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Abstract

We obtain the constraints on possible anomalous quartic vector-boson
vertices arising from the precision measurements at the Z pole. In the frame-
work of SU(2)L⊗U(1)Y chiral Lagrangians, we examine all effective operators
of order D = 4 that lead to four-gauge-boson interactions but do not induce
anomalous trilinear vertices. We constrain the anomalous quartic interactions
by evaluating their one-loop corrections to the Z pole physics. Our analysis
is performed in a generic Rξ gauge and it shows that only the operators
that break the SU(2)C custodial symmetry get limits close to the theoret-
ical expectations. Our results also indicate that these anomalous couplings
are already out of reach of the Next Linear e+e− Collider, while the Large
Hadron Collider could be able to further extend the bounds on some of these
couplings.
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I. INTRODUCTION

The standard model (SM) of electroweak interactions has been the subject of an intense

experimental research that confirmed its predictions for the interactions between fermions

and vector bosons [1]. However, some elements of the SM, such as the symmetry breaking

mechanism and the interaction among the gauge bosons, have not been the object of direct

experimental observation yet. In particular, the structure of the triple and quartic vector-

boson couplings is completely determined by the SU(2)L ⊗ U(1)Y gauge structure of the

model, and a detailed study of these interactions can either further confirm the local gauge

invariance of the theory or indicate the existence of new physics beyond the SM.

Presently only hadronic colliders have directly studied the triple vertex W+W−γ [2];

however, their constraints on this coupling are very loose. One of the main goals of LEP

II at CERN will be the investigation of the reaction e+e− → W+W−, which can furnish

direct bounds on anomalous W+W−γ and W+W−Z interactions [3]. Future hadron [4] and

e+e−, eγ, and γγ [5] colliders will also provide information on these couplings and improve

significantly our knowledge of possible anomalous gauge-boson interactions.

Direct studies of quartic vector-boson interactions cannot be performed at the colliders

in operation since the available centre-of-mass energy is not sufficient for multiple vector-

boson production. This crucial test of the gauge structure of the SM will be possible only

at the CERN Large Hadron Collider (LHC) through the reaction pp → VLVLX [6–8] or at

the next linear collider (NLC) through the processes e+e− → V V V [9,10], e−e− → FFV V

[11], eγ → V V F [12], γγ → V V [13], and γγ → V V V [14], where V = Z, W± or γ and

F = e or νe. However, these machines will not operate in the near future, and consequently

we will have to rely on indirect information on the quartic vertices for quite some time.

Valuable information on anomalous interactions can also be gathered from the low energy

data [15] and the results of the Z physics [16–19], which can also constrain substantially

the possible deviations of the gauge boson self-interactions from the SM predictions through

their contributions to the electroweak radiative corrections. So far all the analyses have
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concentrated on operators which generate tree-level modifications to the gauge-boson two-

point or three-point functions.

In this work, we obtain the constraints on quartic vector-boson self-interactions arising

from the precision measurements at LEP and the SLC. We focus our attention on genuinely

anomalous quartic operators, i.e. operators that do not modify the trilinear vertices. These

anomalous interactions cannot be constrained by the direct LEP II analysis of the vertices

W+W−γ and W+W−Z. In general, anomalous quartic couplings arise as the low-energy

limit of heavy state exchange, whereas trilinear couplings are modified by integrating out

heavy fields. Therefore, deviations on the triple gauge-vector couplings should be harder to

observe than the ones on the quartic couplings, since the former are suppressed by factors

of 1/16π2 [20]. Furthermore, it is even possible to conceive extensions of the SM where the

trilinear couplings remain unchanged, while the quartic vertices receive new contributions.

For instance, the introduction of a new heavy scalar singlet, which interacts strongly with

the Higgs sector of the SM, enhances the quartic vector-boson interaction without affecting

either the triple vector-boson couplings or the SM predictions for the ρ parameter [21].

