41,449 research outputs found
Incompressibility in finite nuclei and nuclear matter
The incompressibility (compression modulus) of infinite symmetric
nuclear matter at saturation density has become one of the major constraints on
mean-field models of nuclear many-body systems as well as of models of high
density matter in astrophysical objects and heavy-ion collisions. We present a
comprehensive re-analysis of recent data on GMR energies in even-even Sn and Cd and earlier data on 58 A 208
nuclei. The incompressibility of finite nuclei is expressed as a
leptodermous expansion with volume, surface, isospin and Coulomb coefficients
, , and . \textit{Assuming}
that the volume coefficient is identified with , the
= -(5.2 0.7) MeV and the contribution from the curvature
term KA in the expansion is neglected, compelling
evidence is found for to be in the range 250 315
MeV, the ratio of the surface and volume coefficients to be between -2.4 and -1.6 and between -840 and -350 MeV.
We show that the generally accepted value of = (240 20) MeV
can be obtained from the fits provided -1, as predicted by the
majority of mean-field models. However, the fits are significantly improved if
is allowed to vary, leading to a range of , extended to higher
values. A self-consistent simple (toy) model has been developed, which shows
that the density dependence of the surface diffuseness of a vibrating nucleus
plays a major role in determination of the ratio K and
yields predictions consistent with our findings.Comment: 26 pages, 13 figures; corrected minor typos in line with the proof in
Phys. Rev.
Space education: Deriving benefits from industrial consortia
As the number of spacefaring nations of the world increases, so does the difficulty of competing in a global economy. The development of high technology products and services for space programs, and the economic exploitation of these technologies for national economic growth, requires professionals versed in both technical and commercial aspects of space. Meeting this requirement academically presents two challenges. On the technical side, enrollment in science and engineering is decreasing in some of the spacefaring nations. From the commerce perspective, very few colleges and universities offer specific courses in space business
Noise of model target type thrust reversers for engine-over-the-wing applications
The results of experiments on the noise generated by V-gutter and semicylindrical target reversers with circular and short-aspect-ratio slot nozzles having diameters of about 5 cm are presented. The experiments were conducted with cold-flow jets at velocities from 190-290 m/sec. The reversers at subsonic jet velocities had a more uniform noise distribution and higher frequency than the nozzles alone. The reverser shape was shown to be more important than the nozzle shape in determining the noise characteristics. The maximum sideline pressure level varied with the sixth power of the jet velocity, and the data were correlated for angles along the sideline. An estimate of the noise level along the 152 m sideline for an engine-over-the-wing powered-lift airplane was made
Launch system development in the Pacific Rim
Several Western Pacific Rim nations are beginning to challenge the domination of the United States, Europe, and the former Soviet Union in the international market for commercial launch sevices. This paper examines the current development of launch systems in China, Japan, and Australia. China began commercial launch services with their Long March-3 in April 1990, and is making enhancements to vehicles in this family. Japan is developing the H-2 rocket which will be marketed on a commercial basis. In Australia, British Aerospace Ltd. is leading a team conducting a project definition study for an Australian Launch Vehicle, aimed at launching the new generation of satellites into low Earth orbit
Coalescence of Liquid Drops
When two drops of radius touch, surface tension drives an initially
singular motion which joins them into a bigger drop with smaller surface area.
This motion is always viscously dominated at early times. We focus on the
early-time behavior of the radius \rmn of the small bridge between the two
drops. The flow is driven by a highly curved meniscus of length 2\pi \rmn and
width \Delta\ll\rmn around the bridge, from which we conclude that the
leading-order problem is asymptotically equivalent to its two-dimensional
counterpart. An exact two-dimensional solution for the case of inviscid
surroundings [Hopper, J. Fluid Mech. , 349 (1990)] shows that
\Delta \propto \rmn^3 and \rmn \sim (t\gamma/\pi\eta)\ln [t\gamma/(\eta
R)]; and thus the same is true in three dimensions. The case of coalescence
with an external viscous fluid is also studied in detail both analytically and
numerically. A significantly different structure is found in which the outer
fluid forms a toroidal bubble of radius \Delta \propto \rmn^{3/2} at the
meniscus and \rmn \sim (t\gamma/4\pi\eta) \ln [t\gamma/(\eta R)]. This basic
difference is due to the presence of the outer fluid viscosity, however small.
With lengths scaled by a full description of the asymptotic flow for
\rmn(t)\ll1 involves matching of lengthscales of order \rmn^2, \rmn^{3/2},
\rmn\rmn^{7/4}$.Comment: 36 pages, including 9 figure
Solar cycle variations of the anomalous cosmic ray component
The intensity of the anomalous cosmic ray component, consisting of He, N, O, and Ne, has long been known to be especially sensitive to the effects of solar modulation. Following its discovery in 1972, this component dominated the quiet time flux of cosmic ray nuclei below approx. 30 MeV/nucleon during the 1972 to 1978 solar minimum, but then became essentially unobservable at 1 AU with the approach of solar maximum conditions. One recent theoretical model predicts substantial differences in the intensity of the anomalous fluxes from one solar minimum period to the next because of the reversal of the solar magnetic field. Using data from the Caltech experiments on IMP-8 and ICE (ISEE-3), the intensity of anomalous O and He at 1 AU during the years 1972 to 1985 is reported in particular. Whether the anomalous fluxes will return to their 1972-1978 levels, as predicted by spherically symmetric modulation models, or whether they will fail to return to 1 AU, as suggested by modulation models in which gradient and curvature drifts dominate are to be determined. The preliminary analysis of data from 1984 shows that the intensity of 8 to 27 MeV/nucleon O is still more than an order of magnitude below its 1972 to 1978 levels, while the intensity of 25 to 43 MeV/nucleon He is a factor of Approx. 8 below its maximum level in 1977
Reduction and analysis of data from experiment CAI on the IMP-8 mission
The Caltech Electron/Isotope Spectrometer (EIS) on the Interplanetary Monitoring Platform 8 (IMP-8) has provided precise measurements of the energy spectra and time variations of low energy electrons (0.16 to 6 MeV), the isotopes of hydrogen and helium (approximately 2 to 40 MeV/nucleon), and the elements from lithium through oxygen (approximately 5 to 50 MeV/nucleon) in energetic particle fluxes of solar, galactic, interplanetary, and magnetospheric origin since 1973. The accomplishments that have resulted from EIS measurements during the period March 24, 1980 to December 31, 1984 are summarized
Research study on instrument unit thermal conditioning heat sink concepts First quarterly progress report, 11 Mar. - 31 May 1966
Water boiler and water sublimator heat sink concepts, visualization test module, and sublimation mechanis
Status of noise technology for advanced supersonic cruise aircraft
Developments in acoustic technology applicable to advanced supersonic cruise aircraft, particularly those which relate to jet noise and its suppression are reviewed. The noise reducing potential of high radius ratio, inverted velocity profile coannular jets is demonstrated by model scale results from a wide range of nozzle geometries, including some simulated flight cases. These results were verified statistically at large scale on a variable cycle engine (VCE) testbed. A preliminary assessment of potential VCE noise sources such as fan and core noise is made, based on the testbed data. Recent advances in the understanding of flight effects are reviewed. The status of component noise prediction methods is assessed on the basis of recent test data, and the remaining problem areas are outlined
- …