24 research outputs found

    A study on the establishment of Engine Room Resource Management system based on requirements of STCW convention and ISO 9 Family

    Get PDF
    2005๋…„ ๊ฐœ์ตœ๋œ ์ œ80์ฐจ ๊ตญ์ œํ•ด์‚ฌ๊ธฐ๊ตฌ์˜ ํ•ด์‚ฌ์•ˆ์ „๋ณด์žฅ์œ„์›ํšŒ( MSC)์˜ ๊ฒฐ์˜์— ๋”ฐ๋ผ STCW code BํŽธ์— ๊ทœ์ •๋œ ERM ์‹œ์Šคํ…œ์˜ ํšจ์œจ์ ์ธ ๊ตฌ์ถ•, ์‹คํ–‰ ๋ฐ ์œ ์ง€๋ฅผ ์œ„ํ•œ ๊ตฌ์ฒด์ ์ธ ์ ˆ์ฐจ๋ฅผ ์ˆ˜๋ฆฝํ•˜๋Š” ๋ฐ์— ๊ทธ ๋ชฉ์ ์„ ๋‘๊ณ  ์žˆ๋‹ค. ํŠนํžˆ ISO 9000 Family์˜ ์š”๊ฑด์„ ๋ฐ˜์˜ํ•œ ERM ์‹œ์Šคํ…œ์— ์ฃผ๋ชฉํ•˜๊ณ  ๋˜ํ•œ ์ด ์‹œ์Šคํ…œ์˜ ๊ตญ๋‚ด ๋„์ž… ๋ฐฉ์•ˆ์— ๋Œ€ํ•˜์—ฌ ๊ณ ๋ คํ•˜์˜€๋‹ค.1. ์„œ๋ก  1 1.1 ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ๊ณผ ๋ชฉ์  1.2 ์—ฐ๊ตฌ์˜ ๋‚ด์šฉ ๋ฐ ๋ฐฉ๋ฒ• 2. Engine-Room Resource Management 2.1 Engine-Room Resource Management์˜ ๊ฐœ์š” 2.1.1 ERM์˜ ์ •์˜ ๋ฐ ์˜๋ฏธ 2.1.2 ERM์˜ ์ถ”์ง„ ๋ฐฐ๊ฒฝ 2.1.3 ERM์˜ ๊ตญ๋‚ด ํ˜„ํ™ฉ 2.2 ์‚ฌ๊ณ ์˜ ๋ฐœ์ƒ ์ด๋ก  2.2.1 ํ—ˆ๋ฒ„ํŠธ W. ํ•˜์ธ๋ฆฌํžˆ(Herbert W. Heinrich)์˜ ๋„๋ฏธ๋…ธ ์ด๋ก  2.2.2 ๋ฒ„๋“œ(Bird)์˜ ์‹ ๋„๋ฏธ๋…ธ ์ด๋ก  2.2.3. ์‚ฌ๊ณ  ๋ฐœ์ƒ ์ด๋ก ์˜ ๋ถ„์„ 2.3 ERM์˜ ํ•„์š”์„ฑ 2.3.1 Human factor (์ธ์  ์š”์†Œ) 2.3.2 Human Error์™€ Error Chain 3. ERM๊ณผ ISO 9000 Family 3.1 ISO 9000 Family์— ๊ด€ํ•œ ๊ณ ์ฐฐ 3.2 ISO 9000 Family์™€ ERM ์‹œ์Šคํ…œ๊ณผ์˜ ํ˜ธํ™˜์„ฑ๊ณผ ๋ณ‘์šฉ์„ฑ 3.3 ISO 9000 Family์™€ ERM์˜ ๋น„๊ต 3.3.1 ๊ณ ๊ฐ 3.3.2 ์ œํ’ˆ 3.3.3 ๊ณ ๊ฐ ์š”๊ตฌ ์‚ฌํ•ญ์˜ ํŒŒ์•… 3.3.4 KS Q ISO 9001:2009(ํ’ˆ์งˆ๊ฒฝ์˜)์— ์ž…๊ฐํ•œ ERM์˜ ๊ธฐํš 3.4 ISO 9000 Family์š”๊ฑด์„ ๋ฐ˜์˜ํ•œ ERM์‹œ์Šคํ…œ 3.4.1 ERM ์š”๊ตฌ์‚ฌํ•ญ 8-1(๊ธฐ๊ด€์‹ค ์ ˆ์ฐจ ๋ฐœํ–‰๊ณผ ์ ๊ฒ€ํ‘œ ์‚ฌ์šฉ์˜ ํ™œ์„ฑํ™”) 3.4.2 ERM ์š”๊ตฌ์‚ฌํ•ญ 8.2(ERM์— ๊ทผ๊ฑฐํ•œ ์ง€์นจ ๋ฐœํ–‰) 3.3.3 ERM ์š”๊ตฌ์‚ฌํ•ญ 8-2.1(์ธ์  ์ž์›์˜ ๋ฐฐ์น˜) 3.3.4 ERM ์š”๊ตฌ์‚ฌํ•ญ 8-2.2(์ธ์ ์ž์›์˜ ์ ํ•ฉ์„ฑ) 3.3.5 ERM ์š”๊ตฌ์‚ฌํ•ญ 8-2.3(์ž„๋ฌด์˜ ์ง€์ •) 3.3.6 ERM ์š”๊ตฌ์‚ฌํ•ญ 8-2.4(์ˆœ์ฐจ์ ์ธ ์ง๋ฌด ์ˆ˜ํ–‰) 3.3.7 ERM ์š”๊ตฌ์‚ฌํ•ญ 8-2.5(์ž„๋ฌด ๋ฐ ์ง๋ฌด์˜ ๋ถ„๋ฐฐ) 3.3.8 ERM ์š”๊ตฌ์‚ฌํ•ญ 8-2.6(ํšจ๊ณผ์ ์ด๊ณ  ํšจ์œจ์ ์ธ ์ž„๋ฌด ์ง€์ •) 3.3.9 ERM ์š”๊ตฌ์‚ฌํ•ญ 8-2.7(๋‹น์ง ์ž„๋ฌด์˜ ์ผ๊ด€์„ฑ) 3.3.10 ERM ์š”๊ตฌ์‚ฌํ•ญ 8-2.8(๋ฌผ์  ์ž์›์˜ ํ™œ์šฉ) 3.3.11 ERM ์š”๊ตฌ์‚ฌํ•ญ 8-2.9(๋‹น์ง์ž๊ฐ„์˜ ์˜์‚ฌ์†Œํ†ต) 3.3.12 ERM ์š”๊ตฌ์‚ฌํ•ญ 8-2.10(์ž„๋ฌด์— ๋Œ€ํ•œ ์ง‘์ค‘) 3.3.13 ERM ์š”๊ตฌ์‚ฌํ•ญ 8-2.11(๋ฌผ์  ์ž์›์˜ ๊ด€๋ฆฌ ๋ฐ ์ƒํƒœ ํŒŒ์•…) 3.3.14 ERM ์š”๊ตฌ์‚ฌํ•ญ 8-2.12(์ •๋ณด ์ˆ˜์ง‘, ์ฒ˜๋ฆฌ, ํŒ๋‹จ ๋ฐ ์ด์šฉ) 3.3.15 ERM ์š”๊ตฌ์‚ฌํ•ญ 8-2.13(์ž‘์—… ํ™˜๊ฒฝ) 3.3.16 ERM ์š”๊ตฌ์‚ฌํ•ญ 8-2.14(์ƒํ™ฉ ๋ณ€ํ™”์— ๋Œ€ํ•œ ์ค€๋น„) 3.3.17 ERM ์š”๊ตฌ์‚ฌํ•ญ 8-2.15(๊ณ„์ธก๋œ ์ž๋ฃŒ์˜ ์‹๋ณ„) 3.3.18 ERM ์š”๊ตฌ์‚ฌํ•ญ 8-2.16(์ •๋ณด, ์ž๋ฃŒ, ํ‘œ์‹œ์˜ ๋ฐฉ๋ฒ• ๊ฐœ๋ฐœ) 4. ๊ฒฐ๋ก  STCW code, Section B, Chapter โ…ง/2, Part 3-2 "Guidance on Keeping an Engineering Watch" KS Q ISO 9001:2009 ํ’ˆ์งˆ ๊ฒฝ์˜ ์‹œ์Šคํ…œ-์š”๊ตฌ ์‚ฌ

