6 research outputs found
Fuzzy Modeling Using Genetic Algorithm and Its Application to Biomechanics
名古屋大学Nagoya University博士(工学)名古屋大学博士学位論文 学位の種類:博士(工学) (課程) 学位授与年月日:平成14年3月25日doctoral thesi
Significant Association of Caveolin-1 and Caveolin-2 with Prostate Cancer Progression
Background/Aim: Up-regulation of caveolin (CAV)-1 is associated with aggressive prostate cancer. Recently, it has been inferred that CAV2, a co-factor sub-type of CAV1, cross-talks with CAV1 and promotes tumor growth. We previously reported that plasma CAV1 levels are elevated in patients with castration-resistant prostate cancer (CRPC), but not in hormone-sensitive prostate cancer (non-CRPC), implying that CAV1 may be a therapeutic target for CRPC. However, a correlation of CAV1 and CAV2 expression in PC has not yet been reported. Herein, we analyzed associations between PC progression and plasma CAV1 and -2 in Japanese men, and expression of CAV1 and -2 in PC3 (CRPC) and LNCaP (non-CRPC) cell lines. Materials and Methods: We investigated plasma samples from 36 patients with CRPC and 22 with non-CRPC. We used enzyme-linked immunosorbent assay (ELISA) to determine plasma levels of CAV1 and -2, and examined correlations with clinicopathological characteristics such as Gleason grade and clinical T stage. Real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to evaluate CAV1 and CAV2 mRNA in PC cell lines. We also introduced CAV1- and CAV2-specific small interfering (siRNA) into PC3 cells to knock-down (KD) both molecules, and examined its influence on the expression of these genes between PC3 CAV1 and -2 KD cells and control cells. Results: Plasma CAV1 and -2 levels in patients with CRPC were significantly higher than in those with non-CRPC (CAV1, p=0.003; CAV2, p<0.001). Plasma levels of CAV1 and -2 were significantly correlated (p<0.001). However, we did not find any significant relationship between CAV1 or CAV2 expression and clinicopathological factors. ELISA and real-time qRT-PCR showed that both proteins and mRNAs in PC3 cells were significantly over-expressed compared to LNCaP cells (p<0.001). In PC3 CAV1 KD cells, expression of CAV2 was suppressed and confirmed the linkage of CAV2 KD and suppression of CAV1 expression. Conclusion: There was a significant correlation between plasma CAV-1 and -2 levels and progression of PC. CAV1 and -2 were highly expressed in the PC3 compared to the LNCaP cell line. Our findings support the potential of these molecules as therapeutic targets for CRPC.Citation:
Sugie S, Mukai S, Yamasaki K, Kamibeppu T, Tsukino H, Kamoto T. Significant Association of Caveolin-1 and Caveolin-2 with Prostate Cancer Progression. Cancer Genomics Proteomics. 2015 Nov-Dec;12(6):391-6. PMID: 26543085
Dysregulated HAI-2 Plays an Important Role in Renal Cell Carcinoma Bone Metastasis through Ligand-Dependent MET Phosphorylation
MET, a c-met proto-oncogene product and hepatocyte growth factor (HGF) receptor, is known to play an important role in cancer progression, including bone metastasis. In a previous study, we reported increased expression of MET and matriptase, a novel activator of HGF, in bone metastasis. In this study, we employed a mouse model of renal cell carcinoma (RCC) bone metastasis to clarify the significance of the HGF/MET signaling axis and the regulator of HGF activator inhibitor type-2 (HAI-2). Luciferase-transfected 786-O cells were injected into the left cardiac ventricle of mice to prepare the mouse model of bone metastasis. The formation of bone metastasis was confirmed by whole-body bioluminescent imaging, and specimens were extracted. Expression of HGF/MET-related molecules was analyzed. Based on the results, we produced HAI-2 stable knockdown 786-O cells, and analyzed invasiveness and motility. Expression of HGF and matriptase was increased in bone metastasis compared with the control, while that of HAI-2 was decreased. Furthermore, we confirmed increased phosphorylation of MET in bone metastasis. The expression of matriptase was upregulated, and both invasiveness and motility were increased significantly by knockdown of HAI-2. The significance of ligand-dependent MET activation in RCC bone metastasis is considered, and HAI-2 may be an important regulator in this system.Yamasaki, K.; Mukai, S.; Sugie, S.; Nagai, T.; Nakahara, K.; Kamibeppu, T.; Sakamoto, H.; Shibasaki, N.; Terada, N.; Toda, Y.; et al. Dysregulated HAI-2 Plays an Important Role in Renal Cell Carcinoma Bone Metastasis through Ligand-Dependent MET Phosphorylation. Cancers 2018, 10, 190. https://doi.org/10.3390/cancers1006019
