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Abstract

Generation of finite power Airy beams
based on
holographic and plasmonic approaches

DAWOON CHOI

DEPARTMENT OF ELECTRICAL AND
COMPUTER ENGINEERING
COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

An Airy beam is a kind of non-diffracting wave such as Bessel beam and Weber beam,
which keeps its initial field profile during propagation. It was theoretically analyzed by
Berry and Balazs as a non-trivial solution of the Schrddinger equation describing
movements of a free particle under the free-potential condition. Until now, the Airy beam
has attracted much attention due to their three representative characteristics: non-
diffraction, free-acceleration and self-healing. First, an Airy beam has the invariant field
profile during propagation: non-diffraction. Second, the Airy beam has the unique
bending trajectory without any external force: free-acceleration. Lastly, the Airy beam
has the ability to reconstruct its original shape after being partially blocked by an opaque
obstacle: self-healing. These properties can be understood by noticing that a number of
straight rays form the parabolic caustic. However, it is impossible to experimentally
build up an Airy beam since it has a long tail containing infinite power. Thus, a finite

power Airy beam was introduced by suppressing side lobes of an ideal Airy beam.



Although this Airy-like beam cannot remain the non-diffraction feature permanently, it
shows not only reasonable propagation length with keeping its Airy field profile but also
distinguished properties such as both free-acceleration and a self-healing ability.

In this dissertation, the generation method of the finite power Airy beams via initial
field modulation to suppress side lobes is presented. Three types of input beam cases,
which are a Gaussian beam, a uniform beam of finite extent and an inverse Gaussian
beam, are investigated both theoretically and experimentally. Especially, the finite power
Airy beam generated by a uniform input beam of finite extent retains the Airy field
profile much longer than that of the Airy beam generated by a conventional Gaussian
beam. Also, the finite power Airy beams generated by an inverse Gaussian input beam
forms a unique focused-bending beam.

To generate the finite power Airy beams, a novel method based on holography
which is the recording and reconstruction technique of optical fields including amplitude
and phase information, is introduced. After interference patterns of a reference beam and
a finite power Airy beam are recorded on a photopolymer, the finite power Airy beams
can be regenerated by simply illuminating the reference beam on the hologram. In
addition, using the characteristics of holography, the self-healing property and more
bended propagation of the reconstructed Airy beams are experimentally verified.
Moreover, angle multiplexing of the multiple Airy beams determined by the angles of the
reference beams is presented. This might enable the parallel processing of particle
manipulations using the Airy beams.

A new method to launch the finite power Airy beams based on the metallic slit array
is presented. By tailoring the amplitude and phase of the transmitted fields from the
metallic slit array, the launching of Airy beam with compact area has been achieved in
free space. From the Huygens' principle, diffracted light at the slit end acts individual
point sources and forms the interference patterns by controlling surface plasmon
polartons (SPPs) diffracted at the exit of the subwavelength slit. It is expected that this
method is used to various applications like particle tweezing, sorting, clearing and

trapping without any optical components and bulky structure.
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Chapter 1.

Introduction

1.1. Overview of Airy beams

In 1978 Berry and Balazs first introduced the non-spreading wave packet from the
Schrédinger equation in quantum mechanics for a free particle [1]. The Airy wave packet
is the only non-trivial solution which has following unique properties: non-spreading
according to time varying and free-acceleration without any external potential.

From the paraxial Helmholtz equation which mathematically correspondents to the
Schrddinger equation, in 2007, Siviloglou and Christodoulides showed the optical
version of the Airy wave packet, namely Airy beams [2]. The Airy beam is a kind of
non-diffraction beams whose transverse intensity distributions are assumed by Airy
functions shown in the inset of Fig. 1.1. They presented the Airy beam solutions in one
dimension (1D or (1+1)D) and two dimension (2D or (2+1)D) adopting an exponentially
decaying aperture. This work led experimental realizations of finite power Airy beams
because ideal Airy beams are not square integrable (i. e., they convey infinite power) [3].
Understandably, presented finite power Airy beams have the similar characteristics with
that of the Airy wave packet - non-diffraction during propagation and the bending
trajectory without any external force or any refractive index gradient as shown in Fig. 1.1.
Also, just like other non-diffraction beams, it was reported that they have the self-healing
phenomenon which is restoring their original shapes despite blocking a part of whole
beams [4,5].



Figure 1.1 Intensity distribution of (1+1)D ideal Airy beams. During
propagation, an Airy profile is invariant (non-diffraction) and the intensity
maximum is moving along a bending trajectory (free-acceleration). An inset
is a transverse cross-section plot at the origin. It shows an Airy function

profile.

Surface plasmon polariton (SPP) is an electromagnetic wave that propagates along a
metal-dielectric interface as shown in Fig. 1.2 [6, 7]. Let me consider a basic geometry
sustaining SPPs, which is a single interface between a dielectric medium with dielectric
constant g4 and a flat metal with permittivity , in a transverse magnetic (TM) case. In a
dielectric medium (z > 0), the electromagnetic fields can be expressed by the Maxwell's

curl equation:

H,(2) = A exp(iBx—k,z), (1.2)
E,(2) =i A k, exp(ifx—k,z), (1.2)
WEE

and



H Dielectric (g,)

k=

Figure 1.2 Propagation of surface plasmon polariton at the interface between

a metal and a dielectric medium.

B

W&,

E.(D)=-A exp(ifx —k,2), (1.3)

where S is a propagation constant of an SPP wave and k;, is the wavevector in the x-
direction. In similar manner, in a metal (z < 0), the electromagnetic fields can be

expressed by

H,(2) = A, exp(ifx +k,2), (1.4)
E.(2) = —i—2k_exp(ifx+k.2), (1.5)
Ogm
and
E,(2)=-A, s exp(ifx+K.,z), (1.6)
@ Ogm

where k;, is the wavevector in the perpendicular direction to the interface. A; and A,
denote coupling coefficients. From the continuity relations, the dispersion relation for the

SPP wave is

B=k, |-, (17)
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where ko (=w/c) is the wavevector in free space. This field is strongly confined beyond
diffraction limit and exponentially decayed in a transverse direction from the metal
surface. As a result, hundreds or thousands of times field enhancements can be achieved
in subwavelength structures [8-12]. Using this characteristic, various applications such as
imaging, lithography, sensor and optical data storage have been actively reported [13-20].
However, intrinsic metallic loss due to internal damping of a metal is inevitable. Hence,
it becomes an obstacle to practical use of nano-metallic structures based on SPP. Here,

SPP wavelength Aspp is defined by

2

A === 1.8
SPP Re(ﬁ) ( )

Recently, Airy plasmon is presented as a promising candidate to solve confronting
hurdles of SPP [21-28]. Following respects of Airy plasmon are easy to adopt in a
practical planar metallic system. Firstly, it shows relatively long propagation length than
that of other non-diffraction beams on the metal surface. Secondly, since the origin of
Airy beams is a superposition of plane waves in free space, it can be replaced with SPP
waves in a metal surface. Thirdly, in general, it is difficult to express non-diffraction
beams such as Bessel beams and parabolic beams in a plane because more than one
coordinates are essential. On the contrary, Airy beams even have a quasi-one-
dimensional form such as (1+1)D or (2+1)D. Finally, it is not sensitive to surface
roughness or defects because of their self-healing property.

The first optical observation of the Airy beams was realized by the optical Fourier
transform system shown in Fig. 1.2 which is adding the cubic phase to a broad Gaussian
beam. After a computer-generated phase mask on a spatial light modulator (SLM) is
illuminated by an input Gaussian beam, inverse Fourier transform is performed by a
Fourier lens. As a result, the Airy beams are generated at the image plane. [3]. On the
same principle, observations of Airy beams in wide area such as nonlinear generation
[29-31], curved plasma channel generation [32] and electron beam generation [33] were
reported. Meanwhile, to couple a plane wave in free space into SPPs on a metal surface,
there are two representative methods such as prism coupling and grating coupling which



compensate a lack of k-vector of the plane wave in free space [34]. Recently, using a
grating coupling method, another way to generate Airy beams on a metal surface which
directly assigns initial launching conditions was suggested by Minovich et al. [22, 30].
For matching initial intensity and phase distributions of Airy beams, grating width in a x-
direction is proportional to intensity distributions of Airy beams and grating position is
determined according to SPP wavelength. Adjacent grating is positioned with a z-phase
difference of SPP wavelength. They used a 10 mW CW diode laser with 784 nm
wavelength. A period of the z-direction is 764 nm, which is equal to SPP wavelength at
784 nm. Overall size of the structure is approximately 20 um x 10 um. Figure 1.3(a) is a
scanning electron microscope (SEM) image of a designed grating array on a gold film
with a 150 nm thickness, which is fabricated by a focused ion beam (FIB). In this case,
the permittivity of gold is -10.5099+1.0573i at 660 nm wavelength and 628 nm of SPP
wavelength is calculated by Eqg. (1.8). 100 nm of grating width in the y-direction is fixed.
While a laser beam of 660 nm wavelength is illuminating the sample at the bottom, Airy
plasmons ((1+1)D Airy beams) measured by a near-field scanning optical microscope
(NSOM) are excited at a gold surface shown in Fig. 1.3(b). Also, Li et al. presented an
array structure for launching plasmonic Airy beams based on in-plane diffractions [23].
When SPPs propagate through graded diffraction gratings (from 420 nm to 780 nm with
10 nm increment) on a 60-nm-thickness silver film, they are scattered by these designed
nanocave array. As a result, interference patterns (Airy plasmons) are formed according
to the Huygens-Fresnel principle. They excited SPPs using a He-Ne laser with 632.8 nm
wavelength. They experimentally demonstrated the self-healing property of the Airy
plasmons and recorded them using a leakage radiation microscopy (LRM) system. Last,
Zhang et al. suggested a new technique to launch plamonic Airy beams [25]. Using the
grating coupler with a 805 nm period on a 50m-thickness gold surface, cubic phase
modulated beams with 820 nm wavelength were coupled into Airy plasmons after
passing through a objective lens. They dynamically controlled trajectories of Airy
plasmons by controlling the transverse or longitudinal positions of the objective lens or
changing the phase mask on the SLM. Observation of Airy plasmons was conducted by

the LRM system which shows real time images of Airy plasmons.



Figure 1.3 (a) SEM image of a fabricated slit array for exciting Airy
plasmons. (b) Intensity distribution of Airy plasmons measured by the
NSOM system.

1.2. Motivation of this dissertation

To resolve the problem that ideal Airy beams are not square integrable (i.e., they carry
infinite power), exponentially decaying terms were introduced to implement finite power
Airy beams [2], which have similar features to those of the ideal one. They were
generated by the optical Fourier transform of a Gaussian input beam on which cubic
phase is imposed [3]. Although they can carry finite power, these apodized finite power
Airy beams cannot maintain their shapes for a long time and are gradually spreading out
during propagation [3]. Recently, based on these, various methods which tune a main
lobe or side lobes of finite power Airy beams by using a flat-topped input Gaussian beam
[35], a nonsymmetric apodization [36] and a sharp cutoff [37] were presented.