At the one-loop level, anomalous quartic vector-boson interactions contribute to the Z

pole physics through universal corrections to the gauge-boson self-energies. In general, the

oblique radiative corrections can be parametrized in terms of three observables S, T , and

U [22], or equivalently ε1, ε2, and ε3 [23]. We shall obtain the constraints on anomalous

quartic vertices by imposing that their one-loop contributions are compatible with the Z

pole data [24,25]. Since the SLC and LEP I achieved a precision of the order of a per mille

in some observables, the Z pole physics is the best available source of information on quartic

vector-boson interactions.

II. THEORETICAL FRAMEWORK

If the electroweak symmetry breaking is due to a heavy (strongly interacting) Higgs

boson, which can be effectively removed from the physical low-energy spectrum, or to no
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fundamental Higgs scalar at all, one is led to consider the most general effective Lagrangian

which employs a nonlinear representation of the spontaneously broken SU(2)L ⊗ U(1)Y

gauge symmetry [26]. The resulting chiral Lagrangian is a non-renormalizable non-linear σ

model coupled in a gauge-invariant way to the Yang-Mills theory. This model independent

approach incorporates by construction the low-energy theorems [27], that predict the general

behavior of Goldstone boson amplitudes irrespective of the details of the symmetry breaking

mechanism. Notwithstanding, unitarity implies that this low-energy effective theory should

be valid up to some energy scale smaller than 4πv ' 3 TeV, where new physics would come

into play.

To specify the effective Lagrangian one must first fix the symmetry breaking pattern.

We consider that the system presents a global SU(2)L⊗SU(2)R symmetry that is broken to

SU(2)C . With this choice, the building block1 of the chiral Lagrangian is the dimensionless

unimodular matrix field Σ(x), which transforms under SU(2)L ⊗ SU(2)R as (2, 2):

Σ(x) = exp

(
i
ϕa(x)τ a

v

)
, (1)

where the ϕa fields are the would-be Goldstone fields and τ a (a = 1, 2, 3) are the Pauli

matrices. The SU(2)L ⊗ U(1)Y covariant derivative of Σ is defined as

DµΣ ≡ ∂µΣ + ig
τ a

2
W a
µΣ− ig′Σ

τ 3

2
Bµ . (2)

At this point, it is convenient to introduce the following auxiliary quantities

T ≡ Στ 3Σ† , (3)

Vµ ≡ (DµΣ) Σ† , (4)

which are SU(2)L-covariant and U(1)Y -invariant. Notice that T is not invariant under

SU(2)C custodial due to the appearance of τ 3 in its expression.

The lowest-order terms in the derivative expansion of the effective Lagrangian are

1We follow the notation of Ref. [26].
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L(2) =
v2

4
Tr
[
(DµΣ)† (DµΣ)

]
+ β1g

′2v
2

4
(Tr [TVµ])2 . (5)

The first term of the above equation is responsible for giving mass to the gauge bosons W±

and Z for v = (
√

2GF )−1. The second term violates the custodial SU(2)C symmetry and

contributes to ∆ρ at the tree level, being strongly constrained by the low-energy data. This

term can be understood as the low-energy remnant of the high-energy custodial symmetry

breaking physics, which has been integrated out above a certain scale Λ. Moreover, at the

one-loop order, it is also required in order to cancel the divergences in ∆ρ, arising from

diagrams containing a hypercharge boson in the loop [26]. This subtraction renders ∆ρ

finite, although dependent on the renormalization scale.

At the next order in the derivative expansion D = 4, there are many operators that can

be written down [26]. We shall restrict ourselves to the ones that exhibit genuine quartic

vector-boson interactions. These operators are

L(4)
4 = α4 [Tr (VµVν)]

2 , (6)

L(4)
5 = α5 [Tr (VµV

µ)]2 , (7)

L(4)
6 = α6 Tr (VµVν) Tr (TV µ) Tr (TV ν) , (8)

L(4)
7 = α7 Tr (VµV

µ) [Tr (TV ν)]2 , (9)

L(4)
10 = α10 [Tr (TVµ) Tr (TVν)]

