가

A study on the shock-safety assessment for shipboard equipments

2000 12 23

Abstract

1.	••••••	
	1.1	
	1.2	
2.	가	5
	2.1	5
	2.2 가	
	2.3	가17
	2.3.1 DDAM	
3.	DDAN	M43

	3.1
	3.2
45	3.3
	3.4
	3.5
	3.6

57	가	4.
57		4.1
		4.2
60		4.3
61		5.

A Study on Shock-Safety Assessment for Shipboard Equipments

Lee, Gi-Su

Division of Mechanical and Information Engineering Graduate School, Korea Maritime University

Abstract

If main equipments are damaged with the shock wave induced by a non-contact underwater explosion, The warship is able to lose easily its fighting ability. A number of researches have been reported the disability is not caused by the damage of hull but caused by that of equipments.

Therefore, the main shipboard equipments have required the safety ability test using many kinds of theoretical analysis methods or experimental analysis methods to get safety estimation of shock.

The methods are divided into two main categories. One is using theoretical analysis, the other is using experimental analysis. The two main theoretical methods are DDAM(dynamic design analysis method) presented by the U.S navy and direct time-integration method used largely in Europe. One of the theoretical methods and a shock testing related to most of the shipboard

equipments have been usually selected, so the reliability of the results is not confirmed clearly.

So, in this paper the procedure of shock testing and the method of theoretical analysis are investigated. Then, shock ability for starting air compressor in actual shipboard equipment is estimated through the DDAM and the shock testing based on MIL-SPEC standard. Finally, the calculated results and the experimental results are compared to find the reliability of theoretical analysis.

The results of this study can be used as a to design shipboard equipments having shock wave.

- 1 -

.

,

.

가

.

,

가

•

7; , MIL-SPEC(military standard specification,

)

- 3 -

가

.

가

,

•

2. 가

.

2.1

,

,

		0.3			
		0.6			
Ν	41L - S - 901			,	
	DDAM				
,					
	T able 2.1				
,	MIL	Spec(), B	V ()

Table 2.1 Required specification of endurance shock on ships

Classifi- cation	Demand items	Note	
Pre- condition	0.3 (british unit)	가	
	MIL - S - 901 A		
Optional	DDAM	DDAM BV 043	
items	, ,	フト	
	((MIL-S-901) フト)	

,

가

•

•

.

.

(light weight), (medium weight) (heavy weight)

,

. T able 2.2

Table 2.2 Test schedule for medium weight shock machine (MIL-spec standard)

Group number				
Number of blows	2	2	2	
Anvil table travel (inch)	3.00	3.00	1.50	
Total weight (with anvil table, lb)	Height of hammer drop (feet)			
Under 1,000	0.75	1.75	1.75	
1,000 2000	1.00	2.00	2.00	
2,000 3000	1.25	2.25	2.25	
3,000 3,500	1.50	2.50	2.50	
3,500 4,000	1.75	2.75	2.75	
4,000 4,200	2.00	3.00	3.00	
4,200 4,400	2.00	3.25	3.25	
4,400 4,600	2.00	3.50	3.50	
4,600 4,800	2.25	3.75	3.75	
4,800 5,000	2.25	4.00	4.00	
5,000 5,200	2.50	4.50	4.50	
5,200 5,400	2.50	5.00	5.00	
5,400 5,600	2.50	5.50	5.50	
5,600 6,200	2.75	5.50	5.50	
6,200 6,800	3.00	5.50	5.50	
6,800 7,400	3.25	5.50	5.50	

MIL-S-901D

550 [lb] (2.44 [kN])	, 550 [lb]
----------------------	------------

,

7,400 [lb] (14.81 [kN])

	Light weight shock test	Medium weight shock test	Heavy weight shock test
T est machine	LWSM	MWSM	SFSP or LFSP
Test load weight	up to 550 lb	up to 7400lb	up to 60,000lb (SFSP) up to 400,000lb(LFSP)
Excitation	Three axis Hammer impact (Top, Back, Side)	Single axis Hammer impact (Vertical)	4 Shots Underwater explosion

Table 2.3 MIL-S-901 shock tests

LWSM : Light weight shock machine

MWSM : Medium weight shock machine

SFSP : Standard floating shock platform

LFSP : Large floating shock platform

Table 2.4 Specification of shock testing machine

Specification	Light weight	Medium weight	
Specification	testing machine	testing machine	
C:	$1422(W) \times 4300(D) \times 4390$	700(W) × 4300(D) × 5000(H)	
Size	(H) [inch]	[in ch]	
Maximum test	550 [lb] (2.45 [kN])	7400 [lb] (32.92 [kN])	
weight			
Hammer weight	400 [lb] (1.78 [kN])	6000 [lb] (26.69 [kN])	
Shook avial	Three axial	Single evial(Vertical)	
SHOCK AXIAI	(Top. Side. Back)	Single axial(vertical)	