In this dissertation, some alternative methods for the apodization of Airy beams for
solving a diffraction issue in finite power Airy beams are presented [38]. Instead of
Gaussian input beams (that involve exponentially decaying terms), uniformly distributed
beams of finite extent or beams having an inverse Gaussian distribution is considered. In

the case of a uniformly distributed finite-extent beam, it shows that the resultant finite
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power Airy beam can preserve its Airy profile much farther than that generated by the
Gaussian input beam. An inverse Gaussian apodization results in a unique propagation
dynamics: a focused-bending beam. In each case, the solution of the finite power Airy
beam is derived and verified by experiments. This work will provide not only the effects
of initial fields in finite power Airy beams but also the method to overcome the

diffraction problem in non-diffraction beams with finite power.

Figure 1.4 Concept of optically mediated particle clearing along a bending
trajectory of Airy beams.

Recently, using an unique bending property of Airy beams, optically mediated
particle clearing was experimentally demonstrated [4,39-42]. Using (2+1)D Airy beams
with an Ar+ laser of 514 nm wavelength and 25 mW power, colloidal glass spheres of
1.5 um diameter were conveyed from one section to another section along parabolic
trajectories shown in Fig. 1.4 [4]. Also, an optical tweezer system was reported based on
the optical trapping force of the focused Airy beams [40]. When a 532 nm laser with 5 W
peak power illuminates polymer particles with 3.2 um diameter diffused in de-ionized
water, optical trapping takes place before the focus, at the focus and after the focus.
Optical tweezers use so-called gradient force of the electric field of a highly focused laser

7 - A2ty



beam to manipulate nano- or micro-size dielectric particles without physical contact [43-
48]. They are useful in sorting or guiding cells, molecules and DNAs in a biological
system. In optical tweezers, there are several important things to consider: (1)
improvements in spatial- and time-resolutions and (2) removals of experimental noise
such as temperature drift, mechanical and acoustic vibrations and background electronic
noise. In addition, multiple optical trapping is very useful because it can allow parallel
processing of simultaneous particle manipulations. Especially, based on holographic
method using an SLM or a diffractive optical element (DOE), simultaneous operations
are possible to achieve the high throughput [47,48].

In this dissertation, holographic generations of Airy beams in the beginning are
demonstrated. By recording and reconstruction of holograms which consist of the
interference between generated Airy beam using the optical Fourier transform system
and a plane wave, decoded Airy beams have non-diffracted nature with a bending
trajectory [49]. After that, multiplexing operations of two Airy beams (accelerations in
opposite directions) determined by the angles of reference beams are presented. In
addition, based on the characteristics of holography, the self-healing property and the
conjugated Airy beams are investigated. This approach can be utilized to not only a novel
and robust Airy beam generation method but also an optical tweezing system with
multiplexing of Airy beams.

To generate the Airy beam in free space, a method of cubic-phase wrapping to a
Gaussian beam has been used typically [3]. After passing through an optical Fourier
transform system which consists of the phase mask with a cubic-phase modulation
placed one focal length in front of a lens, the incident Gaussian beam is transformed into
the finite power Airy beams in the Fourier plane placed one focal length behind the lens.
Also, a frequency converted Airy beams based on nonlinear processes and a femto-
second Airy beams in curved plasma channel have been generated by the same method
[29-32]. However, these methods are not appropriate for applying to the compact-sized
system because the bulky optical devices of high-cost such as femto-second lasers, SLMs
and several optical elements should be required. Meanwhile, it is already known that

both fast transmission speed and broadband communication processes can be achieved



by light. However, due to inevitable nature of light, namely diffraction limit which
causes no observation below subwavelength, light remained just one of candidates to
solve urgent issues of electronics such as slow operation speed and bulky size reduction.
Recently, however, growing with remarkable developments of the manufacturing
technology leads developments of the nanotechnology. Especially, plasmonics which
combines SPPs and nanostructures is widely researched on nano-imaging, nano-
lithography, nano-manufacturing and so on.

In this dissertation, a new method to generate Airy beams in free space based on
plasmonics is proposed [50]. After an SPP wave is passing through subwavelength slit, it
is coupled to a spherical wave in free space. Since each spherical wave can be regarded
as an individual point source from the Huygens' principle, arbitrary interference pattern
generations are possible. According to this phenomenon, a subwavelength slit array to
manipulate light caustics which are satisfied to a Airy beam trajectory is designed. The
designed structure, so-called metallic lens, acts as combinations of an SLM and a lens. It
shows that the generated Airy beams have the same properties such as non-diffraction,
bending and self-healing as those of ideal Airy beams. This work enables to reduce
overall size of an Airy beam generation system. Therefore, it can be utilized to various

light manipulations as well as signal processing in optical integrated circuits.

1.3. Scope and organization

Unique natures (non-diffraction, bending trajectory and self-healing) of Airy beams have
attracted much interest in optical science. To maintain these characteristics over a whole
range, conserving an entire beam profile originated from infinity power is necessary.
However, it is impossible to impose infinity power to Airy beams due to a realistic
constraint. Therefore, practical approaches in Airy beam generation were attempted
considering finite experimental environments such as finite power of laser source and
finite size of optical elements.

In Chapter 2, | explain how to generate Airy beams in finite environments first and

then present the effects originated from initial field modulations. In Section 2.1, | discuss



theoretical analysis of the Airy beams from the paraxial Helmholtz equation with
potential-free. At first, the solutions of the ideal Airy beam and the finite power Airy
beams are presented. From there, three types of apodization methods of ideal Airy beams
are compared under the experimental conditions. In addition, dimension extension to the
finite power Airy beams, which are the (2+1)D finite power Airy beams, is covered. In
Section 2.2, the generation of the finite power Airy beams to three cases is
experimentally observed. | provide the experimental results according to three different
apodization types. These experimental results coincide well with the theoretical
expectations in section 2.1.

Chapter 3 shows the generation of the finite power Airy beams by holographic
method. Holographic generation consists of two procedures which are recording and
reconstruction. In Section 3.1, the recording process of the (2+1)D Airy beams is
introduced. After recording a reference beam and the Airy beams generated by the
convention generation method based on the optical Fourier transform and reconstructing
them, holographic Airy beams is achieved. Especially, in the reconstruction procedure,
the self-healing property and conjugated Airy beams are shown by illuminating an
imperfect reference beam or a phase-conjugated reference beam. In Section 3.2, |
present angle multiplexing of two Airy beams according to the angles of the reference
beams for practical uses. This work also consists of two stages. The recording procedures
are conducted twice to record two Airy beams having different trajectories. In the
reconstruction procedures, the reconstructed Airy beams can be obtained both
simultaneously and separately.

From the Huygens' principle, it was widely known that diffracted light becomes a
point source of spherical waves which form a specific patterns. In Chapter 4, | adopt this
principle to manipulate the finite power Airy beams using subwavelength slit array. Thus,
the design process of a subwavelength metallic slit array is explained in Section 4.1.
Since a subwavelength slit can be regarded as a metal-insulator-metal waveguide, the
transmittance and the phase retardation of a surface plasmon mode according to the
metallic slit parameters are analyzed. In Section 4.2, the proposed structure is

numerically demonstrated by COMSOL Multiphysics based on the finite elements
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method. In addition, | show a simulation result about self-healing which is an important
property of Airy beams.

Finally, concluding remarks for this dissertation and summary are provided in
Chapter 5.

WHAT? Finite power Airy beams

Initial field
modulation

Holography Plasmonics

Less
diffraction!

RESULT . /

Improving

Robust & Compact
diffraction issue = multiplexing Airy beams

Figure 1.5 Scope of this dissertation.
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Chapter 2.

Generation of Airy beams
via initial field modulation

In this chapter, finite power Airy beams generated by the Fourier transform of a cubic
phase-modulated beam of finite extent such as a Gaussian beam (CASE 1), a uniform
beam of finite extent (CASE II) and an inverse Gaussian beam (CASE Il1) are discussed.
The propagation dynamics of resultant finite power Airy beams are analyzed and
compared with three different input beam CASES. Both theoretical and experimental
approaches show that the finite power Airy beam generated by the use of a uniform input
beam (CASE I1) retains the Airy profile much longer than the conventional finite power
Airy beam (CASE ). Also, the finite power Airy beam via an inverse Gaussian beam
(CASE 111) builds up a focused-bending beam. It is expected that these works in this

chapter can be utilized to particle manipulations such as sorting, tweezing and optical

trapping.

2.1. Theoretical analysis of Airy beams

Since Berry and Balazs predicted the existence of non-spreading wave packets [1] and
Siviloglou and Christodoulides studied their optical version [2], there have been very
active researches on Airy beams [1-5, 21-33, 35-44, 49, 50, 54, 56-60]. To sum up their
outcomes until now, three unique characteristics of Airy beams are presented. First, Airy
beams are non-diffracting ones that satisfy the Helmholtz equation like Bessel [51] and

parabolic beams [52]: non-diffraction. Second, Airy beams take up a bending trajectory
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in homogeneous media without any external forces: acceleration. Lastly, Airy beams can
recover their original shapes when a part of them is blocked by arbitrary obstacles: self-

healing.

2.1.1. (1+1)D finite power Airy beams

The (1+1)D paraxial Helmholtz equation with potential-free (no gradient) can be written
as

00 10 _

o Y 0, (2.1)

where ¢ is the electromagnetic wave function. s and ¢ denote the transverse coordinate x
scaled by an arbitrary scaling factor x, and the longitudinal coordinate z scaled by kyxo,
respectively, where k, (=2zn/l) is a wavenumber in a propagating medium with a
refractive index n, and 4 is the wavelength of light in free space. By solving Eq. (2.1), the

Airy beam solution ¢ can be obtained as follows [2]:

R

The Fourier transform ®q of Eq. (2.2) at &=0 (at the initial position) is given by (Eq.
(A.2)

D, (k) =exp£ik§). (2.3)

As it was mentioned in the introduction, Eq. (2.3) is not square integrable and thus ¢ is
not physically realizable. Usually, an exponentially decaying function exp(as) is

multiplied to ¢, to obtain a finite power beam:
¢, (s, =0)=Ai(s)exp(as), (2.4)

which is square integrable and its Fourier transform ®; becomes (Eq. (A.5))

@, (k)= exp(—akz)exp(ig(k3 —3a%k - ia3)j. (2.5)
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Based on Eq. (2.5) and its optical Fourier transform, the first observation of finite Airy

beams was conducted: the cubic phase [exp(ik3 /3)] was imposed on the Gaussian beam

[ exp(—ak?) ] using a spatial light modulator (SLM) and the resultant, cubic phase-

modulated Gaussian beam was Fourier transformed using a lens system [3]. If the higher-

order terms of the relatively small constant a is ignored, exp(é(—Sazk—iaﬁ) in Eq.

