26 research outputs found

    Turning universal O into rare Bombay type blood

    Get PDF
    Red blood cell antigens play critical roles in blood transfusion since donor incompatibilities can be lethal. Recipients with the rare total deficiency in H antigen, the Oh Bombay phenotype, can only be transfused with group Oh blood to avoid serious transfusion reactions. We discover FucOB from the mucin-degrading bacteria Akkermansia muciniphila as an -1,2-fucosidase able to hydrolyze Type I, Type II, Type III and Type V H antigens to obtain the afucosylated Bombay phenotype in vitro. X-ray crystal structures of FucOB show a three-domain architecture, including a GH95 glycoside hydrolase. The structural data together with site-directed mutagenesis, enzymatic activity and computational methods provide molecular insights into substrate specificity and catalysis. Furthermore, using agglutination tests and flow cytometry-based techniques, we demonstrate the ability of FucOB to convert universal O type into rare Bombay type blood, providing exciting possibilities to facilitate transfusion in recipients/patients with Bombay phenotype

    Mechanism of antibody-specific deglycosylation and immune evasion by Streptococcal IgG-specific endoglycosidases

    Get PDF
    Bacterial pathogens have evolved intricate mechanisms to evade the human immune system, including the production of immunomodulatory enzymes. Streptococcus pyogenes serotypes secrete two multi-modular endo--N-acetylglucosaminidases, EndoS and EndoS2, that specifically deglycosylate the conserved N-glycan at Asn297 on IgG Fc, disabling antibody-mediated effector functions. Amongst thousands of known carbohydrate-active enzymes, EndoS and EndoS2 represent just a handful of enzymes that are specific to the protein portion of the glycoprotein substrate, not just the glycan component. Here, we present the cryoEM structure of EndoS in complex with the IgG1 Fc fragment. In combination with small-angle X-ray scattering, alanine scanning mutagenesis, hydrolytic activity measurements, enzyme kinetics, nuclear magnetic resonance and molecular dynamics analyses, we establish the mechanisms of recognition and specific deglycosylation of IgG antibodies by EndoS and EndoS2. Our results provide a rational basis from which to engineer novel enzymes with antibody and glycan selectivity for clinical and biotechnological applications

    Proximity-Induced Nucleic Acid Degrader (PINAD) approach to targeted RNA degradation using small molecules

    Get PDF
    Nature has evolved intricate machinery to target and degrade RNA, and some of these molecular mechanisms can be adapted for therapeutic use. Small interfering RNAs and RNase H-inducing oligonucleotides have yielded therapeutic agents against diseases that cannot be tackled using protein-centered approaches. Because these therapeutic agents are nucleic acid-based, they have several inherent drawbacks which include poor cellular uptake and stability. Here we report a new approach to target and degrade RNA using small molecules, proximity-induced nucleic acid degrader (PINAD). We have utilized this strategy to design two families of RNA degraders which target two different RNA structures within the genome of SARS-CoV-2: G-quadruplexes and the betacoronaviral pseudoknot. We demonstrate that these novel molecules degrade their targets using in vitro, in cellulo, and in vivo SARS-CoV-2 infection models. Our strategy allows any RNA binding small molecule to be converted into a degrader, empowering RNA binders that are not potent enough to exert a phenotypic effect on their own. PINAD raises the possibility of targeting and destroying any disease-related RNA species, which can greatly expand the space of druggable targets and diseases.info:eu-repo/semantics/publishedVersio

    Structure-Guided Approach for the Development of MUC1-Glycopeptide-Based Cancer Vaccines with Predictable Responses

    Get PDF
    Mucin-1(MUC1)glycopeptidesareexceptionalcandidatesforpotentialcancervaccines.However,theirautoantigenicnatureoftenresultsinaweakimmuneresponse.Toovercomethisdrawback,wecarefullyengineeredsyntheticantigenswithprecisechemicalmodifications.Tobeeffectiveandstimulateananti-MUC1response,artificialantigensmustmimictheconforma-tionaldynamicsofnaturalantigensinsolutionandhaveanequivalentorhigherbindingaffinitytoanti-MUC1antibodiesthantheirnaturalcounterparts.Asa proofofconcept,wehavedevelopeda glycopeptidethatcontainsnoncanonicalaminoacid(2S,3R)-3-hydroxynorvaline.Theunnaturalantigenfulfillsthesetwopropertiesandeffectivelymimicsthethreonine-derivedantigen.Ontheonehand,conformationalanalysisinwatershowsthatthissurrogateexploresalandscapesimilartothatofthenaturalvariant.Ontheotherhand,thepresenceofanadditionalmethylenegroupinthesidechainofthisanalogcomparedtothethreonineresidueenhancesa CH/interactionintheantigen/antibodycomplex.Despiteanenthalpyentropybalance,thissyntheticglycopeptidehasabindingaffinityslightlyhigherthanthatofitsnaturalcounterpart.Whenconjugatedwithgoldnanoparticles,thevaccinecandidatestimulatestheformationofspecificanti-MUC1IgGantibodiesinmiceandshowsefficacycomparabletothatofthenaturalderivative.Theantibodiesalsoexhibitcross-reactivitytoselectivelytarget,forexample,humanbreastcancercells.Thisinvestigationreliedonnumerousanalytical(e.g.,NMRspectroscopyandX-raycrystallography)andbiophysicaltechniquesandmoleculardynamicssimulationstocharacterizetheantigenantibodyinteractions.Thisworkflowstreamlinesthesyntheticprocess,savestime,andreducestheneedforextensive,animal-intensiveimmunizationprocedures.Theseadvancesunderscorethepromiseofstructure-basedrationaldesignintheadvanceofcance
    corecore