					60,000 [lb] (266.89	[kN])
SFSP (stand	ard floating	shock	platform)	, 4	400,000 [lb]	(1,779.29	[kN])
LFSP (large floating shock platform)							
. 1961	1969		SFS	Р	LFSP		

. Fig. 2.1 SFSP

Fig. 2.1 MIL-STD-901 standard floating shock platform

MIL-	가		
	(NATO)		
가	,	T able 2.5	. T able 2.5
		가	

.

Table 2.5	Comparison of th	e united states	navy and NATO
	on light and mee	lium testing	

Specification	United states	NATO
T esting concept	2 ,	가
T esting machine		
Measuring		
T esting method		
T esting process	2	

(MIL - S - 901)

,

가

•

.[4][5][6]

•

.

1987 K

0.12(british unit)

,

Fig. 2.2	Κ		, T able 2.6
		(shock parameter)	. Fig. 2.3
			K.S.F (
)=0.3	,	K.S.F=0.6	

real ship

Table 2.6 I	Derivation	of	shock	factor
-------------	------------	----	-------	--------

Shock factor	Equation
Keel shock factor	$K.S.F = \frac{\sqrt{W}}{D_1} (\frac{1+\sin\theta}{2})$
Hull shock factor	$H.S.F = \frac{\sqrt{W}}{D_2}$

Fig. 2.3 Diagram of underwater explosion trial

T able 2.7 MIL-SPEC

•

Test conditions	SFSP	LFSP
Depth of explosive charge below water surface (for all shot)	24 feet	20 feet
Explosive charge weight/ composition	60 lbs/HBX-1	300 lbs/HBX-1
Shot direction shot 1 shot 2,3,4	Fore- and- Aft Athw art ship	Fore- and- Aft Athw artship
Standoff (feet) shot 1 shot 2 shot 3 shot 4	40 30 25 20	110 80 65 50

Table 2.7 Test schedule for heavyweight shock testing

1980

가 MIL-S-901

,

.

•

,

2.3

가 DDAM (3) 가 가

.

DDAM

,

•

. 가 フ

가

3가

,

. DDAM 가 DDAM

가 DDAM

7 (1) 가 (2)

가

(shock design number)

.

DDAM

.

. 가

2.3.1 DDAM

1961	(NRL : naval research laboratory)	DDAM
	가	
Boit가		
가 1		
가 1		
(convolution)		
가 1		

가 (fixed-bas	e) 가
--------------	------

•

가 가

•

•

가

.

가

.

가

,

- 18 -

•

Fig. 2.4

DDAM

Fig. 2.4 Comparison of response spectrum between general spectral analysis and DDAM

DDAM

. Fig. 2.5 DDAM

•

Fig. 2.5 Process of DDAM

.

.

가 . z У Z. x . (M)- (K) 가 가 (2.1) .[7][8]

$$m\ddot{x} + k(x - z) = 0$$
 (2.1)

(2.1) : {
$$\ddot{z}(t) = const. = \ddot{z}_0, y(0) = y_0, \dot{y}(0) = \dot{y}_0$$
 }

$$y(t) = \frac{\dot{y}_0}{\omega_n} \sin \omega_n t + (y_0 + \frac{\ddot{z}}{\omega_n^2}) \cos \omega_n t - \frac{\ddot{z}_0}{\omega_n^2}$$
(2.2)

,
$$\dot{y}$$
, y , ω_n

•

Fig. 2.6 Shock response spectrum

(2)

Fig. 2.7

(2.3)

$$m\ddot{x} + kx = 0 \tag{2.3}$$

$$[m]\{\ddot{x}\} + [k]\{x\} = 0 \tag{2.4}$$

Fig. 2.7 Rigid body's with 6 degree of freedom

$$\{\ddot{q}(t)\} + [\omega^{2}]\{q(t)\} = \{0\}$$
(2.7)
(2.8)
$$q_{i}(t) = q_{i}(0) \cos \omega_{i} t + \frac{\dot{q}_{i}(0)}{\omega_{i}} \sin \omega_{i} t$$
(2.8)
$$q_{i}(0) \qquad \dot{q}_{i}(0)$$
.
$$([\mathbf{\Phi}]^{T}[\mathbf{M}])\{u(t)\} = ([\mathbf{\Phi}]^{T}[\mathbf{M}])[\mathbf{\Phi}]\{q(t)\}$$
(2.9)

,

(2.5)

(2.6)

(2.10)

 $([k] - [\omega^{2}][m]) \{u\} = \{0\}$

[Φ] ·

.