(2.5), the only difference between Egs. (2.3) and (2.5) is the Gaussian function
[exp(—ak?) ] which is originated from the apodization, i.e., exponentially decaying term

exp(as). Therefore, Eq. (2.3) can be understood as a plane wave (of infinite extent) with a
cubic phase modulation, suggesting that the finite-extent feature of the input beam results

in the finite power Airy beam.

2.1.2. Comparison with three CASES of Airy beams

This discussion, i.e., the fact that a finite power Airy beam can be generated by the
Fourier transform of a cubic phase-modulated beam of finite extent, implies that there
can be other methods for the apodization of ideal Airy beams. That is, other types of
finite-extent beam than the Gaussian one can be used. Here, finite power Airy beams
generated by three different input beams - those having a conventional Gaussian
distribution (CASE 1), a uniform distribution of finite extent (CASE II) and an inverse
Gaussian distribution (CASE I1ll) - are considered. At first, it is assumed that the
wavelength of an incident beam / is 633 nm, X, is 50 um, the focal length of the lens f is
50 cm and the SLM has 1080 x 1080 pixels with an 8 um pixel pitch.

First, let us start with the CASE |, which adopts a Gaussian beam as an input beam.
Until now, there is no simulation including the experimental regime. Due to the finite
size (modulation area) of the SLM, the incident Gaussian beam must be truncated.

Therefore, EqQ. (2.5) becomes

/1f 2 i 3 2 a3
d)l(k)zn(z—”lk)exp(—ak )exp(é(k —3a% —ia )j (2.6)
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Figure 2.1 Propagation dynamics of finite power Airy beams generated by (a)

a Gaussian beam, (b) a uniform beam of finite extent and (c) an inverse

Gaussian beam. (d) Propagation dynamics of an ideal Airy beam.

where I1(a) is a rectangular function (1 if | & | < 0.5 and O otherwise) and | is the length of
the SLM along the one dimension given by the product of the pixel pitch and the number
of SLM pixels. The propagation dynamics of the CASE | Airy beam can now be written
as follows using the Fresnel diffraction form of Eq. (2.4):

¢(x,2) = zn[;—;kjexp(—axgkz)
@2.7)

0

(3,3 2 -3\ L 2 .
XeXIO[g(Xok —3a’xk —ia )—Iik ]exp(ﬂkx)dk,

where the value of a is chosen to be 0.1 throughout this chapter. Calculation results of Eq.

(2.7) are plotted in Fig. 2.1(a). In this case, the number of side lobes in the initial plane

T 17
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(z=0 cm) is decreased because the Gaussian distribution of the input beam cannot fully
retain the high spatial frequency components. It is known that side lobes of Airy beams
are originated form high spatial frequency components. As a result, unlike the ideal case
shown in Fig. 2.1(d), the Airy beam is diffracted or spreads out due to insufficient power
flows from the side lobes.

Second, under the same conditions, a beam with a uniform intensity distribution of
finite extent (or a truncated plane wave as an input beam; CASE Il) is adopted. In this

case, it has
Af k®
&, (k) =T1| —Kk |exp| i— |. 2.8
=0 2 oo i% | 9

From the property of the Fourier transform, the (inverse) Fourier transform of Eq. (2.8) is

a convolution of the sinc function and the Airy function as follows:

. I X
X,z=0)=sinc| —x [*Ai| — |, 2.9
#,( ) [ Y J on] (2.9)
where * denotes the convolution. The propagation dynamics of the CASE Il Airy beam

can be expressed as:

2 af _(xok)3 L7, :
¢2(x,z)=:|;H(2—ﬂ|k)exp[| s —|mk jexp(ﬂkx)dk, (2.10)

and its calculation results are presented in Fig. 2.1(b). In Fig. 2.1(b), more side lobes at
the initial plane compared with the CASE I are observed. Figure 2.1(b) also shows that
the incidence of a truncated plane wave and its Fourier transform after the cubic phase
modulation can generate a finite power Airy beam which takes up a bending trajectory
with the acceleration toward the +x direction. What is interesting is that this finite Airy
beam can preserve its Airy profile much farther than that generated by the Gaussian input

beam. This is because more high-frequency components are retained in Eq. (2.8) than in
Eg. (2.6). That is, the sinc(;—ij term resulting in imposing finite power in Eq. (2.9) is

keeping more side lobes of Airy beams than exponentially decaying term exp(as).
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Lastly, in the CASE Ill, | use a beam with an inverse Gaussian intensity distribution

as an input beam. I have

¢3(x,z):zn(j—;kj(l—exp(—axjkz))
_ (2.11)
xexp[é(xgw ~3alxk —ia®) - iz—iokzjexp(ﬂkx)dk.
In this case, whose results are shown in Fig. 2.1(c), the main lobe is suppressed at the
initial plane because the inverse Gaussian distribution can retain only high spatial
frequency components. However, as can be found in Fig. 2.1(c), the resultant finite
power beam generates the main lobe after some propagation distance and is accelerated
along the +x direction. That is, Eq. (2.11) also describes a finite power Airy beam.
Actually, this case can be taken as an extreme example proving the self-healing property
[4, 5]: side lobes without the main lobe can regenerate the Airy profile during the

propagation.
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Figure 2.2 Cross-correlations of finite power Airy beams with the ideal Airy

beam along the propagation direction: C,(z).

To compare the propagation characteristics of these three finite power Airy beams,

their cross-correlations with the ideal Airy beam are calculated along the propagation
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Figure 2.3 Cross-correlation between profiles at the initial plane and at a
specific position z calculated in the direction of the propagation (z-direction):
Cx(z). A cyan dotted line denotes ideal Airy beams. All values are

normalized by the cross-correlation value at the initial plane.

direction z. In Fig. 2.2, the variation of the maximum value of this cross-correlation is

plotted, i.e., C1(z) defined by

C,(2) = maxmqﬁg @ [sns(x+ 2| drj. (2.12)

Green dashed, blue solid and red dash-dotted lines correspond to the CASE 1, Il and 1II,
respectively. Although the cross-correlation values in Fig. 2.2 cannot be normalized due
to infinite power of ideal Airy beams, it can be known that the cross-correlation becomes
maximum at the initial plane and gradually decreases for the CASE | and Il. This means
that the finite power Airy beams spread out or are diffracted so that they lose their initial
Airy shape during propagation. However, it shows that the cross-correlation value of the
CASE 11 Airy beam is always higher than that of the CASE | at every z. This means that
the CASE Il Airy beam can preserve its original shape much farther than the CASE | Airy

beam. In the CASE IIl, however, the cross-correlation increases after some propagation
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distance. This indicates the recovery process of the Airy profile: the regeneration of the
main lobe and its acceleration along the transverse coordinate.

In addition, by comparing the cross-correlations of each beam at a specific position
of z with their initial profiles, we can know how far they maintain their initial Airy
distributions. The variation of the maximum value of this cross-correlation, i.e., C,(2)
defined by

C,(2)= maxmza*o,l,z,a(r:z =0>\2|m,1,2,3(x+r)|2drj (2.13)

is plotted in Fig. 2.3. Naturally, the maximum cross-correlation values of ideal Airy
beams (cyan dotted line) are constant from z= 0 cm to z=20 cm. For all other cases, they
are gradually losing their initial Airy distributions during propagations. Over 2.6 cm, the
CASE 11 is more slowly decreased than the CASE I. That is, a uniform distribution input
case maintains their initial Airy distributions during propagations than those of a
Gaussian distribution input case. The CASE 111 shows a nearly flat line from 5 cm. From
the results of the CASE Il in Figs. 2.2 and 2.3, | assume that the self-healing is observed
after 5 cm.

Meanwhile, let us consider truncation effects on the non-diffraction property of Airy
beams. For example, the more SLM pixels are increased, the more high spatial frequency
components are passed. As a result, side lobes of Airy beams are increased and more
power is supplied. In case of twice as much pixels, propagation dynamics of finite power
Airy beams generated by a Gaussian beam, a uniform beam of finite extent and an
inverse Gaussian beam is shown in Figs. 2.4(a), 2.4(b) and 2.4(c), respectively. Although
a frequency window is wider, propagation dynamics of the CASE | is much the same
comparing Figs. 2.1(a) and 2.4(a). However, the CASE Il shows more similar
propagation with ideal Airy beams comparing Figs. 2.1(b), 2,1(d) and 2.4(b). In the
CASE Il in Fig. 2.4(c), the focused-bending beam is more apparent than Fig. 2.1(c). In
addition, the self-healing property is improved due to more side lobes. On the contrary,
in case of half as much pixels, propagation dynamics of each finite power Airy beams
CASE is shown in Figs. 2.4(d), 2.4(e) and 2.4(f), respectively. The CASE | and CASE Il
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show the similar propagation dynamics and more diffraction takes place in both CASES.
As a result, a distance with keeping Airy profile is shorter than that of previous CASES.
Also, the CASE Il cannot reconstruct the finite power Airy beams due to lack of power
from the side lobes. Therefore, to generate the finite power Airy beams under limiting
experimental conditions, using a uniform beam of finite extent is suitable not only to
closely generate the ideal Airy beams but also to preserve its Airy profile during

propagations.
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Figure 2.4 Propagation dynamics of finite power Airy beams in case of
twice as much pixels generated by (a) a Gaussian beam, (b) a uniform beam
of finite extent and (c) an inverse Gaussian beam. Propagation dynamics of
finite power Airy beams in case of a half as much pixels generated by (d) a
Gaussian beam, (e) a uniform beam of finite extent and (f) an inverse

Gaussian beam.
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2.1.3. (2+1)D finite power Airy beams

Now, let us consider (2+1)D finite power Airy beams. In this case, it is assumed that the
wavelength of an incident beam /1 is 633 nm, X, is 50 um, the focal length of the lens f is
50 cm and the SLM has 1080 x 1080 pixels with an 8 um pixel pitch. Equations (2.7),
(2.10) and (2.11) are modified as

4(xy.2)=T] f ( Jexp(—aﬂafki)

=Xy -0

(2.14)
xexp(lg(;(gkj ~3a’yk, - ia3)— iiki ]exp(+ikl;()dkl,
0

X=Xy —0 I

¢ (xy.2)=[] IH( fl Jexp{i@izi Jexp(ﬂk 2)dk,, (2.15)

and

#,(xv.2) =[] jn[ T j(l exp(-azsk?))

2=XY —o0

_ (2.16)
xexp(é(;ﬁfkj 322k, —ia’) - iz—f(okj]exp(ﬂklg)dkl,

which correspond to the CASE I, Il and 111 Airy beams, respectively, where I, and |, are

the horizontal and vertical lengths of the SLM and yj is an arbitrary scaling factor along

the y coordinate.

