5 research outputs found

    ํ™€๋กœ๊ทธ๋ž˜ํ”ผ์™€ ํ”Œ๋ผ์ฆˆ๋ชจ๋‹‰์Šค์— ๊ธฐ๋ฐ˜ํ•œ ์—์–ด๋ฆฌ ๋น” ์ƒ์„ฑ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2014. 2. ์ด๋ณ‘ํ˜ธ.๋ฒ ์…€๋น”, ์›จ๋ฒ„๋น”๊ณผ ๊ฐ™์ด ๋Œ€ํ‘œ์ ์ธ ๋น„ํšŒ์ ˆ์„ฑ ๋น” ์ค‘ ํ•˜๋‚˜์ธ ์—์–ด๋ฆฌ ๋น”์€ ์ง„ํ–‰ํ•˜๋ฉด์„œ ํ•„๋“œ ๋ถ„ํฌ๊ฐ€ ์ฒ˜์Œ์˜ ๋ชจ์–‘ ๊ทธ๋Œ€๋กœ ์œ ์ง€๋˜๋Š” ์„ฑ์งˆ์„ ๊ฐ–๋Š”๋‹ค. ์ด๋Š” ์ž์œ  ์ž…์ž์˜ ์šด๋™์„ ๊ธฐ์ˆ ํ•œ ์Šˆ๋ขฐ๋”ฉ๊ฑฐ ๋ฐฉ์ •์‹์˜ ์‹ค์šฉํ•ด๋กœ์„œ ์—ฐ๊ตฌ๋˜์—ˆ์œผ๋ฉฐ ์ตœ๊ทผ ์‹คํ—˜์„ ํ†ตํ•ด์„œ ์ธก์ •๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์—์–ด๋ฆฌ ๋น”์€ ํฌ๊ฒŒ ์„ธ๊ฐ€์ง€ ๋…ํŠนํ•œ ์„ฑ์งˆ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋น„ํšŒ์ ˆ์„ฑ์€ ์—์–ด๋ฆฌ ๋น”์ด ์ง„ํ–‰ํ•˜๋Š” ๋™์•ˆ ํšก๋‹จ๋ฐฉํ–ฅ์˜ ํ•„๋“œ๊ฐ€ ์—์–ด๋ฆฌ ํ•„๋“œ ํ˜•ํƒœ๋ฅผ ๊ณ„์†ํ•ด์„œ ์œ ์ง€ํ•˜๋Š” ๊ฒƒ์„ ๋งํ•œ๋‹ค. ์ž์œ  ๊ฐ€์†์€ ์—์–ด๋ฆฌ ๋น”์ด ์ง„ํ–‰ํ•  ๋•Œ ์™ธ๋ถ€์˜ ํž˜์ด ๊ฐ€ํ•ด์ง€์ง€ ์•Š์•˜์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ง„ํ–‰๋ฐฉํ–ฅ์ด ํœ˜๋Š” ์„ฑ์งˆ์„ ๋ณด์ธ๋‹ค. ์ด๋Š” ๋น„ํšŒ์ ˆ์„ฑ ๋น” ์ค‘ ์˜ค์ง ์—์–ด๋ฆฌ ๋น”์—์„œ๋งŒ ๋‚˜ํƒ€๋‚˜๋Š” ๋…ํŠนํ•œ ์„ฑ์งˆ์ด๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ์ž๊ธฐ ํšŒ๋ณต์€ ์—์–ด๋ฆฌ ๋น”์ด ์žฅ์• ๋ฌผ์„ ๋งŒ๋‚˜๋„ ์–ผ๋งˆ ๋’ค ์ฒ˜์Œ๊ณผ ๋น„์Šทํ•œ ํ•„๋“œ ๋ถ„ํฌ๋ฅผ ํšŒ๋ณตํ•˜๋Š” ์„ฑ์งˆ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์„ฑ์งˆ์€ ์ˆ˜ ๋งŽ์€ ๋น› ๋‹ค๋ฐœ์ด ํœ˜์–ด์ง„ ํ˜•ํƒœ์˜ ํฌ๋ฝ์„ ์„ ํ˜•์„ฑํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์ˆ˜๋งŽ์€ ๋น› ๋‹ค๋ฐœ์„ ๊ตฌํ˜„ํ•˜๊ธฐ๋Š” ํ˜„์‹ค์ ์œผ๋กœ ๋ถˆ๊ฐ€๋Šฅํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์—์–ด๋ฆฌ ๋น”์„ ์‹ค์ œ๋กœ ๋งŒ๋“œ๋Š”๋ฐ๋Š” ๋‹ค๋ฅธ ๋ฐฉ๋ฒ•์ด ํ•„์š”ํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ์—์–ด๋ฆฌ ๋น”์˜ ์‚ฌ์ด๋“œ ๋กœ๋ธŒ๋ฅผ ์ œ๊ฑฐํ•œ ํ˜•ํƒœ์ธ ์œ ํ•œํ•œ ์—์–ด๋ฆฌ ๋น”์ด ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํ˜•ํƒœ์˜ ์—์–ด๋ฆฌ ๋น”์€ ์ž์œ  ๊ฐ€์†, ์ž๊ธฐ ํšŒ๋ณต ๋“ฑ์˜ ์„ฑ์งˆ์„ ๊ฐ€์ง€์ง€๋งŒ ๋น„ํšŒ์ ˆ์„ฑ์งˆ์€ ์‹œ๊ฐ„์ด ์ง€๋‚จ์— ๋”ฐ๋ผ ์žƒ๊ฒŒ ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ž…์‚ฌํ•˜๋Š” ๋น”์˜ ํ•„๋“œ๋ฅผ ๋ณ€์กฐํ•จ์œผ๋กœ์จ ๋‹คํ–ฅํ•œ ํ˜•ํƒœ์˜ ์—์–ด๋ฆฌ ๋น”์„ ๋งŒ๋“ค์—ˆ๋‹ค. ํŠนํžˆ ํ‰๋ฉดํŒŒ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋งŒ๋“  ์—์–ด๋ฆฌ ๋น”์€ ๊ฐ€์šฐ์‹œ์•ˆ๋น”์œผ๋กœ ๋งŒ๋“ค์–ด์ง„ ์ผ๋ฐ˜์ ์ธ ์—์–ด๋ฆฌ ๋น”์— ๋น„ํ•ด ๋น„ํšŒ์ ˆ์„ฑ์ด ํ–ฅ์ƒ๋œ ๊ฒฐ๊ณผ๋ฅผ ์–ป์—ˆ๋‹ค. ๋˜, ์ธ๋ฒ„์Šค-๊ฐ€์šฐ์‹œ์•ˆ๋น”์œผ๋กœ ๋งŒ๋“  ์—์–ด๋ฆฌ ๋น”์€ ํœ˜์–ด์ง„ ํฌ์ปค์Šค๋ฅผ ํ˜•์„ฑํ•˜๋Š” ๊ฒƒ์„ ๋ณด์˜€๋‹ค. ์ด๋ก  ๋ฐ ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ์„œ ์ž…์‚ฌํ•˜๋Š” ๋น”์ด ์—์–ด๋ฆฌ ๋น”์— ์–ด๋–ค ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค. ๋‹ค์Œ์œผ๋กœ ํ™€๋กœ๊ทธ๋ž˜ํ”ผ๋ฅผ ์ด์šฉํ•˜์—ฌ ์—์–ด๋ฆฌ ๋น”์„ ๋งŒ๋“œ๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ ˆํผ๋Ÿฐ์Šค๋น”๊ณผ ์—์–ด๋ฆฌ ๋น”์˜ ํ™€๋กœ๊ทธ๋žจ์„ ๊ธฐ๋กํ•˜๊ณ  ์ด๋ฅผ ์žฌ์ƒํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ๋ณต์žกํ•œ ์‹คํ—˜์žฅ์น˜ ์—†์ด ๊ฐ„๋‹จํ•˜๊ฒŒ ์—์–ด๋ฆฌ ๋น”์„ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ๋ ˆํผ๋Ÿฐ์Šค๋น” ์ „์ฒด๋ฅผ ์ž…์‚ฌํ•˜์ง€ ์•Š๋”๋ผ๋„ ์—์–ด๋ฆฌ ๋น”์ด ๋งŒ๋“ค์–ด์ง€๋Š” ์ž๊ธฐ ํšŒ๋ณต์„ ๋ณด์˜€์œผ๋ฉฐ, ๋ ˆํผ๋Ÿฐ์Šค๋น”์„ ๋ฐ˜๋Œ€๋ฐฉํ–ฅ์—์„œ ์กฐ์‚ฌํ•จ์œผ๋กœ์จ ํŒŒ์›Œ์˜ ๋ฐฉํ–ฅ์ด ๋ฐ˜๋Œ€์ธ ์—์–ด๋ฆฌ ๋น”์„ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ์ด๋Š” ๊ธฐ์กด์˜ ๊ณต๊ฐ„๊ด‘๋ณ€์กฐ๊ธฐ๋ฅผ ์ด์šฉํ•˜์—ฌ์„œ๋Š” ๊ตฌํ˜„ํ•  ์ˆ˜ ์—†๋Š” ๊ฒƒ์ด๋‹ค. ๋˜, ์‹ค์ œ์ ์ธ ์‘์šฉ์„ ์œ„ํ•ด ๊ฐ๋‹ค์ค‘ํ™”๋ฅผ ์‹คํ—˜ํ•˜์˜€๋‹ค. ์ด๋Š” ๋™์‹œ์— ์—ฌ๋Ÿฌ๊ฐœ์˜ ์ž…์ž๋ฅผ ์˜ฎ๊ธฐ๊ฑฐ๋‚˜ ์ œ์–ดํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ˆ ์ด ๋  ๊ฒƒ์ด๋ผ ์˜ˆ์ƒ๋œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๊ธˆ์† ์Šฌ๋ฆฟ ์–ด๋ ˆ์ด๋ฅผ ์ด์šฉํ•˜์—ฌ ์—์–ด๋ฆฌ ๋น”์„ ๋งŒ๋“œ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ํ˜ธ์ด๊ฒ์Šค์˜ ์›๋ฆฌ์— ๋”ฐ๋ผ ํ‘œ๋ฉด ํ”Œ๋ผ์ฆˆ๋ชฌ์ด ์Šฌ๋ฆฟ์„ ํ†ต๊ณผํ•  ๋•Œ์˜ ํŒŒ์›Œ์™€ ์œ„์ƒ์„ ์กฐ์ ˆํ•˜์—ฌ ์ดˆ๊ธฐ ์—์–ด๋ฆฌ ๋น”์˜ ๊ฐ•๋„ ๋ฐ ์œ„์ƒ ๋ถ„ํฌ์™€ ๊ฐ™๊ฒŒ ๋งŒ๋“ค์–ด์ฃผ๋ฉด ์—์–ด๋ฆฌ ๋น”์ด ํ˜•์„ฑ๋  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค. ์ด๋Š” ํŠน๋ณ„ํ•œ ๊ด‘ํ•™ ์žฅ์น˜ ์—†์ด ๋งค์šฐ ์ž‘์€ ๊ตฌ์กฐ๋กœ ๋งŒ๋“ค ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๊ด‘์ง‘์ ํšŒ๋กœ์—์„œ์˜ ์‹ ํ˜ธ์ „๋‹ฌ์ด๋‚˜ ์ž…์ž์กฐ์ž‘๊ณผ ๊ฐ™์€ ๊ณณ์— ์‘์šฉ๋  ๊ฒƒ์ด๋ผ ์ƒ๊ฐ๋œ๋‹ค.An Airy beam is a kind of non-diffracting wave such as Bessel beam and Weber beam, which keeps its initial field profile during propagation. It was theoretically analyzed by Berry and Balazs as a non-trivial solution of the Schrรถdinger equation describing movements of a free particle under the free-potential condition. Until now, the Airy beam has attracted much attention due to their three representative characteristics: non-diffraction, free-acceleration and self-healing. First, an Airy beam has the invariant field profile during propagation: non-diffraction. Second, the Airy beam has the unique bending trajectory without any external force: free-acceleration. Lastly, the Airy beam has the ability to reconstruct its original shape after being partially blocked by an opaque obstacle: self-healing. These properties can be understood by noticing that a number of straight rays form the parabolic caustic. However, it is impossible to experimentally build up an Airy beam since it has a long tail containing infinite power. Thus, a finite power Airy beam was introduced by suppressing side lobes of an ideal Airy beam. Although this Airy-like beam cannot remain the non-diffraction feature permanently, it shows not only reasonable propagation length with keeping its Airy field profile but also distinguished properties such as both free-acceleration and a self-healing ability. In this dissertation, the generation method of the finite power Airy beams via initial field modulation to suppress side lobes is presented. Three types of input beam cases, which are a Gaussian beam, a uniform beam of finite extent and an inverse Gaussian beam, are