 $[x(t)] = [\Phi] \{q(t)\}$

 $[\omega^2]$

- 25 -

 $q(t) = (\left[\boldsymbol{\varPhi}\right]^{T} \left[\boldsymbol{M}\right] \left[\boldsymbol{\varPhi}\right])^{-1} \left[\boldsymbol{\varPhi}\right]^{T} \left[\boldsymbol{M}\right] \{u(t)\}$

$$q(0) = ([\boldsymbol{\Phi}]^{T}[\boldsymbol{M}][\boldsymbol{\Phi}])^{-1}[\boldsymbol{\Phi}]^{T}[\boldsymbol{M}]\{u(0)\}$$
$$\dot{q}(0) = ([\boldsymbol{\Phi}]^{T}[\boldsymbol{M}][\boldsymbol{\Phi}])^{-1}[\boldsymbol{\Phi}]^{T}[\boldsymbol{M}]\{\dot{u}(0)\}$$

(2.11) .

$$q_{i}(0) = \frac{\sum_{j=1}^{m} \phi_{ji} m_{j} u_{j}(0)}{\sum_{j=1}^{m} m_{j} \phi_{ji}^{2}}$$

$$\dot{q}_{i}(0) = \frac{\sum_{j=1}^{m} \phi_{ji} m_{j} \dot{u}_{j}(0)}{\sum_{j=1}^{m} m_{j} \phi_{ji}^{2}}$$
(2.11)

.

,
$$u_i(t)$$
 (2.12)

.

$$u_{i}(t) = \sum_{j=1}^{m} \phi_{ij} q_{i}(t)$$

$$= \sum_{j=1}^{m} \phi_{ij} q_{i}(0) \cos \omega_{j} t + \sum_{j=1}^{m} \phi_{ij} \frac{q_{i}(0)}{\omega_{j}} \sin \omega_{j} t$$
(2.12)

,
$$i \quad j$$
 . (2.12) DDAM
 $\{\dot{u}(0)\} = \{V\} \quad \{u(0)\} = \{0\}$ (2.13) (2.14)

$$u_{i}(t) = \sum_{j=1}^{m} \phi_{ij} \frac{\sum_{j=1}^{m} \phi_{kj} m_{k} V_{k}}{\omega_{j} \sum_{j=1}^{m} m_{k} \phi_{kj}^{2}} \sin \omega_{j} t$$
(2.13)

$$\dot{u}_{i}(t) = \sum_{j=1}^{m} \phi_{ij} \frac{\sum_{j=1}^{m} \phi_{kj} m_{k} V_{k}}{\sum_{j=1}^{m} m_{k} \phi_{kj}^{2}} \cos \omega_{j} t$$
(2.14)

$$m_i$$
 (2.15) .

$$F_{i}(t) = m_{i} \ddot{u}(t)$$

$$= \sum_{j=1}^{m} \phi_{ij} \frac{\sum_{j=1}^{m} \phi_{kj} m_{k} V_{k}}{\sum_{j=1}^{m} m_{k} \phi_{kj}^{2}} \omega_{j} \sin \omega_{j} t$$
(2.15)

,
$$V_j = V_0$$
 , m_i (2.16)

$$F_{i}(t) = \sum_{j=1}^{m} m_{i} \phi_{ij} V_{0} \frac{\sum_{j=1}^{m} \phi_{kj} m_{k} V_{k}}{\sum_{j=1}^{m} m_{k} \phi_{kj}^{2}} \omega_{j}$$
(2.16)

(2.16)
$$P_{j} = \frac{\sum_{j=1}^{m} \phi_{kj} m_{k}}{\sum_{j=1}^{m} m_{k} \phi_{kj}^{2}}$$

$$(F_{i})_{\max} = \sum_{j=1}^{m} m_{i} \phi_{ij} V_{j} P_{j} \omega_{j}$$
(2.17)

,
$$P_j$$
 j

(modal participation

factor) . j

$$(F_{j})_{\max} = \sum_{j=1}^{m} m_{i} \phi_{ij} V_{j} P_{j} \omega_{j} = \left\{ \sum_{i=1}^{N} m_{i} \phi_{ij} \right\} \left\{ \sum_{k=1}^{N} m_{k} \phi_{kj} \\ \sum_{k=1}^{N} m_{k} \phi_{kj}^{2} \\ \sum_$$