Calculated 2D intensity distributions of (2+1)D finite power Airy beams are shown
in Figs. 2.5(a) and 2.5(b) (¢#1; CASE 1), Figs. 2.5(c) and 2.5(d) (¢,; CASE II) and Figs.
2.5(e) and 2.5(f) (¢s; CASE I111). Figures 2.5(a), 2.5(c), 2.5(¢) and 2.5(b), 2.5(d), 2.5(f) are
the results at z=0 cm and z=15 cm, respectively. Comparing Figs. 2.5(a), 2.5(c) and
2.5(e), more side lobes in Fig. 2.5(c) than in Fig. 2.5(a), while the main lobe disappears
in Fig. 2.5(e), can be found. After some propagation (z=15 cm), the finite power Airy
beam generated by a Gaussian beam (CASE 1) does not preserve its initial Airy profile

anymore. On the other hand, the finite power Airy beam generated by a truncated plane

2



wave (or a uniform beam of finite extent; CASE 1) maintains its initial profile although
the beam is broadened due to the diffraction. Therefore, the uniform beam of the CASE 11
is more advantageous than the Gaussian beam of the CASE I. In the case of the inverse
Gaussian beam (CASE I1I), although the main lobe is missing at the initial plane (Fig.
2.5(e)), side lobes recover the main lobe after some propagations as can be found in Fig.

2.5(F).
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Figure 2.5 Intensity distributions of (2+1)D finite power Airy beams. CASE
I: (a) at z=0 cm and (b) z=15 cm. CASE II: (c) at z=0 cm and (d) z=15 cm.
CASE IlI: (e) at z=0 cm and (f) z=15 cm.
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2.2. Experiments of finite power Airy beams

The generation of the finite power Airy beams to three CASES is experimentally
demonstrated. The conventional method to generate finite power Airy beams used one
SLM wrapping phases to an incident Gaussian beam. The two SLMs function not only as
phase wrapping device to incident beams but also as modulator of initial fields such as a
conventional Gaussian distribution (CASE 1), a uniform distribution of finite extent
(CASE 1) and an inverse Gaussian distribution (CASE I1lI). This work will promise to

know roles of initial field distributions.

(a) M1 H 633 nm
H He-Ne Laser
M2 waveplate
Collimation
- optics
P1
SLM1
P2
SLM 2 P3
CCD
f g f
Begm L1 z=0cm
splitter
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Figure 2.6 (a) Schematic diagram. M1 is a mirror, P1, P2 and P3 are
polarizers and L1 is a lens with f=50 cm. (b) Experimental setup for the

generation of finite power Airy beams.

2.2.1. Experimental setup

Figures 2.6(a) and 2.6(b) show the schematic diagram and the experimental setup for the
generation of finite power Airy beams, respectively. A laser beam with a 633 nm
wavelength is expanded to form a collimated plane wave. To change this input wave into
the Gaussian, inverse Gaussian or uniform beam of finite extent, the SLM1 (Mitsubishi
Electric XL9U LCD projector with 1024 x 768 pixels of 11.9 um pixel pitch) is placed
between two orthogonal linear polarizers (P1 and P2) [53]. These polarizers allow the
SLML1 to perform intensity modulations. Corresponding phase masks are shown in Figs.
2.7(a), 2.6(b) and 2.6(c), respectively. x- and y-resolutions of the SLM1 are not a square,
only 768 x 768 pixels are used to modulate input beams. As a result, the rest of 768 x
768 pixels are filled with white. After passing through the SLM1, the beams have a
Gaussian distribution (CASE I, Fig 2.7(d)), a uniform distribution of finite extent (CASE
Il, Fig. 2.7(e)) or an inverse Gaussian distribution (CASE I, Fig 2.7(f)).
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Figure 2.7 Phase mask for modulating initial beams: (a) Gaussian
distribution, (b) uniform distribution of finite extent and (c) inverse
Gaussian distribution. Measured intensity distribution by the CCD after
passing through the SLM1: (d) Gaussian distribution, (g) uniform

distribution of finite extent and (f) inverse Gaussian distribution.

By passing these beams through the optical Fourier transform (2-f) system, finite
power Airy beams at the initial plane (z=0 cm) can be obtained. The optical Fourier
transform system consists of a lens (L1; =50 cm) and a phase-only SLM2 (Holoeye
Pluto with 1920 x 1080 pixels of 8 um pixel pitch) which is placed in front of the lens
and imposes cubic (k%) phase. The same computer-generated cubic phase mask (Fig. 2.8)
is used to all CASES because the higher-order phase terms can be ignored due to the
relatively small constant a. Similarly, x- and y-resolutions of SLM2 are not a square, only
1080 x 1080 pixels are used to modulate beams. As a result, the rest of 1080 x 1080
pixels are filled with black. To obtain clear Airy beam images, a blazed grating is
overwrapped in the cubic phase mask [54]. As a result, when an initial beam with a

normal incidence is reflected by the SLM2, the 1* order beam is propagating along an
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optical axis and the 0™ order beam is propagating with an oblique angle. Another

polarizer P3 is used to attenuate the output beam so that a twin image can be eliminated.

1080

540

Pixel number

0 960 1920
Pixel number
Figure 2.8 Phase mask for launching (2+1)D Airy beams: X,=50 um, y,=50
um and a=0.1. The cubic phase is wrapped without the higher-order phase

terms.

2.2.2. Experimental results

To obtain exact experimental results, perfect alignment must be preceded before
observing acceleration of Airy beams. Especially, if the beam reflected from the SLM2
does not propagate along the optical axis, it is difficult to observe acceleration of Airy
beams. A target image mask which is provided by Holoeye to adjust alignment between
the SLM2 and the charge-coupled device (CCD) is used. At first, the vivid target image
z=0 cm (Fourier plane) shown in Fig. 2.9(a) is captured. Then, the cross pattern of the
target image is clearly seen without the 0™ order diffraction due to a blazed grating with a
proper period. Next, moving the CCD from z=0 cm to z=15 cm, the target image, which
is shown in Fig. 2.9(b) is captured again. It shows the blurring cross pattern but the
center of the image maintains the initial position, qualitatively. Therefore, throughout

this dissertation, the errors from misalignment were neglected.
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Figure 2.9 The cross patterns of the target image at (a) z=0 cm and (b) z=15

cm.

The images of the finite power Airy beams were captured by the CCD at z=0 cm
and z=15 cm and shown in Figs. 2.10(a) - 2.10(f). All images are obtained under the
same conditions that no adjustments in intensities were made. From these results, it can
be concluded that the CASE Il Airy beam [Figs. 2.10(c) and 2.10(d)] retains the Airy
profile much longer than the CASE | Airy beam [Figs. 2.10(a) and 2.10(b)]. Meanwhile,
the CASE |1l Airy beam recovers the main lobe at z=15 cm as shown in Figs. 2.10(e) and
2.10(f). These experimental results coincide well with the calculation results shown in
Figs. 2.5(a) - 2.5(1).
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Figure 2.10 Captured CCD images of finite power Airy beams. CASE I: (a)
at z=0 cm and (b) z=15 cm. CASE II: (c) at z=0 cm and (d) z=15 cm. CASE
I1: (e) at z=0 cm and (f) z=15 cm.
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Chapter 3.

Generation of Airy beams
by holographic method

In this chapter, the novel Airy beam generation method based on holography is present.
The holographic finite power Airy beams can be obtained by recording the interference
patterns between the Airy beams and the reference beam on a photopolymer and
reconstruction under illuminations of the reference beam. This method has several
advantages as the following. After they are recorded in the photopolymer, a bulky optical
setup such as the SLM and lenses is unnecessary to generate Airy beams. That is, simple
generation illuminating the reference beam is possible. Also, by the use of the phase-
conjugated reference beam to reconstruct the recorded Airy beams, the Airy beams with
the reversed propagation direction keeping its original amplitudes and phases and more
bent symmetric Airy beam can be generated. Since this method is possible to realize
angle multiplexing of the two Airy beams accelerating in opposite directions determined
by the angle of the reference beams, it is expected to utilize to be used as a practical

approach in the applications such as particle manipulation and optical signal processing.

3.1. Holographic generation of Airy beams

So far it is impossible to implement the optical Airy beams because ideal Airy beams
impose infinite power. However, in 2007, Siviloglou and Christodoulides, announced
that finite energy Airy beams can be achieved by tailoring side lobes with an aperture

function and they have similar propagating characteristics by comparison with the ideal
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Airy beams [2]. Based on this report, the first optical observation of the Airy beams was
realized by the optical Fourier transform system which is adding the cubic phase to a
broad Gaussian beam using the spatial light modulator (SLM) [3]. On the same principle,
observations of Airy beams in wide area such as nonlinear generation [29-31], curved
plasma channel generation [32] and electron beam generation [33] were reported.

The way to generate Airy beams which directly assigns initial launching conditions
was suggested. By matching initial intensity and phase distributions of Airy beams and
that of surface plasmon polaritons (SPPs) after passing through the metal slits or gratings,
(1+1)D Airy beams can be launched: Airy plasmon which has longer propagation length
than other surface waves [21-27]. Also, through the grating on the metal surface,
generated Airy beams in free space can be coupled to Airy plasmons which have
dynamically controlled trajectories by controlling the position of the objective lens or the
phase mask on the SLM [25].

In this chapter, a novel Airy beam generation technique based on holography is
presented [49]. At first, using the optical Fourier transform system, Airy beam can be
generated in free space. Second, the interference patterns between the generated Airy
beams (signal beam) and reference beam are recorded on a photopolymer. Finally, when
the photopolymer is exposed by the reference beam with blocking the signal beam,
recorded Airy beams are reconstructed from the plane of the photopolymer. It is shown
that generated Airy beams maintain non-diffracted nature with a bending trajectory after
holographic recording and reconstruction procedures.

In case of the (2+1)D finite power Airy beams at the origin (z=0 cm), Eq. (2.5) can

#(X,y,z=0cm) = Ai [iJ exp[aij Ai [lJexp[alj, (3.1)
XO XO yO yO

where X, and Yy, are arbitrary scaling factors of x- and y-coordinates, respectively.

be expanded to

Throughout this chapter, parameters for the finite power Airy beams, X, Yo and a are set
to 50 um, 50 pm and 0.1, respectively and operating wavelength is 633 nm. The intensity

distributions of the (2+1)D finite power Airy beams at z=0 cm, z=5 cm and z=15 cm in
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Figs. 3.1(a), 3.1(b) and 3.1(c), respectively, are plotted.

0 05 1 = . ¢ 05 1 = . 0 05
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Figure 3.1 Intensity distributions of the (2+1)D finite power Airy beams (a)

at z=0 cm, (b) z=5 cmand (c) z=15 cm.

