1,101 research outputs found

    ็ฌฌ28ๆœŸ

    Get PDF
    [[abstract]]็”ฑๆ–ผ๏คŠ่žๅฑๆฉŸๅŠๅ…ˆๅ‰ไธปๆฌŠๅ‚ตๅธ‚ๅ‹•็›ช๏ผŒๅ†ๆฌกๅผ•็™ผๅฐๆญ็›Ÿ็ถ“ๆฟŸๆฒป๏งค็š„้—œๆณจใ€‚้‡ๅฐ็ถ“ๆฟŸๅ•้กŒ๏ผŒๆญ็›Ÿ้ซ˜ๅณฐๆœƒ่จญ็ฝฎไธ€ไปปๅ‹™ๅฐ็ต„ใ€‚2010๏ฆŽ10ๆœˆ21ๆ—ฅไปปๅ‹™ๅฐ็ต„ๅ‘ๆญ็›Ÿ้ซ˜ๅณฐๆœƒๆๅ‡บไธ€ไปฝๅ ฑๅ‘Š๏ผŒๆŒ‡ๅ‡บๅœจไฟๆœ‰ๅœ‹ๅฎถ่ฒกๆ”ฟๅŠ็ถ“ๆฟŸๆ”ฟ็ญ–ไน‹ๅŒๆ™‚๏ผŒๅ„ๆœƒๅ“กๅœ‹้–“ๅฐคๅ…ถๆ˜ฏๆญๅ…ƒๅ€๏ผŒ็ถ“ๆฟŸ็›ธไบ’ไพ่ณด๏จๆฅต้ซ˜ใ€‚ไปปๅ‹™ๅฐ็ต„ๅปบ่ญฐๆ‡‰ๅผทๅŒ–็ถ“ๆฟŸๆฒป๏งค๏ผŒๆ”น้ฉๆ–นๅ‘ๆ‡‰ๆœไบ”ๅ€‹้ขๅ‘็™ผๅฑ•ใ€‚ ็ฌฌๅ…ซๅฑ†ไบžๆญ้ซ˜ๅณฐๆœƒ่ญฐๆ–ผ2010๏ฆŽ10ๆœˆ4่‡ณ5ๆ—ฅๅœจๆฏ”๏งๆ™‚ๅธƒ๏คน๏ฅฌ็ˆพ่ˆ‰๏จˆใ€‚ไบžๆญ้ซ˜ๅณฐๆœƒไธปๅธญๆ–ผไธปๆŒๆœƒ่ญฐๆ™‚่กจ็คบ๏ผŒๆญคๆฌกๆœƒ่ญฐ็š„ไธป้กŒๅœจๆ–ผ่จŽ๏ฅใ€Œ็”Ÿๆดปๅ“่ณชใ€๏ผŒ่—‰ๆญค้”ๆˆๆ‰€ๆœ‰ๅ…ฌๆฐ‘๏คๅฅฝ็š„็ฆ๏งไธฆ็ตฆไบˆ๏คๅคš็š„ๅฐŠๅšดใ€‚ๅœจๆญคๆœƒ่ญฐไธญ๏ผŒๆ‰€ๆœ‰ไบžๆดฒ่ˆ‡ๆญๆดฒๆˆๅ“กๅœ‹็š„๏ฆดๅฐŽไบบ็š†้‡็”ณ้›™้‚Š็ญ–๏ฅถๆ€งๅฐ่ฉฑ่ˆ‡ๅˆไฝœ็š„่ญฐ้กŒ๏ผŒไธฆไธ”่‘—้‡ๅœจๅนณ็ญ‰็š„ๅคฅไผด้—œไฟ‚ใ€็›ธไบ’้–“็š„ๅฐŠ้‡่ˆ‡๏ง็›Šๅˆ†้…ใ€‚ ไผŠๆ–ฏๅฆๅ กๆ˜ฏไธ–็•ŒไธŠๅ”ฏไธ€ๆฉซ่ทจๆญไบž๏ฅธๆดฒ็š„ๅŸŽๅธ‚๏ผŒไธ”ๅœจ2010๏ฆŽ้‚„็ฒ้ธ็‚บๆญ็›Ÿ็š„ๆ–‡ๅŒ–ไน‹้ƒฝใ€‚ไผŠๆ–ฏๅฆๅ ก็‚บไฝ•ๅ…ฅ้ธ๏ผŸๅœŸ่€ณๅ…ถ๏ฅงๆ˜ฏ็ฉ†ๆ–ฏ๏งด็š„ไธ–็•Œๅ—Ž๏ผŸๅœŸ่€ณๅ…ถ็‚บไฝ•ๆƒณๅŠ ๅ…ฅๆญ็›Ÿ๏ผŸไผŠๆ–ฏๅฆๅ ก็š„้ญ…๏ฆŠๅœจๅ“ช