,
$$\widetilde{m}$$
 (modal mass) (effective mass)
.

$$\widetilde{m} = \frac{\left(\sum_{j=1}^{m} \phi_{kj} m_{k}\right)^{2}}{\sum_{j=1}^{m} m_{k} \phi_{kj}^{2}}$$
(2.19)

•

가

DDAM

.[9][10]

$$\widetilde{W}_{j} = g - \frac{\{\phi^{(j)}\}^{T}[M][M]\{\phi^{(j)}\}}{\{\phi^{(j)}\}^{T}[M]\{\phi^{(j)}\}}$$
(2.20)

$$(\{ \phi^{(j)} \} \ j$$
 (mode shape vector))

(3) DDAM	, ,		
DDAM			
		가	
가		,	,
			MIL-SPEC
BV		.[10][11][12][13]	
A .			
1 .			
	,	,	가
	,		Grade A, Grade B
Grade C	. T able 2.8		

Table 2.8 MIL-SPEC shock grade

.

Grade A	All equipment important for safety and combat role(s) of the ship. The equipment shall sustain the shock loads according to this regulation and no function of it shall be impaired during and after shock
Grade B	Not important for safety and combat role(s) of the ship. Discrete parts or the equipment itself shall not break off and thus endanger personnel or equipment according to shock safety Grade A
Grade C	All equipment and devices having no shock requirements. Their mounts or fixtures shall not break off and thus providing danger

(hull mounted),

(wetted-surface mounted)

(deck mounted),

(shell mounted)

•

가

. T able 2.9

, Fig. 2.8 Fig. 2.9

Table 2.9 Equipment mounting location

Hull mounted	Surface ships	The main structural members of the ship including structural bulkhead stiffeners below the main deck, and shell plating above the waterline.
	Submarines	The main structural members of the ship including hull frams, structural bulkheads, and structural bulkhead stiffeners.
Deck nounted	Surface ships	Main deck and above, and decks, platforms, and non-structural bulkheads below the main deck.
	Submarines	Decks, platforms, and non-structural bulkheads.
Shell Surface ships		The shell plating below the waterline.
mounted	Submarines	The shell plating.
Wetted - surface	Surface ships	External to the hull and below the waterline.
mounted	Submarines	External to the pressure hull

В.

•

Fig. 2.8 Surface ship equipments and foundation classification

Fig. 2.9 Submarine equipments and foundation classification

(elastic) -

,

(elastic-plastic) . (main engine) (engine, reduction gear, propeller shaft) (alignment) ,

. T able 2.10

_

_

•

T able 2.10	Item s	for	purpose	of	shock	design	

•

Shock design value	Applicable items
Elastic shock design value	Main propulsion machinery, Auxiliary propulsion machinery, Ship service generators, Propulsion shafting, propulsion shaft bearing, Main propulsion reduction gear, propulsion clutches, propulsion coupling, Turbine brake, Main trust bearing, CP pitch control machinery, Main CP servo' pump, Cyro compass, Radar antenna, Radio antenna, Missile directors, Gun directors, Steering gear, Steering rudder gear, Ammunition hoist, Elevators, Elevators machinery, Sona transducer, Catapult machinery, Arresting gear
Elastic-plastic shock design value	If elastic design is not required for the reasons stated above, elastic-plastic shock design values shall be used in cases where design by dynamic analysis is required.

3가

.

Table 2.11

Table 2.11 Items for purpose of shock testing

.

Class	Shock safety requirements without the use of resilient mountings installed between the equipment and the ship structure or foundation
Class	Shock safety requirements with the use of resilient mountings installed between the equipment and the ship structure or foundation
Class	Unless otherwise specified, Class equipment is defined as that which has shipboard application both with and without the use of resilient mountings and therefore required to meet both Class and Class requirements

Ε.