3.1.1. Holographic recording of Airy beams

Holography is a technique which can record and reconstruct both the amplitude and the
phase of the optical wave [55]. It consists of two steps: recording and reconstruction. The

mathematical representation for the (2+1)D finite power Airy beam ¢ is given by

(7 2z
#(X,y,2) = AI(———Ha—J
zl=_><[,y X AKPxy o kys (32)

3

2
xexp a4 _a )g - +ia’ z - +i lzg—i 23 =,
Xo 2k 7, 2k x5 2ky, 12Ky,

where k=2zn/ly. The optical intensity | of the (2+1)D finite power Airy beams is obtained
by taking the square modulus of Eq. (3.2):

S X 2 .z X x?
I(x,y,z) =Ai*| =—=————+ia— |exp| 2a| — ————
(x.y.2) [XO 4K?x; kxjj p{ (xo 2k2x§D

2 2
xAiz[l_%Haizjexp Za(i_ y j |
Yo 4Ky, Ky, Yo 2Ky,

Here, the transmittance t is proportional to the intensity distributions. That is, the

(3.3)

transmittance is defined by
t(x,y)=hi(xy), (3.4)

where h is a constant. Since the photopolymer is placed at z=0 cm, the transmittance t, of

3



the (2+1)D finite power Airy beams is expressed by

t (X, Y) =Ai2[i]exp(Zaiinz(ljexp(Zalj. (3.5)
XO XO yO yO

A uniform plane wave as a reference beam U, with an incident angle 6 has a complex

amplitude, which is given by
U, (x,y) =exp(-ikxsin 6)exp(— jk (xsin @ + zcos)). (3.6)

In addition, interference patterns t between an object beam (¢; Eq. (3.2)) and a reference
beam (U,; Eqg. (3.6)) are recorded on the photopolymer:

toc (¢+U, ) = [ +]U. [+, +90;
=t +1, +gU +¢'U, (3.7)
=t, +1, +2/t,I, cos[arg(U, ) —arg(¢)],

where 1, is the intensity of the reference beam at z= 0 cm.

M1 ” 633 nm
H He-Ne Laser
Objective 212 waveplate
—[— Pinhole
L1
M2
BS1
Reference
SLM wave
Polarizer Signal . Photopolymer
wave 60
BS2 f L2 f z:d cm

Figure 3.2 Schematic diagrams of recording for generating the (2+1)D

holographic Airy beams. (M: mirror, L: lens, BS: beam splitter)
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Figure 3.2 is a schematic diagram of recording procedures. After passing through
the beam splitter 1 (BS1), a plane wave from the He-Ne laser with 633 nm wavelength is
divided into the signal arm and the reference arm. In the signal arm, a 2-f system consists
of the SLM (Holoeye Pluto, reflection type, 1920 x 1080 pixels, 8 um pixel pitch) which
imposes the computer-generated cubic phase mask and the lens 2 (L2) with the focal
length f (=50 cm). Two phase masks are made for launching the (2+1)D finite power Airy
beams bent in different directions which are +x and +y directions with the phase mask 1
(X0=50 pm and y,=50 um) and -x and -y directions with the phase mask 2 (X,=-50 um and
Yo=-50 um) as shown in Figs. 3.3(a) and 3.3(b), respectively. The L2 with a distance f
apart from the SLM (object plane) is placed to perform the optical Fourier transform. A
A2 wave plate and a linear polarizer are used to adjust states of the polarization and

eliminate twin images, respectively.

1080

540

Pixel number
Pixel number

0 960 1920 0 960 1920
Pixel number Pixel number

Figure 3.3 Phase mask for launching (2+1)D Airy beams: (a) X,=50 pm,
Yo=50 um and a=0.1. (b) (a) X,=-50 pum, yo,=-50 um and a=0.1. The cubic

phase is wrapped without the higher-order phase terms.

After the signal beam is reflected in the SLM and travels f after passing through the
L2, the finite power Airy beams at the Fourier plane (z=0 cm) can be obtained,
successively. Before the recording procedure, the charge-coupled device (CCD) is
located to confirm the optical reconstruction of the finite Airy beams. The resultant
captured images of the (2+1)D finite power Airy beams at z=0 cm, z=5 cm and z=15 cm
are shown in Figs. 3.4(a), 3.4(b) and 3.4(c), respectively. After that, interference patterns
between the signal beam (Airy beam) and the reference beam (plane wave) are recorded

on the photopolymer. In this procedure, the reference beam has an incident angle of 60°



with 32 mJ/cm? energy density and exposure time is 40 seconds. Throughout this chapter,
incident angles from 30° to 70° have similar diffraction efficiency of near 50 %. The
incident angle of the reference beam 60° is determined by achieving the maximum
diffraction efficiency of 51 %. A holographic film on a slide glass of 1.518 refractive
index is used as a holographic photopolymer because it is easy to handle and has the
simple post exposure processing. It consists of two layers which are a photopolymer
layer with 14 ~ 18 um thickness and an optically clear plastic substrate with 175 um
thickness. The refractive index of the used photopolymer is 1.485 before recording at 633
nm wavelength of incident light and has index change as much as 0.03. The substrate
index is 1.57 at 589 nm wavelength of incident light. For curing, the recorded sample is
exposed by the UV-lamp with 110 mW/cm® power density during 3 minutes and the

distance between the UV-lamp and the sample is 30 cm.

Figure 3.4 Captured CCD images of the (2+1)D finite power Airy beams (a)

at z=0 cm, (b) z=5 cm and (c) z=15 cm. Camera settings are the same.

3.1.2. Holographic reconstruction of Airy beams

To reconstruct the Airy beams (object beam) from the recorded hologram, the reference
wave U, with the same incident angle @ illuminates the recorded sample. The resultant
reconstructed wave ¢, is expressed as below:

¢, =tU, ctU, +1U, +4l +¢ U.[. (3.8)

In Eq. (3.8), the physical meaning of the third term ¢l is the (2+1)D finite power Airy
beams multiplied by the reference beam intensity I,. That is, this term represents Airy

beams which can be reconstructed by the holographic method.
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Figure 3.5 Schematic diagrams of reconstruction for generating the (2+1)D

holographic Airy beams. (M: mirror, L: lens, BS: beam splitter)

The schematic diagram of the reconstruction procedure is shown in Fig. 3.5. While
the signal arm is blocked, the reference beam illuminates the photopolymer. As a result,
the (2+1)D finite power Airy beams are generated from the photopolymer without the
SLM and the Fourier lens. The intensity distributions of the reconstructed beam are
captured at z=5 cm and z=15 cm as shown in Figs. 3.6(a) and 3.6(b), respectively. Since
the CCD camera cannot approach in front of the photopolymer surface, the intensity
distribution of the reconstructed beam at z=0 cm cannot be presented. These results show
slight differences in comparison with simulation results and CCD images generated by
the SLM. This is resulted from scattering in non-uniform grating originated from the
non-uniform shrinkage according to thickness of the photopolymer in curing process [56]
and at bubbles between the film and the slide glass. However, reconstructed Airy beams
show similar intensity distributions at z=5 cm which are Figs. 3.1(b), 3.4(b) and 3.6(a). In
like manner, after propagating 15 cm, they still coincide well as shown in Figs. 3.1(c),
3.4(c) and 3.6(b). Interestingly, it is known that the reconstructed Airy beams do not lose

the characteristics of the Airy beams such as acceleration and non-diffraction during
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holographic recording and reconstruction procedures.

Figure 3.6 Captured CCD images of the reconstructed Airy beams (a) at z=5

cmand (b) z=15 cm.

3.1.3. Self-healing of Airy beams

In the reconstruction procedure of holography, if the incident reference beam does not
fully cover the entire recorded region of hologram, loss of original information is
inevitable because angular frequency components of original information are distributed
in the entire region. In case of Airy beams, however, it can be inferred that recorded Airy
beams can be perfectly reconstructed during propagation under the same conditions. This
is originated from the unique self-healing feature of Airy beams. To confirm this property
in holography, a part of the reference beam is partially blocked by an opaque obstacle
placed between the M2 and the photopolymer instead of shifting incident x- and y-
positions of the reference beam to achieve partial illumination to the recorded region.
Especially, by shifting the positions of the obstacle, recorded Airy beams with the
suppressed main lobe can be obtained at z=5 c¢cm as shown in Fig. 3.7(a). After
propagating 10 cm and 15 cm, reconstructed Airy beams recover their original
distribution shown in Figs. 3.7(b) and 3.7(c). It is known that the perfect reconstruction
of original information is possible despite imperfect incidence of the reference beam.
That is, robust generation is possible. Moreover, after Airy beams are reconstructed, they

show the self-healing property. When the obstacle blocks the Airy beams between the
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photopolymer and the z=5 cm plane, no main lobe can be seen in Fig. 3.7(d). After
propagating 10 cm and 15 cm, reconstruction of the veiled region takes place as shown in

Figs. 3.7(e) and 3.7(f), respectively.

(@ z=10cm | (c) z=15cm

Self-healing

No main lobe @

z=15cm

QSelf-healing
Q No main lobe

e

1 mm

Figure 3.7 Self-healing property for partial illumination (a) at z=5 cm, (b)
z=10 cm and (c) at z=15 cm. Self-healing property of reconstructed Airy

beams (d) at z=5 cm, (¢) z=10 cm and (f) at z=15 cm.

3.1.4. Ballistic trajectory of conjugated Airy beams

In Eq. (2.4), the exponentially decaying factor a imposes finite power to Airy beams. Let
us suppose that a is a complex number a;+a,i, where a, determines the initial launch
angle of Airy beams [57]. In this case, the (1+1)D finite power Airy beam ¢ is expressed
as

#(s,£=0)=Ai(s)exp(a,s)exp(ia,s). (3.9)

By solving Eg. (2.1) with the initial condition Eq. (3.9), the (1+1)D finite power Airy

beam solution ¢ can be obtained as follows [3]:
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¢(s,§)—AI[S [2) +Ia§]eXp£as 5 +|( ot ot ZD (3.10)

Here, Eq. (3.10) can be rewritten using a=a;+aji:

¢(3,§)=Ai[5—[§j —a2§+ia1§Jexp(a15— 8 _amaz§J

2
><exp[i[—§—3+(a12 —a’+ s)§+ a,s —az—ng.

(3.11)

12 2

Here, different launch angles are considered as shown in Figs. 3.8 which shows the
propagation dynamics of the (1+1)D Airy beams in Eqg. (3.11) with a=0.1, 0.1+1i and
0.1-1i as a function of z from -25 cm to 25 cm. In case of a;=0.1 and a,=0, the ballistic
trajectory of Airy beams draws a symmetrically parabolic curve to the z=0 cm axis
shown in Fig. 3.8(a). In addition, when a;=0.1 and a,=1i, the trajectory has the positive
launch angle as shown in Fig. 3.8(b). That is, it shows more bending in z>0 cm and less
bending in z<0 cm motions than that of the case with a;=0.1 and a,=0. On the contrary to
this, when a;=0.1 and a,=-11, the trajectory has the negative launch angle as shown in Fig.
3.8(c). Therefore, it is revealed that the specific position of deflection can be determined

by the launch angle parameter a,.

20 {€)

z (cm)

X (mm) X (mm) ) X (mm)

Figure 3.8 Propagation dynamics of the finite power Airy beams when

values of a are (a) 0.1, (b) 0.1+1i and (c) 0.1-1i, respectively.

