808 research outputs found

    TLEP, first step in a long-term vision for HEP

    Full text link
    The discovery of H(126) has renewed interest in circular e+e- colliders that can operate as Higgs factories, which benefit from three unique characteristics: i) high luminosity and reliability, ii) the availability of several interaction points, iii) superior beam energy accuracy. TLEP is an e+e- storage ring of 80-km circumference that can operate with very high luminosity from the Z peak (90 GeV) to the top quark pair threshold (350 GeV). It can achieve transverse beam polarization at the Z peak and WW threshold, giving it unparalleled accuracy on the beam energy. A preliminary study indicates that an 80 km tunnel could be constructed around CERN. Such a tunnel would allow a 100 TeV proton-proton collider to be established in the same ring (VHE-LHC), offering a long term vision.Comment: This is a contribution to the the Snowmass process 2013: Frontier Capabilitie

    The FCC-ee Interaction Region Magnet Design

    Full text link
    The design of the region close to the interaction point of the FCC-ee experiments is especially challenging. The beams collide at an angle (+-15 mrad) in the high-field region of the detector solenoid. Moreover, the very low vertical beta_y* of the machine necessitates that the final focusing quadrupoles have a distance from the IP (L*) of around 2 m and therefore are inside the main detector solenoid. The beams should be screened from the effect of the detector magnetic field, and the emittance blow-up due to vertical dispersion in the interaction region should be minimized, while leaving enough space for detector components. Crosstalk between the two final focus quadrupoles, only about 6 cm apart at the tip, should also be minimized.Comment: Poster presented at IPAC16, May 8-13, Busan, Kore

    Comments on "Wall-plug (AC) power consumption of a very high energy e+/e- storage ring collider" by Marc Ross

    Full text link
    The paper arXiv:1308.0735 questions some of the technical assumptions made by the TLEP Steering Group when estimating in arXiv:1305.6498 the power requirement for the very high energy e+e- storage ring collider TLEP. We show that our assumptions are based solidly on CERN experience with LEP and the LHC, as well accelerators elsewhere, and confirm our earlier baseline estimate of the TLEP power consumption.Comment: 6 page

    FCC-ee: Energy calibration

    Full text link
    The FCC-ee aims to improve on electroweak precision measurements, with goals of 100 keV on the Z mass and width, and a fraction of MeV on the W mass. Compared to LEP, this implies a much improved knowledge of the centre-of-mass energy when operating at the Z peak and WW threshold. This can be achieved by making systematic use of resonant depolarization. A number of issues have been identified, due in particular to the long polarization times. However the smaller emittance and energy spread of FCC-ee with respect to LEP should help achieve a much improved performance.Comment: Poster presented at IPAC'15, Richmond, VA, USA, May 2015. arXiv admin note: substantial text overlap with arXiv:1501.0685

    TLEP: A High-Performance Circular e+e- Collider to Study the Higgs Boson

    Full text link
    The recent discovery of a light Higgs boson has opened up considerable interest in circular e+e- Higgs factories around the world. We report on the progress of the TLEP concept since last year. TLEP is an e+e- circular collider capable of very high luminosities in a wide centre-of-mass (ECM) spectrum from 90 to 350 GeV. TLEP could be housed in a new 80 to 100 km tunnel in the Geneva region. The design can be adapted to different ring circumference (e.g. LEP3 in the 27 km LHC tunnel). TLEP is an ideal complementary machine to the LHC thanks to high luminosity, exquisite determination of ECM and the possibility of four interaction points, both for precision measurements of the Higgs boson properties and for precision tests of the closure of the Standard Model from the Z pole to the top threshold.Comment: Contribution to IPAC13, 12-17 May 2013, Shanghai, Chin