    Design and Implementation of a Relational Database for Management of UML Models

    Get PDF
    The UML (Unified Modeling Language) is a modeling language for specifying, visualizing, constructing, and documenting systems. It also supports systematically the design and development of systems. There may be a large number of models to be managed in a real modeling environment. A methodology to save and retrieve the models effectively, therefore, needs to be developed. This thesis focuses on the class diagram which is the core part of UML. It proposes a database supported methodology for the management of class diagrams. In the proposed methodology, class diagrams are saved in and retrieved from a relational database. To save a class diagram in the database, the constitution of the class diagram is translated in terms of relational tables. To retrieve a class diagram from the database, the user- specified query is translated into the SQL (Structured Query Language), and then the constituent of the class diagram is searched from the tables in the database. The proposed methodology can exploit the function of the relational database such as managing a large number of models, sharing the models among users, and fast queries. It, therefore, provides a powerful framework for an effective management of UML models and a fast development of systems.Abstract = โ…ฑ ์ œ 1 ์žฅ ์„œ๋ก  = 1 ์ œ 2 ์žฅ UML ๋ฐ UML ๊ฐœ๋ฐœ ๋„๊ตฌ = 4 2.1 UML์˜ ๊ตฌ์„ฑ ์š”์†Œ = 4 2.2 UML ํด๋ž˜์Šค ๋‹ค์ด์–ด๊ทธ๋žจ(Class Diagram) = 6 2.2.1 ํด๋ž˜์Šค(Class)์™€ ์ธํ„ฐํŽ˜์ด์Šค(Interface) = 7 2.2.2 ๊ด€๊ณ„(Relationship) = 8 2.3 UML ๊ฐœ๋ฐœ ๋„๊ตฌ = 10 ์ œ 3 ์žฅ UML ํด๋ž˜์Šค ๋‹ค์ด์–ด๊ทธ๋žจ์˜ ์ €์žฅ ๋ฐ ๊ฒ€์ƒ‰ = 12 3.1 UML ํด๋ž˜์Šค ๋‹ค์ด์–ด๊ทธ๋žจ ๋ณ€ํ™˜ = 12 3.2 ๊ด€๊ณ„ํ˜• ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ์ƒ์„ฑ ๋ฐ ์ €์žฅ = 17 3.3 UML ํด๋ž˜์Šค ๋‹ค์ด์–ด๊ทธ๋žจ ๊ฒ€์ƒ‰ = 21 ์ œ 4 ์žฅ ๊ตฌํ˜„ ๋ฐ ๊ธฐ์กด ์‹œ์Šคํ…œ๊ณผ์˜ ๋น„๊ต = 23 4.1 ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋ฐ ์‹œ์Šคํ…œ ํ๋ฆ„๋„ = 23 4.2 ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ํ…Œ์ด๋ธ” ์ƒ์„ธ ์„ค๊ณ„ = 26 4.3 ์‹œ์Šคํ…œ ๊ตฌํ˜„ = 33 4.4 ๊ธฐ์กด ์‹œ์Šคํ…œ๊ณผ์˜ ๋น„๊ต = 35 ์ œ 5 ์žฅ ๊ฒฐ๋ก  ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ๊ณผ์ œ = 36 ์ฐธ๊ณ  ๋ฌธํ—Œ = 3