In case of the (2+1)D finite power Airy beam in the initial plane (z=0 cm), Eq. (3.9)

can be expanded as following:
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#(x,y,z=0cm) = Ai [ijexp(a1 i}exp(ia2 LJ
XO XO XO

[y y oy
xAi| = |exp| a, = exp(la —j
(yOJ (al yoJ “ Y,

In like manner, three different cases a of the (2+1)D finite power Airy beams, which are

(3.12)

0.1, 0.1+1i and 0.1-1i, are investigated. When a=0.1 without the complex term, intensity
distributions of the (2+1)D finite power Airy beams at z=0 cm, z=15 cm and z=-15 cm
are presented in Figs. 3.9(a), 3.9(b) and 3.9(c), respectively. For the same propagation
distances of 15 cm and -15 cm in the z-direction, Airy beams have the same intensity
distributions as depicted in Figs. 3.9(b) and 3.9(c), respectively. The maximum intensity
points of the main lobe are moved from (-0.45 um, -0.45 pum) to (407 um, 407 um)
during 15 cm propagation. In case of the positive initial launch angle with a=0.1+1i,
intensity distributions at z=0 cm, z=15 cm and z=-15 cm are shown in Figs. 3.9(d), 3.9(e)
and 3.9(f), respectively. In this case, propagations in the +z-direction and the -z-direction
have different deflection extents. While Airy beams are propagating 0 cm to 15 cm in the
z-direction, the maximum intensity points are moved from (-0.45 um, -0.45 um) to (709
um, 709 um). In addition, while Airy beams are propagating -15 cm to 0 cm in the z-
direction, the maximum intensity points are moved from (0.95 um, 0.95 pum) to (-0.45
um, -0.45 um). Finally, in case of the negative initial launch angle with a=0.1-1i,
intensity distributions at z=0 cm, z=15 cm and z=-15 cm are depicted in Figs. 3.9(g),
3.9(h) and 3.9(i), respectively. Here, intensity distributions at z=15 cm and z=-15 cm are
the same as that of z=-15 cm and z=15 cm with the a=0.1+1i case, respectively. That is,
Airy beams are more deflected in z<0 cm and less deflected in z>0 cm. Through all cases,
the same intensity distributions are seen in Figs. 3.9(a), 3.9(d) and 3.9(g).
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Figure 3.9 Intensity distributions of the (2+1)D finite power Airy beams

with three cases of a: (1) 0.1 at (a) z=0 cm, (b) z=15 cm and (c) z=-15 cm. (2)
0.1+1i at (d) z=0 cm, (e) z=15 cm and (f) z=-15 cm. (3) 0.1-1i at (g) z=0 cm,

(h) z=15 cm and (i) z=-15 cm.

The images of the finite power Airy beams with a=0.1 were captured by the CCD
from z=-15 cm to z=15 cm at the interval of 5 cm as shown in Figs. 3.10(a) - 10(g). They
have the similar intensity distributions under the same propagating distance to the +z-
direction or the -z-direction. As a result, the ballistic trajectory is formed during

propagation.
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z=-10cm

Figure 3.10 Captured CCD images of the (2+1)D finite power Airy beams
with a=0.1 from z=-15 cm to z=15 cm at the interval of 5 cm.

In case of a=0.1+1i, the images of the finite power Airy beams were presented from
z=-15 cm to z=15 cm at the interval of 5 cm in Figs. 3.11(a) - 11(g). Due to the positive
initial launch angle, deflection extents in the +z-direction are longer than that in the -z-
direction. Especially, in comparison with Figs. 3.11(d) and 3.11(g), a decided intensity

distribution difference originated from more bent trajectory in the +z-direction is shown.
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Figure 3.11 Captured CCD images of the (2+1)D finite power Airy beams

with a=0.1+1i from z=-15 cm to z=15 cm at the interval of 5 cm.

Finally, when a=0.1-1i, | obtained the CCD images of the finite power Airy beams
with the negative initial launch angle case from z=-15 cm to z=15 cm at the interval of 5
cm as shown in Figs. 3.12(a) - 3.12(g). On the contrary to the positive initial launch
angle case, deflection extents in the -z-direction are longer than that in the +z-direction.
All experimental results coincide well with the calculation results shown in Figs. 3.9(a) -
3.9(i).
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Figure 3.12 Captured CCD images of the (2+1)D finite power Airy beams

with a=0.1-1i from z=-15 cm to z=15 cm at the interval of 5 cm.

In the reconstruction procedure, the object beam can also be reconstructed by
illuminating the conjugated reference beam U, . In this case, resultant reconstructed wave

¢, is expressed as below:

¢ =t0; oot U+ 10+ gul[ g0, (3.13)

In Eq. (3.13), the fourth term ¢'l, represents the (2+1)D finite power Airy beams
multiplied by the reference beam intensity I, propagating in the -z-direction. Thus, the
phase-conjugated reference beam to reconstruct the conjugated Airy beams which have
opposite power flows to the signal Airy beams is considered [58]. When a=0.1+1i, the
ballistic trajectory of the reconstructed Airy beams is interesting. From Eg. (3.13),

reconstructed Airy beams by the phase-conjugated reference beam can be regarded as the
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conjugated Airy beams which mean the Airy beams with a=0.1-1i propagating in the -z-
direction. As a result, two Airy beams with the same trajectories and the reversed
propagation directions each other can be obtained simultaneously by illuminating the
reference beam and the phase-conjugated reference beam. That is, more bent symmetric

Airy beams shown in Fig. 3.13 can be generated.

-1 -0.5 0 0.5 1
X (mm)

Figure 3.13 Propagation dynamic of more bent symmetric Airy beams.

The schematic diagram of generating the phase-conjugated reference beam is
illustrated in Fig 3.14. Suppose that interference patterns between the (2+1)D finite
power Airy beams with the initial launch angle of a=0.1+1i and the reference beam with
the incident angle of 60° are recorded on the photopolymer placed at z=0 cm. The shifted
cubic phase mask (Fig. 3.15) of a=0.1+1i and Xo=yo=50 pwm is used to generate the
(2+1)D Airy beams with initial launch angle. While the signal Airy beams are being
blocked, the reference beam is illuminating the photopolymer. As a result, the more bent
finite power Airy beams propagating in the +z-direction are obtained at z=5 cm, z=10 cm
and z=15 cm, which are shown in Figs. 3.16(a), 3.16(b) and 3.16(c), respectively. Blue

line represents the position of the main lobe at z=5 cm.
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Figure 3.14 Schematic diagrams of reconstruction procedure with

conjugated reference beam.

To reconstruct the conjugated Airy beam, the phase-conjugated reference beam
illuminates the back side of the photopolymer while both the reference beam and the
signal Airy beams are being blocked. In this case, the conjugated Airy beam can be
reconstructed to the -z-direction. Since Airy beams propagating in the -z-direction cannot
be generated by the typical generation method using the SLM, the holographic
generation method is advantageous to apply to variety of experimental conditions. The
CCD camera is placed between L2 and the photopolymer to capture the images of the
reconstructed wave. The CCD images of Airy beams at z=-5 cm, z=-10 cm and z=-15 cm
are captured and shown in Figs. 3.16(d), 3.16(e) and 3.16(f), respectively. Comparing
Figs. 3.16(a) and 3.16(d), there are misalignments among the positions of the initial main
lobes. This is originated from the position of the CCD camera. However, they show the
approximately same extent of ballistic deflection from each initial position. Therefore,

the phase-conjugated reference beam reconstructs the recorded field which has the
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reversed propagation direction, keeping its original amplitudes and phases. As a result,

more bent symmetric Airy beams are realized experimentally.
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Figure 3.15 Phase mask for launching (2+1)D Airy beams with the initial

launch angle: xo=50 um, y,=50 um and a=0.1+1i.
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Figure 3.16 Captured CCD images of the reconstructed Airy beams with
a=0.1+1i (a) at z=5 cm, (b) z=10 cm and (b) z=15 cm. Captured CCD

images of the conjugated Airy beams (a) at z=-5 cm, (b) z=-10 cm and (b)
z=-15 cm. Blue line represents the position of the main lobe at z=5 cm.
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3.2. Angle multiplexing of Airy beams

In this section, angle multiplexing of two Airy beams determined by the angles of
reference beams for practical uses such as optical signal processing, particle tweezers and
particle clearing is presented. This work consists of three stages. The first procedure of
the first stage is recording the interference patterns of two optical fields which are Airy
beams and a plane wave with an incident angle & on a photopolymer. The second is over-
recording the interference patterns between other Airy beams and a plane wave with an
incident angle -0 on the same photopolymer. During the reconstruction procedure, two
kinds of reference beams which have the incident angles 8 and -6, respectively, are used.

They can be reconstructed both simultaneously and separately.

M1 633 nm
He-Ne Laser

Objective 2 Wa:/eplate

—[— Pinhole

ND filter
M2
BS1

Reference
wave 1

SLM .
BS2 Polarizer Signal 60° Photopolymer

wave

-60°

z=0cm

Reference
wave 2

M3
M4

Figure 3.17 Schematic diagrams of recording of Airy beam multiplexing. (M:

mirror, L: lens, BS: beam splitter)
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3.2.1. Recording of multiple Airy beams

The feasibility of the angle multiplexing of Airy beams based on holography is
investigated. In this case, the recording procedure is conducted in twice. Figure 3.17 is a
schematic diagram of the recording procedure for the angle multiplexing. Each Airy
beam which propagates in different directions of deflection is successively recorded at
the same area on the photopolymer. Both reference beams are incident to the
photopolymer with 60° and -60° incidence angles and 32 mJ/cm? energy density with 40
seconds exposure time. To compensate power difference between reference wave 1 and
reference wave 2, a neutral density (ND) filter is located in the reference arm 1. First, the
(2+1)D finite power Airy beam with X;=50 pm and y;=50 um (phase mask 1; Fig. 3.3(a))
is recorded on the photopolymer while opening the reference wave 1 and blocking the
reference wave 2. Next, the (2+1)D finite power Airy beam with x,=-50 um and y,=-50
um (phase mask 2; Fig. 3.3(b)) is recorded in the same area of the photopolymer while

opening the reference wave 2 and blocking the reference wave 1.
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Figure 3.18 Schematic diagrams of reconstruction of Airy beam

multiplexing.

3.2.2. Reconstruction of multiple Airy beams

To reconstruct recorded Airy beams, an additional barrier to block the Airy beams
between the lens and the photopolymer shown in Fig. 3.18 is used. An experimental
setup is also provided in Fig. 3.19. Two reference beams are incident to the photopolymer
with 60° and -60° angle at the same time. As a result, two Airy beams accelerating in
opposite directions shown in Figs. 3.20(a) and 3.20(b) which are captured at z=5 cm and
z=15 cm by the CCD, respectively, are obtained. In Fig. 3.20(b), dual Airy beams which

have a symmetric intensity pattern and better self-healing property are shown [59].
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Figure 3.19 Experimental setup of Airy beam multiplexing.