    Constraints on Quartic Vector-Boson Interactions from Z Physics

    Get PDF
    We obtain the constraints on possible anomalous quartic vector-boson vertices arising from the precision measurements at the ZZ pole. In the framework of SU(2)LU(1)YSU(2)_L \otimes U(1)_Y chiral Lagrangians, we examine all effective operators of order D=4D=4 that lead to four-gauge-boson interactions but do not induce anomalous trilinear vertices. We constrain the anomalous quartic interactions by evaluating their one-loop corrections to the ZZ pole physics. Our analysis is performed in a generic RξR_\xi gauge and it shows that only the operators that break the SU(2)CSU(2)_C custodial symmetry get limits close to the theoretical expectations. Our results also indicate that these anomalous couplings are already out of reach of the Next Linear e+ee^+ e^- Collider, while the Large Hadron Collider could be able to further extend the bounds on some of these couplings.Comment: 16 pages, 1 Postscript figures, uses RevTex and eps.st

    The Influence of Train Leakage Currents on the LEP Dipole Field

    Get PDF
    The determination of the mass and the width of the Z boson at CERN's LEP accelerator, an e+e- storage ring with a circumference of approximately 27 kilometres, imposes heavy demands on the knowledge of the LEP counter-rotating electron and positron beam energies. The precision required is of the order of 1 MeV or »20 ppm frequency. Due to its size the LEP collider is influenced by various macroscopic and regional factors such as the position of the moon or seasonal changes of the rainfall in the area, as reported earlier. A new and not less surprising effect of the LEP energy was observed in 1995: railroad trains in the Geneva region perturb the dipole field. A parasitic flow of electricity, originating from the trains, travels along the LEP ground cable and the vacuum chamber, interacting with the dipole field. An account of the phenomenon with its explanation substantiated by dedicated measurements is presented

    A newly observed Effect affects the LEP Beam Energy

    Get PDF
    The LEP magnetic bending field and therefore the beam energy is changed by a current flow over the vacuum chamber. The current is created by trains travelling between the Geneva main station and destinations in France. Some of the rail current leaks into earth and returns to the power station via the LEP tunnel, where the vacuum chamber is one of the conductors. Train leakage currents penetrate LEP at the injection lines from the SPS close to IP1 and between IP5 and IP7, thereby interacting with the magnetic dipole field. The observed changes in B field cause beam energy increases of several MeV

    Evaluation of the LEP Centre-of-Mass Energy Above the W-Pair Production Threshold

    Get PDF
    Knowledge of the centre-of-mass energy at LEP2 is of primary importance to set the absolute energy scale for the measurement of the W-boson mass. The beam energy above 80 GeV is derived from continuous measurements of the magnetic bending field by 16 NMR probes situated in a number of the LEP dipoles. The relationship between the fields measured by the probes and the beam energy is calibrated against precise measurements of the average beam energy between 41 and 55 GeV made using the resonant depolarisation technique. The linearity of the relationship is tested by comparing the fields measured by the probes with the total bending field measured by a flux loop. This test results in the largest contribution to the systematic uncertainty. Several further corrections are applied to derive the the centre-of-mass energies at each interaction point. In addition the centre-of-mass energy spread is evaluated. The beam energy has been determined with a precision of 25 MeV for the data taken in 1997, corresponding to a relative precision of 2.7x10^{-4}. This is small in comparison to the present uncertainty on the W mass measurement at LEP. However, the ultimate statistical precision on the W mass with the full LEP2 data sample should be around 25 MeV, and a smaller uncertainty on the beam energy is desirable. Prospects for improvements are outlined.Comment: 24 pages, 10 figures, Latex, epsfig; replaced by version accepted by European Physical Journal

    Design of beam optics for the Future Circular Collider e+e- -collider rings

    Full text link
    A beam optics scheme has been designed for the Future Circular Collider-e+e- (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [1] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system without additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called "tapering" of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [2] as closely as possible. Sufficient transverse/longitudinal dynamic aperture (DA) has been obtained, including major dynamical effects, to assure an adequate beam lifetime in the presence of beamstrahlung and top-up injection. In particular, a momentum acceptance larger than +/-2% has been obtained, which is better than the momentum acceptance of typical collider rings by about a factor of 2. The effects of the detector solenoids including their compensation elements are taken into account as well as synchrotron radiation in all magnets. The optics presented in this paper is a step toward a full conceptual design for the collider. A number of issues have been identified for further study
    corecore