2 . (10)

In an arbitrary gauge, these Lagrangian densities lead to quartic vertices involving gauge

bosons and/or Goldstone bosons. In the unitary gauge, these effective operators give

rise to anomalous ZZZZ (all operators), W+W−ZZ (all operators except L(4)
10 ), and

W+W−W+W− (L(4)
4 and L(4)

5 ) interactions. Moreover, the interaction Lagrangians L(4)
6 ,

L(4)
7 , and L(4)

10 violate the SU(2)C custodial symmetry. Notice that quartic couplings involv-

ing photons remain untouched by the genuinely quartic anomalous interactions at the order

D = 4. The Feynman rules for the quartic couplings generated by these operators can be

found in the last article of Ref. [26].

In our calculations, we adopted an arbitrary Rξ gauge, whose gauge-fixing Lagrangian is
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LGF = −
1

2ξB
f2

0 −
1

2ξW

(
3∑
i=1

f2
i

)
, (11)

where

f0 = ∂µB
µ −

i

4
g′vξBTr(τ 3Σ) , (12)

fi = ∂µW
µ
i +

i

4
gvξWTr(τ iΣ) , (13)

with g (g′) being the SU(2)L (U(1)Y ) coupling constant.

At the one-loop level, the effective interactions (6) – (10) contribute to the Z physics

only through corrections to the gauge boson propagators (Σnew). The anomalous oblique

corrections can be efficiently summarized in terms of the parameters Snew, Tnew, and Unew

[22], or the equivalent set ε1new, ε2new, and ε3new [23], whose expressions as functions of the

unrenormalized gauge boson self-energies are

αSnew

4s2
w

≡
1

M2
Z

{
c2
W

[
Σγ
new(M2

Z) + ΣZ
new(0)− Σnew(M2

Z)
]

−sW cW

(
c2
W

s2
W

− 1

) [
ΣγZ
new(M2

Z)− ΣγZ
new(0)

]}
= ε3new , (14)

αTnew ≡
ΣZ
new(0)

M2
Z

−
ΣW
new(0)

M2
W

− 2
sW

cW

ΣγZ
new(0)

M2
Z

= ε1new , (15)

αUnew

4s2
W

≡

{
ΣW
new(0)− ΣW

new(M2
W )

M2
W

+ s2
W

Σγ
new(M2

Z)

M2
Z

−2sW cW
ΣγZ
new(M2

Z)− ΣγZ
new(0)

M2
Z

+ c2
W

ΣZ
new(M2

Z)− ΣZ
new(0)

M2
Z

}
= −ε2new , (16)

where α is the fine structure constant and sW (cW ) is the sine (cosine) of the weak mixing

angle. These expressions for Snew, Tnew, and Unew are valid for an arbitrary momentum

dependence of the vacuum polarization diagrams [28]; they recover the original definitions

of Ref. [22], when we consider only the first two terms in the momentum expansion of the

self-energies. This is the case of the present work. Since the contribution from the new

operators to the Z observables occurs only through the gauge-boson vacuum polarization

diagrams, which are momentum-independent, we can also express the new contributions in

terms of the ε parameters from Ref. [23].
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Recent global analyses of the LEP, SLD, and low-energy data yield the following values

for the oblique parameters [24]:

ε1 = ε1SM + ε1new = (5.1± 2.2)× 10−3 ,

ε2 = ε2SM + ε2new = (−4.1± 4.8)× 10−3 ,

ε3 = ε3SM + ε3new = (5.1± 2.0)× 10−3 .

(17)

In Ref. [25], the results are obtained in terms of Snew, Tnew, and Unew, consistent with Eqs.

(17). In order to extract the value of the oblique parameters due to new physics, we must

subtract the SM contribution, which depends upon the SM parameters, in particular, on

the top quark mass mtop.