    Development of an Auto-Trim Control System for Ro-Ro Ship Carrying Heavy Cargoes

    Get PDF
    In Ro-Ro ship carrying heavy cargoes, it is very important to maintain a certain level of aft draft and the proper trim through the entire loading or discharging process. Some kinds of manual ballast control system have been generally applied so far to this practice in Ro-Ro ship. However, there is need to develop a so-called Auto-Trim Control System using some computer technology to improve the operation of those existing systems. This paper aims at developing an Auto-Trim Control System especially for Ro-Ro ship carrying such heavy cargoes including hot coils and steel plates. The author carried out some systems analysis and design for developing the system by examining and reflecting the practices of the entire loading and discharging process. Then a user-friendly Auto-Trim Control System has been built by interfacing the Valve Remote Control system and Tank Level & Draft Measuring system with itself. The author also provides some excellent results on the performance of the system by reporting the records of installing the system on board 4 Ro-Ro ships.Abstract ์ œ 1 ์žฅ ์„œ๋ก  = 1 1.1 ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ = 1 1.2 ์—ฐ๊ตฌ์˜ ๋ชฉ์  = 2 ์ œ 2 ์žฅ ์‹œ์Šคํ…œ์˜ ๊ฐœ์š” = 3 2.1 ์ค‘๋Ÿ‰ํ™”๋ฌผ ์„ ์  Ro-Ro ์„  ํ•˜์—ญ ์ž‘์—…์˜ ๊ธฐ๋ณธ๊ฐœ๋… = 3 2.2 Auto-Trim Control System์˜ ๊ธฐ๋ณธ๊ฐœ๋… = 7 2.3 ์‹œ์Šคํ…œ ๊ตฌ์„ฑ๋„ = 10 ์ œ 3 ์žฅ ์„ ๋ฏธํ˜์ˆ˜ ๋ฐ ํŠธ๋ฆผ ์ œ์–ด ์•Œ๊ณ ๋ฆฌ๋“ฌ์˜ ๊ฐœ๋ฐœ = 11 3.1 ํƒฑํฌ ๋ฐฐ์น˜๋„ = 11 3.2 ํƒฑํฌ ๋ฐฐ์ • ์šฐ์„ ์ˆœ์œ„ = 11 3.3 ํƒฑํฌ ์„ ํƒ ๊ทœ์น™ = 12 ์ œ 4 ์žฅ Auto-trim Control System ๊ฐœ๋ฐœ = 15 4.1 ์‹œ์Šคํ…œ ์†Œํ”„ํŠธ์›จ์–ด ๊ตฌ์„ฑ = 15 4.2 ์‹œ์Šคํ…œ ์„ค๊ณ„ = 16 4.3 ๋ฐธ๋ธŒ ๋ฐ ํŽŒํ”„ ์ž‘๋™ ์ ˆ์ฐจ = 21 4.4 ์‹œ์Šคํ…œ ๊ตฌํ˜„ = 37 ์ œ 5 ์žฅ ํ”„๋กœ๊ทธ๋žจ ์‹คํ–‰ ์˜ˆ = 42 5.1 ํ†ต์‹ ์ƒํƒœ ํ‘œ์‹œ์ค„ = 42 5.2 ์„ ๋ฐ•์ƒํƒœ ํ‘œ์‹œ์ค„ = 44 5.3 ํ”„๋กœ๊ทธ๋žจ ์ž‘๋™ = 45 ์ œ 6 ์žฅ ๊ฒฐ๋ก  = 58 ์ฐธ๊ณ ๋ฌธํ—Œ = 6