investigated both theoretically and experimentally. Especially, the finite power Airy beam generated by a uniform input beam of finite extent retains the Airy field profile much longer than that of the Airy beam generated by a conventional Gaussian beam. Also, the finite power Airy beams generated by an inverse Gaussian input beam forms a unique focused-bending beam. To generate the finite power Airy beams, a novel method based on holography which is the recording and reconstruction technique of optical fields including amplitude and phase information, is introduced. After interference patterns of a reference beam and a finite power Airy beam are recorded on a photopolymer, the finite power Airy beams can be regenerated by simply illuminating the reference beam on the hologram. In addition, using the characteristics of holography, the self-healing property and more bended propagation of the reconstructed Airy beams are experimentally verified. Moreover, angle multiplexing of the multiple Airy beams determined by the angles of the reference beams is presented. This might enable the parallel processing of particle manipulations using the Airy beams. A new method to launch the finite power Airy beams based on the metallic slit array is presented. By tailoring the amplitude and phase of the transmitted fields from the metallic slit array, the launching of Airy beam with compact area has been achieved in free space. From the Huygens' principle, diffracted light at the slit end acts individual point sources and forms the interference patterns by controlling surface plasmon polartons (SPPs) diffracted at the exit of the subwavelength slit. It is expected that this method is used to various applications like particle tweezing, sorting, clearing and trapping without any optical components and bulky structure.Abstract..................................................................................i Contents................................................................................iv List of Figures.....................................................................vii Chapter 1. Introduction......................................................1 1.1. Overview of Airy beams................................................................1 1.2. Motivation of this dissertation.......................................................6 1.3. Scope and organization..................................................................9 Chapter 2. Generation of Airy beams via initial field modulation...........................................................................12 2.1. Theoretical analysis of Airy beams.............................................12 2.1.1. (1+1)D finite power Airy beams.....................................................13 2.1.2. Comparison with three CASES of Airy