III. RESULTS AND CONCLUSIONS

We used dimensional regularization [29] to evaluate the one-loop contributions from the

effective interactions (6) – (10), in order to preserve gauge invariance and to keep the ordering

of the different contributions simple. In analogy to what happens for chiral Lagrangians

applied to low-energy QCD [30], the electroweak chiral Lagrangian leads to an expansion in

powers of the momentum p and the weak coupling constant g. This g dependence is due to

the introduction of new degrees of freedom associated to the gauge bosons. At a given order

in g and p, there are just a finite number of operators and loop diagrams that contribute to a

process. Therefore, the effective theory renormalization can be carried out by renormalizing

the coupling constants of the operators that appear in the process at the order that the

analysis is being done. In this work, we evaluate the one-loop contributions from D = 4

interactions, where D counts the number of derivative plus the numbers of gauge bosons

in the operator, which lead to g4p2 corrections. In a complete calculation, we should also

include the effects of two-loop graphs of D = 2 operators and tree-level contributions from

D = 6 operators. At the end of the day, the experimental results for the oblique parameters

would constrain combinations of the coupling constants appearing in the D = 2, D = 4, and

D = 6 operators [30]. However, this next-to-next-to-leading order calculation contains a
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large number of free parameters that reduces its usefulness. Notwithstanding, we can bound

the anomalous quartic interactions from their oblique corrections under the naturalness

assumption that no cancelation takes place amongst the L(2), L(4), and L(6) contributions

that appear at the same order in the expansion. The motivation for this assumption is that

the effects of the new physics and states from higher-energy scales must manifest themselves

in a very clear way, otherwise they are very hard to observe.

Our procedure to bound the operators (6) – (10) is the following: first we evaluate their

oblique corrections using dimensional regularization. Then, we use the leading non-analytic

contributions from the loop diagrams to constrain the quartic interactions – that is, we

keep only the terms proportional to log(µ2), dropping all others. The contributions that are

relevant for our analysis are easily obtained by the substitution

2

4− d
→ log

Λ2

M2
Z

, (18)

where Λ is the energy scale which characterizes the appearance of new physics.

Using the above procedure, we obtained that Snew = Unew = 0 and that only Tnew is

non-vanishing for all the quartic anomalous interactions, being given by

αTnew = ε1new = −
15α4

64π2
g4(1 + c2

W )
s2
W

c2
W

log
Λ2

M2
Z

, (19)

αTnew = ε1new = −
3α5

32π2
g4(1 + c2

W )
s2
W

c2
W

log
Λ2

M2
Z

, (20)

αTnew = ε1new = −
3α6

64π2
g4

(
2 +

11

c4
W

)
log

Λ2

M2
Z

, (21)

αTnew = ε1new = −
3α7

64π2
g4

(
1 + c4

W

c4
W

)
log

Λ2

M2
Z

, (22)

αTnew = ε1new = −
9α10

8π2
g4

(
1

c4
W

)
log

Λ2

M2
Z

, (23)

for L(4)
4 , L(4)

5 , L(4)
6 , L(4)

7 e L(4)
10 , respectively.

Our calculation has been done in a general Rξ gauge and we have explicitly verified

the cancellation of the ξ-dependent terms, indicating that our result is gauge-invariant.

Ward identities relate the two- and three-point functions, and consequently the anomalous
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contributions to the two-point functions are gauge-independent since there is no one-loop

three-point contribution due to the effective quartic interactions.

Our first step towards obtaining the bounds on the anomalous quartic vertices is to

determine the SM contribution to ε1. As discussed above, the gauge-boson contribution to

this parameter is infinite as a consequence of the absence of the elementary Higgs. On the

other hand, we must also include the tree level effect due to the β1 operator in Eq. (5), which

absorbs this infinity through the renormalization of the β1 constant. If the renormalization

condition is imposed at a scale Λ, we are left with the contribution due to the running of β1

from the scale Λ to MZ . Therefore, the SM contribution without the Higgs boson will be the

same as that of the SM with an elementary Higgs, with the substitution ln(MH)→ ln(Λ).