    A Study on Flow Zone Development and Botton change gy Propeller Jets from Ships

    Get PDF
    The flow zone through propeller jets is used in evaluating the environmental and constructional effects of navigation on the waterways. Water in this zone can go through the propellers but not all water in this zone will go through the propellers. It relies on the characteristics of ships and water depth. A numerical model using the momentum theory of the propeller and Shield's diagram was developed in a restricted waterway. Equations for discharge are presented based on thrust coefficients and propeller speed and are the most accurate means of defining discharge. Approximate methods for discharge are developed based on applied ship's power. Equations for discharge are as a function of applied power, propeller diameter, and ship speed. Water depth of the waterway and draft of the ship are also necessary for the calculation of the grain size of the initial motion. The velocity distribution of discharge from the propeller was simulated by the Gaussian normal distribution function. The shear velocity and shear stress were from the Sternberg's formula. Case studies to show the influence of significant factors on sediment movement induced by the ship's propeller at the channel bottom are presented. The first case is for large ships passing through the navigation channel and berthing and unberthing at container terminal at Kwang Yang harbor. Eleven ships are considered, including naval ship, tanker and bulk carriers. The second case is for the commercial moving tow and the barge. The combined effects of the propeller jet and the wake flow a moving barge are investigated.๋ชฉ์ฐจ ABSTRACT = i LIST OF TABLES = v LIST OF FIGURES = vi NOMENCLATURE = ix ์ œ1์žฅ ์„œ๋ก  = 1 1.1 ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ = 1 1.2 ์—ฐ๊ตฌ์˜ ๋ชฉ์  ๋ฐ ๋‚ด์šฉ = 2 1.3 ์—ฐ๊ตฌ์˜ ๋ฐฉ๋ฒ• = 2 ์ œ2์žฅ ๊ธฐ๋ณธ์ด๋ก  = 5 2.1 ์ถ”์ง„๊ธฐ ๋ฐฐ์ˆ˜๋ฅ˜ ์ด๋ก  = 5 2.1.1 ์ถ”์ง„๊ธฐ ๋ฐฐ์ˆ˜๋ฅ˜์˜ ์†๋„๋ถ„ํฌ = 6 2.1.2 ์ถ”์ง„๊ธฐ์— ์˜ํ•œ ์šด๋™๋Ÿ‰ ์ด๋ก  = 16 2.1.3 ์†๋„๋ถ„ํฌ = 23 2.2 ํ‘œ์‚ฌ ์ˆ˜์†ก์ด๋ก  = 28 2.2.1 ์ด๋ก ์  ๋ฐฐ๊ฒฝ = 28 2.2.2 ์†Œ๋ฅ˜์‚ฌ ์ˆ˜์†ก์ด๋ก  ๋ฐ ๋ฐฉ์ •์‹ = 28 2.2.3 ๋ถ€์œ ์‚ฌ ์ˆ˜์†ก์ด๋ก  ๋ฐ ๋ฐฉ์ •์‹ = 33 2.2.4 ํ‘œ์‚ฌ์ด๋™์˜ ๊ฒฐ์ •์ด๋ก  = 37 ์ œ3์žฅ ์ˆ˜์น˜๋ชจ๋ธ์ˆ˜๋ฆฝ ๋ฐ ์ ์šฉ = 42 3.1 ๋Œ€ํ˜•์„ ๋ฐ•์— ๋Œ€ํ•œ ๋ชจ๋ธ ๊ตฌ์„ฑ = 42 3.1.1 ์‹ค์ œ ์ˆ˜์—ญ๊ณผ ์ œํ•œ์ˆ˜๋กœ์— ๋Œ€ํ•œ ์ ์šฉ = 42 3.1.2 ์ €๋ฉด์ „๋‹จ์‘๋ ฅ์˜ ์‚ฐ์ • = 46 3.2 ์˜ˆ์ธ์„ ์˜ ๋ชจ๋ธ ๊ตฌ์„ฑ = 50 3.2.1 ์ถ”์ง„๊ธฐ ์ œํŠธ์˜ ์œ ์† ์‚ฐ์ • = 51 3.2.2 ์ €๋ฉด ์ „๋‹จ์‘๋ ฅ์˜ ์‚ฐ์ • = 57 ์ œ4์žฅ ์ˆ˜์น˜์‹คํ—˜ ๊ฒฐ๊ณผ ๋ฐ ๋ถ„์„ = 61 4.1 ์ œํ•œ์ˆ˜๋กœ ๋ฐ ๋ถ€๋‘์ „๋ฉด์—์„œ์˜ ์ ์šฉ = 61 4.1.1 ์ œํ•œ์ˆ˜๋กœ์— ๋Œ€ํ•œ ์ ์šฉ = 61 4.1.2 ๋ถ€๋‘ ์ „๋ฉด์— ๋Œ€ํ•œ ์ ์šฉ = 79 4.2 ์˜ˆ์ธ์„ ์— ๋Œ€ํ•œ ์ ์šฉ = 104 4.2.1 ๋Œ€์ƒ์„ ๋ฐ•์˜ ํŠน์„ฑ ๋ฐ ์กฐ๊ฑด = 104 4.2.2 ์ˆ˜์น˜๋ชจํ˜•์˜ ๊ฒ€์ฆ = 105 4.2.3 ์ ์šฉ๊ฒฐ๊ณผ ๋ฐ ๋ถ„์„ = 108 4.3 ์ €๋ฉด๋ณ€ํ˜•์— ๋Œ€ํ•œ ๊ณ ์ฐฐ = 114 ์ œ5์žฅ ๊ฒฐ๋ก  = 120 ์ฐธ๊ณ ๋ฌธํ—Œ = 12