DDAM

DDAM

DDAM

•

NRL Memorandum Report, 1396

Table 2.12 Reference equation of hull mounted system

	Ship type	Hull mounted sys.
	Submarines	$A_{0} = 10.4 \left(\frac{480 + W_{j}}{20 + W_{j}} \right)$
Accel.(g)	Surface ship	$A_{0} = 20 \left(\frac{(37.5 + W_{j})(12 + W_{j})}{(6 + W_{j})^{2}} \right)$
Veloci.(in/ sec)	Submarines	$V_0 = 20.0 \left(\frac{480 + W_j}{100 + W_j} \right)$
	Surface ship	$V_0 = 60 \left(\frac{12 + W_j}{6 + W_j} \right)$

	Ship type	Deck mounted sys.
Accel.(g)	Submarines	$A_{0} = 5.2 \left(\frac{480 + W_{j}}{20 + W_{j}} \right)$
	Surface ship	$A_{0} = 10 \left(\frac{(37.5 + W_{j})(12 + W_{j})}{(6 + W_{j})^{2}} \right)$
Veloci.(in/sec)	Submarines	$V_0 = 10.0 \left(\frac{480 + W_j}{100 + W_j} \right)$
	Surface ship	$V_0 = 30.0 \left(\frac{12 + W_j}{6 + W_j} \right)$

Table 2.13 Reference equation of deck mounted system

Table 2.14 Reference equation shell mounted system

	Ship type	Shell plating mounted sys.
Accel.(g)	Submarines	$A_{0} = 52 \left(\frac{480 + W_{j}}{20 + W_{j}} \right)$
	Surface ship	$A_{0} = 40 \left(\frac{(37.5 + W_{j})(12 + W_{j})}{(6 + W_{j})^{2}} \right)$
Veloci.(in/sec)	Submarines	$V_0 = 100 \left(\frac{480 + W_j}{100 + W_j} \right)$
	Surface ship	$V_0 = 120 \left(\frac{12 + W_j}{6 + W_j} \right)$

Fig. 2.10 Shock design curve (surface ship, hull mounted, vertical)

5 : 2 : 1

가 .

.

, ,

T able 2.15 2.17 .

.

3

Ship type	Classification		Hull mounted sys.			
Ship type	Classifi	cation	V	А	F	
	Elastic	A _j	1.0 A ₀	1.0 A ₀	0.4 A ₀	
Submarines -		V j	1.0 V ₀	1.0 V ₀	0.4 V ₀	
	Elastic	A _j	1.0 A ₀	1.0 A ₀	0.4 A ₀	
	plastic	V j	0.5 V ₀	0.5 V ₀	0.2 V ₀	
	Flastic	A _j	1.0 A ₀	0.4 A ₀	0.2 A ₀	
Surface ship -	Llastic	V j	1.0 V ₀	0.4 V ₀	0.2 V ₀	
	Elastic	A j	1.0 A ₀	0.4 A ₀	0.2 A ₀	
	plastic	V j	0.5 V ₀	0.2 V ₀	0.1 V ₀	

Table 2.15 Shock design values (hull mounted sys.)

, ,

F .

Ship type	Classification .		Deck mounted sys.		
1 7 1			V	А	F
	Flastic	A _j	1.0 A ₀	2.0 A ₀	0.8 A ₀
Submarines	Elastic	V j	1.0 V ₀	2.0 V ₀	0.8 V ₀
	Elastic	A _j	1.0 A ₀	2.0 A ₀	0.8 A ₀
	plastic	V j	0.5 V ₀	1.0 V ₀	0.4 V ₀
Surface ship		A _j	1.0 A ₀	0.4 A ₀	0.4 A ₀
	Elastic	V j	1.0 V ₀	0.4 V $_{0}$	0.4 V ₀
	Elastic	A _j	1.0 A ₀	0.4 A ₀	0.4 A ₀
	plastic	V j	0.5 V ₀	0.2 V ₀	0.2 V ₀

Table 2.16 Shock design values (deck mounted sys.)

Table 2.17 Shock design values (shell plating mounted sys.)

Ship type	Classification		Shell plating mounted sys.			
~r ·jr·				А	F	
			1.0 A ₀	0.2 A ₀	0.08 A ₀	
Submarines —	Elastic	V j	1.0 V ₀	0.2 V ₀	0.08 V ₀	
	Elastic	A j	-	-	-	
	plastic	V _j	-	-	-	
		A _j	1.0 A ₀	0.2 A ₀	0.1 A ₀	
Surface ship	Elastic	V j	1.0 V ₀	0.2 V ₀	0.1 V ₀	
	Elastic	A _j	-	-	-	
	plastic	V j	-	-	-	

) V : vertical , A : athwartship , F : fore & aft

(4)

	가		가
,		•	

	Fig.2.10		DDAM			
	. Fig.2.10					
		,		3가		,
, 가	,					가 가
					가	

•

$$2\pi f_c V_0 = A_0 g \tag{2.21}$$

(5) 가

가

von Mises

•

7. avon Mises σ_x , NRLi σ_i .