Moreover, only the reference beam 1 is blocked and the CCD images are captured at
z=5 cm and z=15 cm as shown in Figs. 3.20(c) and 3.20(d), respectively. In this case,
only one Airy beam with x,=-50 pm and y,=-50 um is generated. That is, each Airy beam
can be individually controlled when one of the reference beams except one is blocked by
a barrier. This can be utilized to on-off switching or routing in optical signal processing
[60]. Also, it is possible to adopt particle manipulation: a portion of particles can be held

or released while the others are being released or held.
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Figure 3.20 Captured CCD images of the reconstructed two Airy beams
accelerating in opposite directions, resulted from angle multiplexing (a) at
z=5 cm and (b) z=15 cm. Reconstructed Airy beams at (c) z=5 cm and (d)

z=15 cm while the reference beam 1 is blocked.
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Chapter 4.

Plasmonic approach
to Airy beam generation
using subwavelength slit array

In this chapter, | present the novel method to launch the finite power Airy beams in free
space using a metallic slit array. To set the initial phase distribution and the intensity
profile of the finite power Airy beams, it is divided into seven sections according to the
seven lobes. In each section, the number of slits and the slit height determine the
intensity and the phase, respectively. The launched beams have the properties of the Airy
beams: diffraction-free, bending and self-regeneration. | expect that this method can be
utilized to generate various beams which have the desired initial phase and intensity
profiles without the use of any complicated optical components and to manipulate

nanoparticles, being adopted in optical tweezing and trapping.

4.1. Design of subwavelength metallic slit array

| propose a new method which can launch the Airy wave packet based on the metallic slit
array. It is widely known that the light manipulation such as beaming and focusing can
be realized by controlling surface plasmon polartons (SPPs) excited at the exit of the
subwavelength slit [61-65]. Especially, a properly designed slit array which plays a role
of a lens can build up the highly directional beam or the focused beam determined by

phase retardations between adjacent slits [61, 62]. From the Huygens' principle,



diffracted light came from each slit end acts as an individual point source and the
interference of the spherical waves makes specific interference patterns. | adopt this
mechanism on the Airy beam generation instead of the complicated generation systems.
The two requisites for the Airy beam generation on the initial intensity profile and the
phase distribution, can be satisfied just by arranging a metallic slit array. The number of
the slits and the slit height can control the intensity and the phase retardation,

respectively.

4.1.1. Metal-insulator-metal plasmonic waveguide

Throughout this chapter, | regard each subwavelength metallic slit as the metal-insulator-
metal (MIM) waveguide. The MIM waveguide is composed of the dielectric core and
surrounding metal claddings [6]. In the MIM waveguide, the SPP modes are strongly
confined at the metal-dielectric interfaces because the tails of the SPP wave cannot
penetrate deep into the surrounding metal claddings. The MIM waveguide can support
two sorts of the SPP modes which are the symmetric mode and the anti-symmetric mode.
Supposing p-polarized light propagates along the z-direction in the MIM waveguide,
only E,, E, and H, components of electromagnetic fields can exist. | describe the
symmetric and anti-symmetric plasmonic modes of the y-component magnetic field Hy in

the MIM waveguide with its width of the insulator part (w) as follows:

H, (x,z;t) =4 B, cosh (kyx)exp[ j( Bz - at)] (—gsxsgj (4.1)

and
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s ot (3

H, (x,z;t) =4 B, sinh(k,x)exp[ j(Bz-ot)] (—gﬁxsg) (4.2)

~A, exp{km (x+%ﬂexp[](ﬁz ~at)] (x < —%)

where £ is the propagation constant in the MIM waveguide. k, and ky; represent

wavenumbers in metal and dielectric, respectively. By momentum conservation relation,
| obtain

B2 =K2 +52k2 =k? + £2k2, (4.3)
where kg is a wavenumber of the incident light in free space. In addition, x- (E,) and z-

(E,) component electric fields of the symmetric and anti-symmetric plasmonic modes are
derived from the following Maxwell's curl equation:

g ot [ A (4.4)
Joeye, oz
and
e ot (] (4.5)
Jogys, | OX

First, E, and E;, of the symmetric plasmonic mode is expressed as below:

2 el o (3]

E, (x,z;t) = p jBlcosh(kdx)exp[j(ﬂz—wt)} [—%st%) (4.6)

WEHE

ot (o3

and
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Ez (X’ Z,t) =

respectively. Next,

below:

E (x,z;t) =

and

E,(x,z;t) =

respectively. From

obtained as below:

and

K, " | y
ngogmj’*e)‘p{"‘m(X—gﬂexp[J(ﬂz—mt)] (szj

K, _ _

s ]Blsmh(kdx)exp[l(ﬂz—a)t)] (—gsmgj (4.7)

e et 13

J (0‘90 gm

E, and E, of the anti-symmetric plasmonic mode is expressed as

B

WEHE,,

p

W& E,

B

WEHE,,

ol oot

(—%s X sgj (4.8)

szsinh(kdx)exp[j(ﬂz ~aot)]

ol et 3

[—g <x< gj (4.9)

ol o) (-3

Egs. (4.1), (4.6) and (4.7), coupling coefficients A; and B; are

Ky ]Bz cosh(k,x)exp[ j(Bz-ot)]

W&,
k m

J a)go gm

A =B cosh(kd %) (4.10)
K, i o w
—Aiz—g—Blslnh kdE . (4.11)
m d
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As a result, the dispersion relation of the symmetric mode of the MIM waveguide is

k—m+k—dtanh[kd gj —0. (4.12)

gm gd

In like manner, from Eqgs. (4.2), (4.8) and (4.9), relations of coupling coefficients A, and

B, are obtained as below:

A, =B, sinh(kd gj (4.13)
and
LS cosh(kd ﬂj. (4.14)
En & 2

As a result, the dispersion relation of the anti-symmetric mode of the MIM waveguide is

k—m+k—dcoth(kd %):o. (4.15)

gm gd

4.1.2. Design of subwavelength metallic slit array

There are two surface plasmon modes in the MIM waveguide which are the symmetric
mode and anti-symmetric mode according to the y-component of the magnetic field
distribution. In this chapter, let me consider only the symmetric mode since the anti-
symmetric mode exhibits the cut-off process as the dielectric core width is decreased
below hundreds of nanometers [66]. From solving the Maxwell's equations where
tangential components of the electric field and magnetic field should be continuous at the
boundaries between different media, the dispersion relation in the TM polarization, Eq.

(4.12) combining with Eq. (4.3) is rewritten as below:

2 _ k2
tanh (ﬂ«/ﬁz “Kle, j:-gd— VA —katn (4.16)
‘ €n \jﬂz_kggd

Throughout this chapter, permittivity values of metal &, and dielectric are -10.1889+0.8311i [68]

and 1, respectively, when operation wavelength is 532 nm. Figures 4.1(a) and (b) show
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relations of the real part and imaginary part of effective index ne as a function of the slit
width w. According to Eq. (4.16) or Fig. 4.1(a), the real part of effective index nes (=4/ko)
of the subwavelength slit continues decreasing as the slit width w is increased. In
addition, the imaginary part of effective index also shows the same tendency from Fig.
4.1(b).
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Figure 4.1 (a) Real part and (b) imaginary part of effective index as a

function of the slit width w in the MIM waveguide.

After passing through the subwavelength metallic slit (MIM waveguide), the SPP
mode undergoes the phase retardation as much as Ag which can be expressed by the

following equation [61]:

Ap= Re(ﬁh)+arg[1—[%} exp(Ziﬂh)], (4.17)

where h is the slit height. In general, the second argument term of Eq. (4.17) is omitted
because it is small compared with the first term Re(f%). Combining Egs. (4.16) and
(4.17), it is known that the slit width w determines the propagation constant g and the
phase retardation Ag is a function of the slit height h with the fixed propagation constant
[. When the silt widh w is fixed as 50 nm, the phase retardation Ag as a function of slit hetght h is

plotted in Fig. 4.2. Here, Ag is given as zero when h is 100 nm.
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Figure 4.2 Phase retardation 4¢ as a function of the slit height h with fixed
w (=50 nm).

4.2. Numerical simulations and results

In this chapter, numerical simulations are conducted by COMSOL Multiphysics, which
is based on the finite elements method (FEM) [67]. Here, the FEM is a numerical
simulation technique used to solving a variety of the scientific and engineering analysis
based on partial differential equations. It is advantageous to apply the arbitrary points or
shapes in an analytic domain. Moreover, it can easily approach to the geometrically
complicated structure, nonlinear medium and anisotropic material.

To perform the precise FEM simulation, dense triangular meshes are used. It is
necessary to balance between overflows of the computer memory and smaller mesh size.
In theses simulations, the waveguide domains around the skin depth of SPP which is
about 50 nm in this case are divided into many triangular FEM meshes. Above all,
meshes of slit boundaries are set to be 50 nm, which is sufficiently dense when compared

with operation wavelength of incident light.
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Figure 4.3 At the input (z=0 um), the cross-section of intensity distributions

(solid green line) and the phase distribution of the finite power Airy beams

are shown in case of a=0.05, x,=1 um and 1=532 nm.

4.2.1. Numerical simulation of Airy beam generation

Throughout this chapter, a=0.05, x¢=1 um and 1=532 nm are assumed. At the input (z=0),
the cross-section of intensity profile and the phase distribution are plotted in Fig. 4.3. The
intensity profile has the highest value at the main lobe spanned between -2.34 pm and 10
um and it is sinusoidally decreased to the side lobes while the phases are periodically
changed between 0° and 180° from the main lobe to the side lobes. Figure 4.4 is a
schematic diagram of the proposed structure for launching the finite power Airy beams.
It consists of a sliver (Ag) slab (e,=-10.1889+0.8311i at 532 nm wavelength) with a
metallic slit array which is filled with air (¢4=1). In case of slit width w (=50 nm) which
is fixed throughout this chapter, the real part of the effective index Re(ne) is calculated
as 1.4856 from the transfer matrix method (TMM). When p-polarized light is incident to
the bottom of the Ag slab, light is coupled into SPPs at each slit. After propagating along
the slits, SPPs are coupled into light again at the slit ends. Diffracted light at each slit end
is regarded as an individual point source which radiates a spherical wave into free space

with the initial phase and transmittance. From the Huygens' principle, the point sources
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started from slit ends make the interference patterns which form the arbitrary shapes in

free space.

plbod ke

4 p-polarized light (1,=532 nm)

X

Figure 4.4 Schematic diagram of the proposed structure for launching the

finite power Airy beams.