    A Study on the Shock-Safety Assessment for Shipboard Equipments

    Get PDF
    If main equipments are damaged with the shock wave induced by a non-contact underwater explosion, The warship is able to lose easily its fighting ability. A number of researches have been reported the disability is not caused by the damage of hull but caused by that of equipments. Therefore, the main shipboard equipments have required the safety ability test using many kinds of theoretical analysis methods or experimental analysis methods to get safety estimation of shock. So, in this paper the procedure of shock testing and the method of theoretical analysis are investigated. Then, shock ability for starting air compressor in actual shipboard equipment is estimated through the DDAM and the shock testing based on MIL-SPEC standard. Finally, the calculated results and the experimental results are compared to find the reliability of theoretical analysis. The results of this study can be used as a to design shipboard equipments having shock wave.Abstract 1. ์„œ๋ก  = 1 1.1 ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ = 1 1.2 ์—ฐ๊ตฌ ๋ชฉ์  = 3 2. ๋‚ด์ถฉ๊ฒฉ ์„ฑ๋Šฅํ‰๊ฐ€ = 5 2.1 ํ•จ์ •์šฉํƒ‘์žฌ ์žฅ๋น„์˜ ๋‚ด์ถฉ๊ฒฉ ์š”๊ตฌ์กฐ๊ฑด = 5 2.2 ์‹œํ—˜์  ํ‰๊ฐ€๋ฐฉ๋ฒ• = 7 2.3 ํ•ด์„์  ๋‚ด์ถฉ๊ฒฉ ์„ฑ๋Šฅ ํ‰๊ฐ€๋ฐฉ๋ฒ• = 17 2.3.1 DDAM = 18 3. ๋Œ€์ƒ์žฅ๋น„์˜ DDAM์„ ์ด์šฉํ•œ ๋‚ด์ถฉ๊ฒฉ ์„ฑ๋Šฅ ํ•ด์„๊ฒฐ๊ณผ = 43 3.1 ๋Œ€์ƒ์žฅ๋น„ ์ฃผ์š”์‚ฌ์–‘ = 43 3.2 ๋Œ€์ƒ์žฅ๋น„์˜ ์ถฉ๊ฒฉํ•ด์„ ๊ธฐ์ค€ = 43 3.3 ๋Œ€์ƒ์žฅ๋น„ ๋ชจ๋ธ๋ง = 45 3.4 ์œ„ํ—˜๋ถ€์œ„ ์„ ์ • = 48 3.5 ์ž์œ ์ง„๋™ ํ•ด์„ = 49 3.6 ์ถฉ๊ฒฉ์‘๋‹ต ํ•ด์„ ๋ฐ ์‘๋ ฅ๊ณ„์‚ฐ = 51 4. ์‹คํ—˜์  ๋ฐฉ๋ฒ•์— ์˜ํ•œ ๋Œ€์ƒ์žฅ๋น„์˜ ๋‚ด์ถฉ๊ฒฉ ์„ฑ๋Šฅํ‰๊ฐ€ ๊ฒฐ๊ณผ = 57 4.1 ๋‚ด์ถฉ๊ฒฉ ์‹œํ—˜์กฐ๊ฑด = 57 4.2 ๋‚ด์ถฉ๊ฒฉ ์‹œํ—˜๋ฐฉ๋ฒ• = 58 4.3 ๋‚ด์ถฉ๊ฒฉ ์„ฑ๋Šฅ์‹œํ—˜ ๊ฒฐ๊ณผ = 60 5. ๊ฒฐ๋ก  = 61 ์ฐธ๊ณ ๋ฌธํ—Œ = 6