beams...............................14 2.1.3. (2+1)D finite power Airy beams.....................................................22 2.2. Experiments of finite power Airy beams.....................................25 2.2.1. Experimental setup..........................................................................26 2.2.2. Experimental results........................................................................28 Chapter 3. Generation of Airy beams by holographic method.................................................................................31 3.1. Holographic generation of Airy beams.......................................31 3.1.1. Holographic recording of Airy beams.............................................33 3.1.2. Holographic reconstruction of Airy beams.....................................36 3.1.3. Self-healing of Airy beams..............................................................38 3.1.4. Ballistic trajectory of conjugated Airy beams.................................39 3.2. Angle multiplexing of Airy beams..............................................50 3.2.1. Recording of multiple Airy beams..................................................51 3.2.2. Reconstruction of multiple Airy beams...........................................52 Chapter 4. Plasmonic approach to Airy beam generation using subwavelength slit array..........................................55 4.1. Design of subwavelength metallic slit array................................55 4.1.1. Metal-insulator-metal plasmonic waveguide..................................56 4.1.2. Design of subwavelength metallic slit array...................................59 4.2. Numerical simulations and results...............................................61 4.2.1. Numerical simulation of Airy beam generation..............................62 4.2.2. Self-healing property in Airy beams...............................................65 Chapter 5. Conclusion........................................................68 Appendix.............................................................................71 1. Fourier transform of ideal Airy beams...........................................71 2. Fourier transform of finite power Airy beams................................72 3. Reason for using the same phase mask to all CASES in experiments.........................................................................................73 Bibliography........................................................................75 ํ•œ๊ธ€ ์ดˆ๋ก.............................................................................81Docto

    Optimal structure design of metal slit array for subwavelength beam focusing

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ „๊ธฐ. ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2010.2.Maste
    corecore