the protostellar disks in the GGD 27 cluster and compare these with those obtained from disks formed in nearby regions. Methods. We used ALMA to observe the star-forming region GGD 27 at 1.14 mm with an unprecedented angular resolution, 40 mas (∼56 au), and sensitivity (∼0.002 M·). Results. We detected a cluster of 25 continuum sources, most of which likely trace disks around Class 0/I protostars. Excluding the two most massive objects, disks masses are in the range 0.003-0.05 M·. The analysis of the cluster properties indicates that GGD 27 displays moderate subclustering. This result, combined with the dynamical timescale of the radio jet (∼104 years), suggests the youthfulness of the cluster. The lack of disk mass segregation signatures may support this as well. We found a clear paucity of disks with Rdisk > 100 au. The median value of the radius is 34 au; this value is smaller than the median of 92 au for Taurus but comparable to the value found in Ophiuchus and in the Orion Nebula Cluster. In GGD 27 there is no evidence of a distance-dependent disk mass distribution (i.e., disk mass depletion due to external photoevaporation), most likely due to the cluster youth. There is a clear deficit of disks for distances 0.04 pc. This suggests that dynamical interactions far from the cluster center are weaker, although the small disks found could be the result of disk truncation. This work demonstrates the potential to characterize disks from low-mass young stellar objects in distant and massive (still deeply embedded) clustered environments.Fil: Busquet, G.. Instituto de Estudios Espaciales de Cataluña; España. Instituto de Ciencias del Espacio (ice); EspañaFil: Girart, J. M.. Instituto de Estudios Espaciales de Cataluña; España. Instituto de Ciencias del Espacio (ice); EspañaFil: Estalella, R.. Universidad de Barcelona; EspañaFil: Fernandez Lopez, Manuel. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Galván Madrid, R.. Universidad Nacional Autónoma de México; MéxicoFil: Anglada, G.. Instituto de Astrofísica de Andalucía; EspañaFil: Carrasco González, C.. Universidad Nacional Autónoma de México; MéxicoFil: Añez López, N.. Instituto de Ciencias del Espacio (ice); EspañaFil: Curiel, S.. Universidad Nacional Autónoma de México; MéxicoFil: Osorio, M.. Instituto de Astrofísica de Andalucía; EspañaFil: Rodríguez, L. F.. Universidad Nacional Autónoma de México; MéxicoFil: Torrelles, J. M.. Instituto de Estudios Espaciales de Cataluña; España. Instituto de Ciencias del Espacio (ice); Españ

    Modeling the Accretion Disk around the High-mass Protostar GGD 27-MM1

    Get PDF
    Recent high angular resolution (≃40 mas) ALMA observations at 1.14 mm resolve a compact (R ≃ 200 au), flattened dust structure perpendicular to the HH 80─81 jet emanating from the GGD 27-MM1 high-mass protostar, making it a robust candidate for a true accretion disk. The jet─disk system (HH 80─81/GGD 27-MM1) resembles those found in association with low- and intermediate-mass protostars. We present radiative transfer models that fit the 1.14 mm ALMA dust image of this disk, which allow us to obtain its physical parameters and predict its density and temperature structure. Our results indicate that this accretion disk is compact (R disk ≃ 170 au) and massive (≃5 M ☉), at about 20% of the stellar mass of ≃20 M ☉. We estimate the total dynamical mass of the star─disk system from the molecular line emission, finding a range between 21 and 30 M ☉, which is consistent with our model. We fit the density and temperature structures found by our model with power-law functions. These results suggest that accretion disks around massive stars are more massive and hotter than their low-mass siblings, but they still are quite stable. We also compare the temperature distribution in the GGD 27─MM1 disk with that found in low- and intermediate-mass stars and discuss possible implications for the water snow line. We have also carried out a study of the distance based on Gaia DR2 data and the population of young stellar objects in this region and from the extinction maps. We conclude that the source distance is within 1.2 and 1.4 kpc, closer than what was derived in previous studies (1.7 kpc).Fil: Añez López, N.. Instituto de Ciencias del Espacio; EspañaFil: Osorio, M.. Instituto de Astrofísica de Andalucía; EspañaFil: Busquet, G.. Instituto de Ciencias del Espacio; EspañaFil: Girart, J. M.. Instituto de Ciencias del Espacio; EspañaFil: Macías, E.. European Southern Observatory; ChileFil: Carrasco González, C.. Instituto de Radioastronomía y Astrofísica; MéxicoFil: Curiel, S.. Universidad Nacional Autonoma de Mexico. Instituto de Astronomia; MéxicoFil: Estalella, R.. Universidad de Barcelona. Facultad de Física; EspañaFil: Fernandez Lopez, Manuel. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Galván Madrid, R.. Instituto de Radioastronomía y Astrofísica; MéxicoFil: Kwon, J.. University of tokyo; JapónFil: Torrelles, J. M.. Institut de Ciencies de l’Espai; Españ