    A Study on the Fingerprint Recognition Method Directional Feature Detection using Neural Networks

    Get PDF
    Fingerprint-based identification is known to be used for a very long time. Owing to their uniqueness and immutability, fingerprints are today the most widely used biometric features. Therefore, recognition using fingerprints is one of the safest methods as a way of personal identification. In this paper, a fingerprint identification method using neural networks and the direction feature vectors based on the directional image extracted from gray-scale fingerprint image without binarization and thinning is proposed. The basic idea of the above mentioned method is to track the ridge lines on the gray-scale image, by ๏ผŸailing according to the local orientation of the ridge pattern. A set of starting points are determined by superimposing a grid on the gray-scale image. A labeling strategy is adopted to examine each ridge line only once and locate the intersections between ridge lines. After the direction feature vectors are consisted of vectors by four direction labeling. Matching method used in this paper is four direction feature vectors based matching. The experiment are used total 124 feature patterns of four fingerprints, and One fingerprint image is consisted of 31 feature patterns. The results is presented excellent recognition capability of learned fingerprint images.Abstract(Korean) = 2 Abstract(English) = 3 Chapter 1 Introduction = 4 Chapter 2 Neural networks = 6 2.1 Introduction of neural networks = 6 2.2 Investigation between biological and artificial neuron = 7 2.3 Learning and structure of multilayer neural network = 10 2.4 Multilayered neural networks used experimental = 14 Chapter 3 Fingerprint recognition = 15 3.1 Direction feature vector detection = 15 3.2 Tangent direction computation = 18 3.3 Four direction labeling and pattern detection = 20 Chapter 4 Experimental results = 25 4.1 Experimental environment and method = 25 4.2 Experimental results = 29 Chapter 5 Conclusion = 40 References = 4

    A Phonetic Description of Korean Vowels

    Get PDF
    The aim of this paper is to describe the phonetic value of the Korean vowels, particularly those of what is commonly referred to as Standard Korean" or Seoul Speech". The paper begins by discussing the validity of the traditional definition of Standard Korean" or Seoul Speech". A critical appraisal of the traditional definition reveals that it is no longer entirely adequate now as it used to be and consequently there is a need for substantial modifications of the current definition. A tentatively modified definition of Seoul Speech" reads: A Korean dialect spoken by educated people of over thirty years of age, born or brought up in Seoul area". The phonetic description of vowels in th is paper is based largely on the auditory judgment of the writer and the scale employed for description is the cardinal vowel system and the vowel quadrilateral of the International Phonetic Association, by reference to which important allophonic variations of the vowel phonemes as conditioned by various features such as stress and / or quantity are examined and described. Thus vowels are examined in three different context