o 2

$$\sigma_x = \sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3\tau_{xy}^2}$$
(2.22)

03

$$\sigma_{x} = \sqrt{\sigma_{x}^{2} + \sigma_{y}^{2} + \sigma_{z}^{2} - \sigma_{x}\sigma_{y} - \sigma_{y}\sigma_{z} - \sigma_{z}\sigma_{x} + 3\tau_{xy}^{2} + 3\tau_{yz}^{2} + 3\tau_{zx}^{2}}$$
(2.23)

$$\sigma_i = |\sigma_{ia}| + \sqrt{\left(\sum_{b=1}^N \sigma_{ib}^2\right)} (\sigma_{ia})^2$$
(2.24)

 σ_x , σ_y , σ_z : normal stress, τ_x , τ_y , τ_z : shear stress σ_{ia} : 7, σ_{ib} :

- 40 -

NRL(navy research summation)

.

SRSS (square root of the sum of the

sequre)

(6)

•

.

3 (vertical, athwartship, fore-and-aft)

가

T able 2.18

•

Classification	Allowable design stress for grade A	Allowable design stress for grade B
	°	
Elastic	•	
	• : 160 %	
	• column	Grade B
	• 2	Grade A
	• 60%	
Elastic - plastic	• • 200 % 120 % •	
	• von-Mises	

Table 2.18 Refere	nce of a	allowance	stress
-------------------	----------	-----------	--------

3. DDAM

3.1

T able 3.1 .

Classification	Specification	Features
Characteristics	Т уре	2-cylinder, 2-stage air cooled
	Capacity	24.5 [m ³ /h], 40 [bar], 1750 [rpm]
	Weight	266 [kg]
	Motor	A.C 440 [V], 60 [Hz], 3 , 1750 [rpm], 5.5 [kW]

.

.

.

Table 3.1 Specification of starting air compressor

MIL-Spec

.

3.2

DDAM

DDAM

,

, ,

Grade A

Class

Alignment - critical

,

DDAM

DDAM

•

, NRL Memorandum, Report 1396

.

.

,

 \circ Ship Type : Surface ship

 $\circ\,Mounted$ position : Hull mounted

 \circ Reference equations

Accel.(g)	$A_{0} = 20 \left(\frac{(37.5 + W_{j})(12 + W_{j})}{(6 + W_{j})^{2}} \right)$
Veloci.(in/sec)	$V_0 = 60 \left(\frac{12 + W_j}{6 + W_j} \right)$

• Shock design parameters

Direction	Elastic		
Direction	A _a	V_a	
Vertical	1.0 A 0	1.0 V ₀	
Traverse	0.4 A 0	0.4 V ₀	
Longitudinal	0.2 A ₀	0.2 V ₀	

 \circ Shock design value : max (6g, min (A_ag, V_a ω_a))

,

,
$$W_j$$
 , $g (=386 [in/s^2])$ 7, $A V$
7, ω_a a (rad/sec) , max

min

.

2.3.1 (2.21) . (2.21)
$$A_0 = V_0 = 3.2$$

, 7† $f_c = f_c$

•

.

.

plate)

.

$$f_{c} = 20.55 \frac{(37.5 + \overline{W})}{(6 + \overline{W})} \quad [Hz]$$
(3.1)

(3.1)
$$f_c$$
 \overline{W} , $\overline{W} \rightarrow 0$
 $f_c = 128$ [Hz], $\overline{W} \rightarrow \infty$ 20.5 [Hz] 7 · .
2 , 250 [Hz] .
7 · 250 [Hz]

3 . (intermediate

Fig. 3.1 Simpled mathematical model for finite element analysis

ANSYS

2	(Mass 188), 10		(Spring-damper 14),	10
(Beam 4)				
,			,	
		가	. DDAM	
	,			
			T able 3.2 3.4	

- 46 -

Table 3.2 Stiffness of mounting

Direction	Stiffness(N/m)
K _t	0.3×10^{6}
<i>K</i> ₁	0.3×10^{6}
Κ,	0.63×10^{6}

Coordinate (m m) Classification Χ Y Ζ 70 1 - 5 0 Coordinate of rigid body , 2 25 - 8 355 1 350 250 0 0 2 250 0 3 - 350 250 0 4 350 - 260 0 Coordinate 5 0 - 260 0 of spring 6 - 350 - 260 0 elem ent s 7 272 250 140 8 - 271 250 140 9 272 - 260 140 10 - 271 - 260 140

Table 3.3 Coordinate of rigid bodys and mountings

Classification		Mass	Inertia moment (kg-m ²)			
Class	incation	(kg)	$oldsymbol{J}_{tt}$	$oldsymbol{J}^{}_{II}$	$J_{\nu\nu}$	
Rigid body Intermediate plate		78	4.45	3.20	7.62	
Rigid body	Equipment	188	11.46	5.12	11.76	

Table 3.4 Mass and inertia moment of starting air compressor

3.4

,

.