Design rule is as follows. The Ag slab is divided into seven sections. Each section is
one-to-one correspondence to each lobe of the finite power Airy beams which is
truncated to seven lobes. The structural parameters of the proposed structure are designed
to achieve the initial conditions of the finite power Airy beams (Fig. 4.3) at 2 um apart
from the bottom of the Ag slab which is a sufficient distance to separate surface plasmon
wave and diffracted spherical wave. To make 180° phase difference between adjacent
sections, the Ag slab has stepped-heights denoted by h; and h,. To fit the shape of the
intensity profile, the number of slits is assumed: the transmittance from the multiple slits
is the linear summation of the single slit transmittance and the more number of the slits is,
the stronger transmittance can be achieved. Since the extraordinary transmission and the
zero transmission do not occur in the designed grating width (w=50 nm) and grating
period (4=150 nm), these assumptions can be acceptable [69,70]. Figure 4.5 shows
transmitted power as a function of the slit height h obtained by the FEM method when p-
polarized light with 532 nm is incident to a single slit with 50 nm width. Here, the
transmittance power after passing through a single slit is calculated by the line integral at
2 um apart from the bottom of the slit. It is periodically increased and decreased while
the slit height h is being increased due to the Fabry-Pérot resonance. If the area of the
main lobe is set to 100, the area ratio among the lobes in Fig. 4.3is 100 : 49 : 34 : 27 :
22 : 18 : 15. In this thesis, h; and h, are selected to 339 nm and 883 nm because they
satisfy not only the 180° phase difference calculated from Eq. (4.17) but also have the
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transmitted power ratio of roughly 10 : 7. When the transmitted power ratio between h;
and h, is 10 : 7, the difference between the area ratio and the intensity ratio determined
by slit number is comparatively less. In this case, the numbers of the metallic slits in each
section are selected to 14 (=hy), 9 (=hy), 5 (=hy), 5 (=hy), 3 (=hy), 3 (=hy) and 2 (=h,),
respectively, which make intensity ratio of 100 : 46 : 36 : 26 : 21 : 15 : 4. The slit array is
located within the center of the full-width at the half-maximum (FWHM) range.

I
yiimierae”
BAVAVAVAVLY;

200 400 600 800 1000
Slit height h (nm)
Figure 4.5 Transmitted power after passing through a single slit with 50 nm

width as a function of slit height h.

Figure 4.6(a) shows the free space propagation of the finite power Airy beams
generated by the proposed structural parameters. Although the slight diffraction patterns
appear around slit exits, it clearly shows the bending trajectory to the +x direction with
non-diffraction. To compare generated Airy beams with calculated Airy beams, the
calculated (1+1)D finite power Airy beams in case of a=0.05, xo=1 um and 4=532 nm are
presented in Fig. 4.6(b). Both cases show very similar propagation behaviors. However,
since the number of the slits should be an integer, it is difficult to set the exact area ratio
by just the number of the slits. For this reason, slight diffraction is an inevitable

consequence, compared with the calculated case.
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Figure 4.6 (a) Intensity distribution of the (1+1)D finite power Airy beams
generated by the metallic slit array with h;=339 nm and h,=883 nm. (b) Free
space propagation of the calculated (1+1)D finite power Airy beams in case
of a=0.05, x,=1 um and A=532 nm.

4.2.2. Self-healing property in Airy beams

If a part of Airy beams is blocked by an opaque obstacle, they can reconstruct their

original shapes during propagation. This phenomenon is originated from constructive
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interferences of plane waves with adjusting phase along the curve trajectory. To check
self-healing property, the propagating path of the main lobe is totally blocked using an
opaque metallic obstacle (size: 2 um X 1 pm) which is positioned 2 um apart from the slit
entrance of the main lobe. As a result, overall intensity is weak but spherical waves
radiated from slits of other lobes regenerate the shape of the finite power Airy beams
shown in Fig. 4.7(a). Moreover, the propagation dynamics of the finite power Airy beam
mode which is incident at the bottom boundary calculated by the FEM technique is
presented in Fig. 4.7(b). The white box which denote the opaque metallic obstacle blocks
the propagation path of the main lobe in the Airy beams. Similarly, it shows
reconstructions of the main lobe and remain their original field distribution in the x-
direction. This results prove that the proposed structure can generate the Airy beams

satisfying the self-healing property.
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Figure 4.7 Self-healing property in the (1+1)D finite power Airy beams (a)
generated by the proposed structure and (b) calculated by the FEM
technique. The white box indicates an opaque metallic obstacle which has 2

um x 1um size and is located at (-1.855 um, 2 pm).
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Chapter 5.

Conclusion

In this dissertation, novel methods to generate the finite power Airy beams are proposed.
Proposed three types of the generation methods are based on initial field modulation,
holographic technique and plasmonic approach, respectively. The ballistic trajectory as
well as field distributions of the generated Airy beams via theoretical analysis and
numerical simulation are analyzed. In addition, experimental results were presented to
verify them.

In Chapter 2, based on the initial field modulation, the new types of the finite power
Airy beams to solve the diffraction problem originated from realistic constraints were
suggested. Total three types of Airy beams generated from a Gaussian beam, a uniform
beam of finite extent and an inverse Gaussian beam are theoretically and experimentally
investigated. Each finite power Airy beam shows notable propagation dynamics. A
uniform beam of finite extent can generate the finite power Airy beam with longer
propagation length than that generated by conventional Gaussian beam. The finite power
Airy beam generated by an inverse Gaussian beam shows a focused-bending trajectory
which is an example proving the self-healing property: side lobes without the main lobe
of the Airy beams can reconstruct their Airy profile during the propagation. Therefore,
under limiting experimental conditions, using a uniform beam of finite extent is
advantageous to generate the finite power Airy beams with less diffraction.

In Chapter 3, the finite power Airy beams using holographic techniques were
presented. This method enables simple and robust generation as well as multiplexing of
Airy beams. At first, holographic recording and reconstruction procedures allowed to
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generate the finite power Airy beams without the conventional system which consists of
the SLM and the Fourier lens. In addition, by illuminating the imperfect reference beam
which was partially blocked by an obstacle, the self-healing of the Airy beams in the
reconstruction procedures is observed. Also, by recording the Airy beams propagating
along the asymmetrical trajectory and reconstructing them by the use of the phase-
conjugated reference beam, two Airy beams having the same trajectories and the reverse
propagation directions to each other were obtained both simultaneously and
independently. Based on this experiment, more bent symmetric Airy beams can be
generated. Meanwhile, a feasibility study about angle multiplexing of the Airy beams
determined by the incident angles of the reference beams is investigated. At first, two
Airy beams propagating in the different directions are recorded. Each Airy beam was
individually and simultaneously reconstructed when one of the reference beams was
blocked by a barrier or all reference beams were opened. This work is suitable to
application on on-off switching or routing for optical signal processing. Also, it is
possible to adopt particle manipulation: a portion of particles can be held or released
while others are held.

In chapter 4, | presented the novel method to launch the finite power Airy beams
with compact size using plasmonic structure which consisted of a subwavelength slit
array. The designed metallic slit array played a role of the plasmonic lens which
determined the transmitted power and the phase retardation of the transmitted surface
plasmon mode. At the origin, the finite Airy beams have the intensity distribution with
the Airy function profile and the phase distribution of 180° phase difference between
adjacent slits. To design the plasmonic structure to launch the finite power Airy beams,
we have to determine the number of the slits and slit height which determine intensity
and phase retardation of the transmitted wave, respectively. Firstly, the finite power Airy
beams were truncated to seven lobes and each lobe was one-to-one correspondence to
each subwavelength slit section in the Ag slab. Secondly, transmitted power and phase
retardation through a single slit are calculated. Thirdly, using stepped slit heights to
satisfy 180° phase difference, slit numbers are selected to close the ratio of lobe areas.

Naturally, the launched Airy beams had the same characteristics to those generated by the
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conventional method. This work suggested the new generation method not only to solve

bulky size of the conventional system but also to reduce high cost of optical components.
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Appendix

A.l. Fourier transform of ideal Airy beams

The Airy function which is a solution of wave equation, named by the British astronomer

George Biddell Airy (1801 ~ 1892), can be defined by the improper Riemann integral
form:

Ai(s) =2 | wcos(%+ stjdt, (A1)
T 0

where s and t denote the transverse coordinate and the time. Fourier transform @, of Eq.
(A.1) is expressed as

D, = T Ai(s) exp(— jks)ds
gl
1

© 3
= —J'O I oS (% + stj exp(— jks)dsdt
T

o0

3
ljcos(t—+ stjdt exp(— jks)ds
Ty 3

—00

w0 B 3 3
- %jo _jw{exp _ J (%+ stﬂ - exp[— j (tg + stﬂ}exp(— jks)dsdt
ZLIWT exp_j E+st—ks +exp| —j E+st+ks dsdt
290 J L 3 3

Lo (07 :
:E-[O exp(;;j.[oexp[Js(t—k)]dsdt
1 (= )% :
+EI0 exp| —i [Oexp[—Js(Hk)]dsdt

1 ¢ t 1 ¢ t?
= jo exp( j EJ 278(t-K)dt+—— jo exp(— j Ej 275 (t +K)dt

(A2)
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A.2. Fourier transform of finite power Airy beams

The finite power Airy beam solution ¢, is

$.(s,&) = Ai[s _@T + iaéJexp[as_ agz _{%)H(%&jﬂ(%}]. (A3)

At the initial position (&=0), Eqg. (A.3) becomes
#,(s,& =0) = Ai(s)exp(as). (A.4)

Fourier transform @, of Eq. (A.4) is obtained by the same procedures as Eqg. (A.2):

D, = T Ai(s)exp(as)exp(—j2zks)ds

= Tijwcos i+ st |dtexp(as — jks)ds
J oo 3

= ijw T oS i+ st |exp(as — jks)dsdt
o . 3

* 3
:ij J cos L 4 st |exp( jKs)dsdt where K =k + ja
VA 3

1 (=7 (3 [t _
:Z_[O L{exp{ J [§+ StH + exp{—j [§+ stﬂ}exp(—JKs)dsdt
:iij exp| E+5'f—KS +exp| -] E+st+Ks dsdt

2r 0700 3 3

1= )% :
:EJ.O exp[JEJLexp[Js(t—K)]det

1 (= )7 .
+g.[o exp(—J%j__[cexp[—Js(H K) ]dsdt (A.5)
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A.3. Reason for using the same phase mask to all CASES in

experiments

In the CASE | and the CASE III, the phase has three terms [exp[é(k3 —3a2k—ia3)]]
and there is only one term [exp(ékﬂ] in the CASE Il. These higher-order terms are
included in calculations of the CASE | and the CASE II. But | use the k* phase mask only

to all CASES in experiments. This is because | assumed that higher-order phase terms

[exp(é(—?;azk—iae')j] can be ignored due to the relatively small constant a. To check

the effect of higher-order phase terms, | analyzed propagation dynamics of finite power
Airy beams generated by a Gaussian beam and an inverse Gaussian beam except higher-
order phase terms shown in Figs Al.1(a) and Al.1(b), respectively. They show the
exactly same propagation dynamics as Figs. 2.1(a) and 2.1(c), respectively. Therefore, it

is confirmed that my assumption is valid.
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Figure Al.1 Propagation dynamics of finite power Airy beams generated by
(a) a Gaussian beam and (b) an inverse Gaussian beam except higher-order

phase terms.
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