    ์ง€์†๊ฐ€๋Šฅ๊ฐœ๋ฐœ๊ณผ ๋…น์ƒ‰(๊ทธ๋ฆฐ) GNP

    Get PDF
    ์›๋ž˜ GNP๋Š” ์ „์‹œ์— ๊ตญ๊ฐ€์˜ ๋ฌผ์ž๋™์› ๋Šฅ๋ ฅ์„ ์ ๊ฒ€ํ•˜๊ธฐ ์œ„ํ•œ ๋ชฉ์ ์—์„œ ์ž‘์„ฑ๋˜์—ˆ๋‹ค๊ณ  ํ•œ๋‹ค. ์„ธ๊ณ„ ์ œ2์ฐจ๋Œ€์ „ ๋•Œ์— ๋ฏธ๊ตญ์ด ์ „์‹œ ๋ฌผ์ž๋™์›๋Šฅ๋ ฅ ๋ฐ ์ด์˜ ๊ตญ๋ฏผ๊ฒฝ์ œ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์•Œ์•„๋ณด๊ธฐ ์œ„ํ•ด์„œ ๊ตญ๋ฏผ์ด์ƒ์‚ฐ์— ๋Œ€ํ•œ ์ž๋ฃŒ๋ฅผ ์ •๋ฆฌํ•˜๊ธฐ ์‹œ์ž‘ํ•˜์˜€๋Š”๋ฐ, ๋ฏธ๊ตญ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์˜๊ตญ ์บ๋‚˜๋‹ค ๋“ฑ ๋ช‡๋ช‡ ๋‚˜๋ผ๋“ค์ด ๋น„์Šทํ•œ ๋ชฉ์ ์œผ๋กœ ๋น„์Šทํ•œ ์ž๋ฃŒ๋ฅผ ์ •๋ฆฌํ•œ๋‹ค๋Š” ๊ฒƒ์ด ์•Œ๋ ค์ง€๋ฉด์„œ 1945๋…„์—๋Š” ๋‹น์‹œ ๊ตญ์ œ์—ฐ๋งน์˜ ์ฃผ๊ด€์•„๋ž˜ ๊ตญ๋ฏผ์†Œ๋“์„ ๊ณ„์ •ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ๊ตญ์ œํšŒ์˜๋„ ๊ฐœ์ตœ๋œ ๋ฐ” ์žˆ์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‹ค๊ฐ€ 1947๋…„ ๋ฏธ๊ตญ์ด ์˜ค๋Š˜ ๋‚ ์— ๋ณด๋Š” ๊ฒƒ๊ณผ ๋น„์Šทํ•œ ๊ตญ๋ฏผ์†Œ๋“๊ณ„์ •์„ ๋…์ž์ ์œผ๋กœ ๊ฐœ๋ฐœํ•˜์—ฌ ๋ฐœํ‘œํ•˜์˜€๋‹ค. 1952๋…„์— ์™€์„œ ์œ ์—”์€ ๊ตญ๋ฏผ์†Œ๋“ํ†ต๊ณ„ ๊ตญ์ œ์  ํ‘œ์ค€์ธ ๊ตญ๋ฏผํšŒ๊ณ„์ฒด๊ณ„ SNA(System of National Accounts)๋ฅผ ์ œ์ •ํ•˜์˜€๊ณ  ์ด์–ด์„œ 1968๋…„์— ์ด๋ฅผ ์ˆ˜์ •ํ•˜์—ฌ ์‹ SNA๋ฅผ ๋งŒ๋“ค์—ˆ๋‹ค. ์šฐ๋ฆฌ๋‚˜๋ผ์˜ GNP๋„ ์œ ์—”์ด ๊ถŒ์žฅํ•˜๋Š” ์‹ SNA๋ฐฉ์‹์— ๋”ฐ๋ผ ํ•œ๊ตญ์€ํ–‰์ด ์ถ”๊ณ„ํ•œ๋‹ค. ์ด ๊ฐ™์ด ๊ทธ ๋™์•ˆ ์—ฌ๋Ÿฌ ์ฐจ๋ก€์— ๊ฑธ์ณ ๊ณ„์ธก๋ฐฉ๋ฒ•์— ์ˆ˜์ •์ด ์žˆ์—ˆ๋‹ค๊ณ ๋Š” ํ•˜์ง€๋งŒ ์–ด๋–ป๋“  ์ „์‹œ ๋ฌผ์ž๋™์›๋Šฅ๋ ฅ์„ ์ ๊ฒ€ํ•˜๊ธฐ ์œ„ํ•œ ์ง€ํ‘œ๊ฐ€ ๊ตญ๋ฏผ๋ณต์ง€ ์ˆ˜์ค€์ด๋‚˜ ์„ ยทํ›„์ง„๊ตญ์„ ๋น„๊ตํ•˜๋Š” ์žฃ๋Œ€๋กœ ํ™•๋Œ€์ ์šฉ๋œ ๋ฐ์—๋Š” GNP๋ผ๋Š” ์ง€ํ‘œ๊ฐ€ ์šฐ๋ฆฌ ํ˜„์‹ค์˜ ๋งŽ์€ ๋ถ€๋ถ„์„ ์ƒ๋žตํ•œ ๊ทนํžˆ ์ถ”์ƒ์ ์ธ ์ง€ํ‘œ๋ผ๋Š” ์ ์„ ๋ง๊ฐํ•œ ์†Œ์น˜์ด๋‹ค. ๊ทธ๋ž˜์„œ 1970๋…„๋Œ€ ์ดํ›„ GNP๋Š” ๊ตญ๋ฏผ์˜ ๋ณต์ง€๋Š” ๋ฌผ๋ก ์ด๊ณ  ๊ฒฝ์ œ์  ์„ฑ๊ณผ๋„ ์ œ๋Œ€๋กœ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ์‹ ๋ž„ํ•œ ๋น„ํŒ์ด ์Ÿ์•„์ ธ ๋‚˜์˜ค๊ธฐ ์‹œ์ž‘ํ•œ ๊ฒƒ์€ ๋‹น์—ฐํ•œ ๊ท€๊ฒฐ์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ง€๊ธˆ ๊นŒ์ง€ GNP์— ๋Œ€ํ•ด์„œ ์ œ๊ธฐ๋œ ๋ฌธ์ œ์ ์ด 16-17๊ฐ€์ง€์— ๋‹ฌํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ํ•œ๋‹ค. ์ด์ œ ๋ง‰ ๋ฒ”์ง€๊ตฌ์  ๋ช…๋ถ„์œผ๋กœ ๊ตณ์–ด์ง€๋ ค๋Š” ์ง€์†๊ฐ€๋Šฅ๊ฐœ๋ฐœ์˜ ๊ฐœ๋…์€ ์ด์ œ๊นŒ์ง€ ์„ธ๊ณ„ ๊ฐ ๋‚˜๋ผ๊ฐ€ ์ตœ๊ณ ์˜ ๊ฒฝ์ œ์ •์ฑ… ์ง€ํ‘œ๋กœ ์‚ผ์•„์˜จ GNP์˜ ์ผ๋Œ€ ์ˆ˜์ • ๋‚ด์ง€๋Š” ์ƒˆ๋กœ์šด ์ง€ํ‘œ์˜ ๊ฐœ๋ฐœ์„ ๊ฐ•๋ ฅํ•˜๊ฒŒ ์š”๊ตฌํ•˜๊ณ  ์žˆ๋‹ค
    • โ€ฆ
    corecore