Fig. 3.2 Critical areas of starting air compressor

(1)

Table 3.5Results of calculated free vibration analysisin the vertical direction

Mode	Frequency	Participation factor	Effective mass	Ratio of effective mass
1	0.10	0.30	0.09	0.10
2	8.50	0.73	0.53	0.72
3	15.0	- 0.48	0.23	1.00

Mode	Frequency	Participation factor	Effective mass	Ratio of effective mass
1	1.00	0.00	0.00	0.00
2	1.76	- 10.72	115.07	0.53
3	4.67	10.07	101.59	1.00

Table 3.6 Results of calculated free vibration analysis in the athwartship direction

(3)

(2)

Table 3.7 Results of calculated free vibration analysis in the fore- and- aft direction

Mode	Frequency	Participation factor	Effective mass	Ratio of effective mass
1	2.54	14.71	216.41	0.81
2	4.67	4.34	18.89	0.88

7† 3.5 , 3.4

.

(1)

,

T able 3.8 T able 3.9

.

, Fig. 3.3

78 120.51 [N/mm²]

450 46 $[N/mm^{2}]$

 σ_i 290.56 [N/mm²]

Table 3.8 Maximum compressive stress value of compressor fixed bolt

 $[N/mm^2]$

.

NODE	S _x	S _y	S _z	S _{xy}	S _{yz}	S _{xz}	\mathcal{O}_x
NODE	105	78	9	9	105	583	105
VALUE	- 33.25	- 120.51	- 32.91	- 23.18	- 23.22	- 14.44	107.24

Table 3.9 Maximum tensile stress value of compressor fixed bolt

 $[N/mm^2]$

NODE	S _x	S _y	S _z	S _{xy}	S _{yz}	S _{xz}	σ_x
NODE	60	450	87	78	51	775	450
VALUE	27.99	46.00	27.95	23.26	23.22	14.42	64.53

• : M 10

• : 3987 [N]

 $\circ \sigma_i$: 290.56 [N/mm²]

 \circ : 300 [N/mm²]

(2)

,

T able 3.10 T able 3.11

, Fig. 3.4

78 $41.47 [N/mm^2]$

450 15.83 [N/mm²]

 $\sigma_i = 231.21 [N/mm^2]$

Table 3.10 Maximum compressive stress value of motor fixed bolt

 $[N/mm^{2}]$

NODE	S _x	S _y	S _z	S _{xy}	S _{yz}	S _{xz}	σ_x
NODE	105	78	9	9	105	583	78
VALUE	- 11.44	- 41.47	- 11.32	- 7.98	- 7.99	- 4.97	31.03

Table 3.11 Maximum tensile stress value of motor fixed bolt

 $[N/mm^2]$

NODE	S _x	S _y	S _z	S _{xy}	S _{yz}	S _{xz}	σ_x
NODE	60	450	87	78	51	775	450
VALUE	9.63	15.83	9.62	8.01	7.99	4.96	10.06

◦ : M 10
◦ : 1372 [N]
◦
$$σ_i$$
 : 231.21 [N/mm²]
◦ : 640 [N/mm²]

(3)

Table 3.12 Table 3.13

, Fig. 3.5

39 9.72 [N/mm²]

219 6.19 [N/mm²]

$\sigma_i = 44.59 [N/mm^2]$

Table 3.12 Maximum compressive value of separator fixed bolt

[N/mm²]

NODE	S _x	S y	S _z	S _{xy}	S _{yz}	S _{xz}	б _x
NODE	544	39	542	2236	4437	655	39
VALUE	- 2.71	- 9.72	- 2.88	- 1.64	- 1.83	- 1.11	9.85

Table 3.13 Maximum tensile stress value of separator fixed bolt

 $[N/mm^{2}]$

NODE	S _x	S _y	S _z	S _{xy}	S _{yz}	S _{xz}	<i>б</i> _х
NODE	46	219	17	975	974	833	219
VALUE	2.38	6.19	2.35	1.8093	1.76	1.06	6.88

• : M8

.