We show in Table I the 90% CL constraints on the quartic anomalous vector-boson

interactions which are obtained from Eq. (17) assuming that Λ = 2 TeV. In this case the

SM contribution to ε1 is in the range (2.68–7.58)×10−3 for mtop = 170–220 GeV. Our bounds

for α4 and α5 agree with the ones in Ref. [31] which were obtained in the unitary gauge.

It is interesting to notice that our analysis does not show any indication of new physics

beyond the SM since all the anomalous couplings are compatible with zero at 90% CL. A

natural order of magnitude of the anomalous couplings αi in a fundamental gauge theory is

g2v2/Λ2 [20], since the quartic anomalous interactions can be generated by tree diagrams.

Thus, we might expect that the size of the α’s should be of the order of M2
Z/Λ

2 ' 2× 10−3.

From our results we see that only the operators that break the custodial SU(2)C symmetry,

(L(4)
6,7,10) get limits close to this expectation2.

Future colliders will be able to search for anomalous quartic interactions through multiple

gauge-boson production. Assuming, as in Ref. [7], that an anomalous coupling is observable

at the LHC if it induces a 50% change in the integrated cross section for the production of

2It is interesting to notice that models containing spin-0 and spin-1 resonances also lead to cou-

plings of this order [7].
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pairs VLVL (V = W±, Z), it will be possible to detect the couplings α4 and α5 provided

they satisfy |α4, α5| ∼ O(0.005) 3. These constraints are stronger than the limits obtained

from the Z physics, as also concluded in Ref. [31]. In Ref. [9], the capabilities of the NLC to

study quartic anomalous couplings via the production mechanisms e+e− → W+ W−Z and

e+e− → Z Z Z are analysed, this last mechanism being the one yielding stronger constraints.

Using their values for the ZZZ cross section associated with the couplings α4,5, we translated

their results into 90% CL limits |α4, α5| <∼ 0.2, |α6, α7| <∼ 0.1, and |α10| <∼ 0.05. These future

direct bounds are weaker than the limits already imposed by the LEP data for most of the

quartic anomalous couplings. Therefore, we can see that our results show that only the LHC

can improve what we have learned from the radiative corrections at the Z pole.

Summarizing, we have analyzed the effects of possible anomalous quartic vector-boson

interactions that appear in a scenario where there is no particle associated to the symmetry-

breaking sector in the low-energy spectrum. Using a chiral Lagrangian at the order D =

4 and an arbitrary gauge Rξ, we draw the limits on the anomalous interactions ZZZZ,

W+W−ZZ, and W+W−W+W− arising from the precision measurements at the Z pole.

We extended previous results by considering all possible anomalous couplings that appear

at order D = 4 and by working in an arbitrary Rξ gauge. Our analysis shows that, with

the present limits, these anomalous couplings are already out of reach of a 500 GeV e+e−

collider for most of the values of mtop. However, the LHC will be able to further extend the

bounds on some of these couplings.
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TABLES

TABLE I. Limits on the anomalous quartic vector boson couplings at 90% CL for Λ = 2 TeV.

mtop = 170 GeV mtop = 200 GeV mtop = 220 GeV

−0.060 ≤ α4 ≤ 0.30 −0.20 ≤ α4 ≤ 0.16 −0.30 ≤ α4 ≤ 0.056

−0.15 ≤ α5 ≤ 0.76 −0.50 ≤ α5 ≤ 0.40 −0.77 ≤ α5 ≤ 0.14

−0.010 ≤ α6 ≤ 0.053 −0.035 ≤ α6 ≤ 0.028 −0.054 ≤ α6 ≤ 0.0099

−0.077 ≤ α7 ≤ 0.39 −0.26 ≤ α7 ≤ 0.21 −0.39 ≤ α7 ≤ 0.072

−0.0051 ≤ α10 ≤ 0.026 −0.017 ≤ α10 ≤ 0.014 −0.026 ≤ α10 ≤ 0.0048
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FIG. 1. Feynman diagrams that contain contributions from anomalous quartic vertices.
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