    Estimating Contact Process Saturation in Sylvatic Transmission of Trypanosoma cruzi in the United States

    Get PDF
    Although it has been known for nearly a century that strains of Trypanosoma cruzi, the etiological agent for Chagas' disease, are enzootic in the southern U.S., much remains unknown about the dynamics of its transmission in the sylvatic cycles that maintain it, including the relative importance of different transmission routes. Mathematical models can fill in gaps where field and lab data are difficult to collect, but they need as inputs the values of certain key demographic and epidemiological quantities which parametrize the models. In particular, they determine whether saturation occurs in the contact processes that communicate the infection between the two populations. Concentrating on raccoons, opossums, and woodrats as hosts in Texas and the southeastern U.S., and the vectors Triatoma sanguisuga and Triatoma gerstaeckeri, we use an exhaustive literature review to derive estimates for fundamental parameters, and use simple mathematical models to illustrate a method for estimating infection rates indirectly based on prevalence data. Results are used to draw conclusions about saturation and which population density drives each of the two contact-based infection processes (stercorarian/bloodborne and oral). Analysis suggests that the vector feeding process associated with stercorarian transmission to hosts and bloodborne transmission to vectors is limited by the population density of vectors when dealing with woodrats, but by that of hosts when dealing with raccoons and opossums, while the predation of hosts on vectors which drives oral transmission to hosts is limited by the population density of hosts. Confidence in these conclusions is limited by a severe paucity of data underlying associated parameter estimates, but the approaches developed here can also be applied to the study of other vector-borne infections

    International nosocomial infection control consortium (INICC) report, data summary of 36 countries, for 2004-2009

    Get PDF
    The results of a surveillance study conducted by the International Nosocomial Infection Control Consortium (INICC) from January 2004 through December 2009 in 422 intensive care units (ICUs) of 36 countries in Latin America, Asia, Africa, and Europe are reported. During the 6-year study period, using Centers for Disease Control and Prevention (CDC) National Healthcare Safety Network (NHSN; formerly the National Nosocomial Infection Surveillance system [NNIS]) definitions for device-associated health care-associated infections, we gathered prospective data from 313,008 patients hospitalized in the consortium's ICUs for an aggregate of 2,194,897 ICU bed-days. Despite the fact that the use of devices in the developing countries' ICUs was remarkably similar to that reported in US ICUs in the CDC's NHSN, rates of device-associated nosocomial infection were significantly higher in the ICUs of the INICC hospitals; the pooled rate of central line-associated bloodstream infection in the INICC ICUs of 6.8 per 1,000 central line-days was more than 3-fold higher than the 2.0 per 1,000 central line-days reported in comparable US ICUs. The overall rate of ventilator-associated pneumonia also was far higher (15.8 vs 3.3 per 1,000 ventilator-days), as was the rate of catheter-associated urinary tract infection (6.3 vs. 3.3 per 1,000 catheter-days). Notably, the frequencies of resistance of Pseudomonas aeruginosa isolates to imipenem (47.2% vs 23.0%), Klebsiella pneumoniae isolates to ceftazidime (76.3% vs 27.1%), Escherichia coli isolates to ceftazidime (66.7% vs 8.1%), Staphylococcus aureus isolates to methicillin (84.4% vs 56.8%), were also higher in the consortium's ICUs, and the crude unadjusted excess mortalities of device-related infections ranged from 7.3% (for catheter-associated urinary tract infection) to 15.2% (for ventilator-associated pneumonia). Copyright © 2012 by the Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved
    corecore