• : 146.175 [N]

 $\circ \sigma_i$: 44.59 [N/mm²]

 \circ : 640 [N/mm²]

Fig. 3.3 Stress distribution of compressor fixed bolt

Fig.3.4 Stress distribution of motor fixed bolt

Fig. 3.5 Stress distribution of separator fixed bolt

가

(MIL-SPEC)

.

4.

4.1

Table 4.1 Shock trial specification of starting air compressor

Classification	Grade	Note	
Shock grade	А	Necessity equipment	
Equipment class	/	Used the resilient mount	
Shock test type	А	Main machinery on test	
Mounting location	Н	Hull mounted	
Test category	Medium weight	266 [kg]	

Fig .4.1 MIL-S-901 high-impact shock machine for medium weight equipment

Fig. 4.2 Setting diagram for shock test

Shot direction	Total weight on anvil table (kg)	Height of hammer drop (feet)	Anvil table travel (inch)	Shot number	
		1.25	3		
30 ° inclined	906 kg (with anvil table)	2.25	3		
		2.25	1.5	Respectively	
		1.0	3	one shot	
Vertical	1,360 kg	2.0	3		
		2.0	1.5		

Table 4.2 Height and shot direction of hammer

MIL - S - 901

MIL	2 - S -	901
-----	---------	-----

.

,

MIL - S - 901

T able 4.3

	가	가 30 °	,
2.25 feet	3 inch		가
,	1,318 g	34.18 g	가
	가		

fable 4.3 Measu	ring data in	anvil table	and com	pressor
-----------------	--------------	-------------	---------	---------

Shot	Height of	Anvil table	Anvil	table	Equipment	
direction	drop (feet)	travel (inch)	Acc. (g)	Time. (sec)	Acc. (g)	Time. (sec)
30 ° inclined	1.25	3.00	556.6	3.572	9.766	3.579
	2.25	3.00	1318.0	3.857	34.18	3.927
	2.25	1.50	571.3	3.711	29.30	3.775
Vertical	1.00	3.00	942.4	4.069	34.18	4.185
	2.00	3.00	1177.0	3.914	24.41	3.919
	2.00	1.50	615.2	3.910	29.30	3.92

 ブ
 ...

 ブ
 DDAM

 ブ
 30 %

 ブ
 ...

 ブ
 ...

 ブ
 ...

 ブ
 ...

 ブ
 ...

(1) アト DDAM MIL-SPEC ,

(2) DDAM

. (3)

.

5.

(DDAM)

가

.

[1]	, "			フト",	,
	VOL.8/ NO.1, pp21	28, 1998.2			
[2]	, ,	"		가	",
	, 33 2	, 1996.			
[3]	, ,	, "			
	",		10		
	, pp1185 1191, 20	000.6			
[4]	MIL-STD-901C, "Sh	ock Tests, H.I.	(High-Impac	t) Shipboard M	achinery,
	Equipment, and Sys	tems, Requiren	nents for", 1	963.	
[5]	MIL-STD-901D, "S	hock Tests,	H.I.(High-Im	pact) Shipboar	d Machinery,
	Equipment, and Syst	ems, Requirem	ents for", 19	989.	
[6]	MIL-STD-167, "Me	echanial Vibra	tions of S	hipboard Equi	ipment (T ype
	-Environmental, T	ype - Internally	Excited,	- T or sional,	-Longitudinal,
	V-Lateral)", 1974.				
[7]	, ,	, "MIL-S-90	1		
	",	10)		,
	pp1149 1153, 2000.0	5			
[8]	, ,				(DDAM) ",
		10		,	pp1180 1184,
	2000.6				
[9]	Rao(), "	",	, pp25	6 317, 1988.	
[10]],,,"	",	, pp148	166, 1999.	
[11]],"	•	",	, 1997.	
[12	BV 043, "Shock Res	istance Experi	mental and 1	Mathematical P	roof", 1985.
[13] NAVSEA 0908-LP	- 003 - 3010, "Sh	lock Design	Criteria for S	Surface Ships",

- 62 -

1976.

- [14] NAVSEA 0908-LP-003-3010A, "Shock Design Criteria for Surface Ships(Draft)", 1994.
- [15] NAVSEA 0908-LP-000-3010, "Shock Design Criteria for Surface Ships", 1976.
- [16] George J. O'Hara and Robert O. Belsheim, "Interim Design Values for Shock Design of Shipboard Equipment", NRL Memorandum Report 1396, 1963.2
- [17] , " ", , , 1999.
- [18] ANSYS, "Ansys theory manual", ansys, inc.