    Effects of Large Tip Clearance and Turbulence Intensity on Aerodynamic Performance in a Turbine Cascade

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2014. 2. ์†ก์„ฑ์ง„.Turbomachines have been widely used from power generation to aero-naval propulsion. Therefore, numerous studies have been devoted to improve their performance by reducing losses. Especially for aerodynamic performance, numerous efforts have been made to understand aerodynamic loss generation mechanisms in various types of such turbomachines. Geometric and flow parameters are known to affect the aerodynamic losses. The geometric parameters such as blade configurations include tip clearance (TC), aspect ratio, and roughness. The flow parameters such as inlet flow conditions include turbulence intensity (Tu), incidence angle, Reynolds number, and Mach number. Tip clearance (TC) is an evitable gap between rotating (rotors) and stationary (casing) components. The typical tip clearance of a turbine in aero engines is roughly 1% of its blade chord length. However, in smaller turbines e.g., turbopumps, the tip clearance becomes larger than 10% of the blade chord length. In a gas turbine, an incoming flow from a combustor is highly turbulent. Effects of the turbulence of the incoming flow past a turbine blade row having large (realistic) tip clearance on aerodynamic performance e.g., loss generation and deviation have not been reported hitherto. This study, therefore, aims to identify experimentally how the turbulent intensity of the incoming flow influences loss and deviation at a turbine rotor row (in a linear cascade) with a large tip clearance. To this end, three selected turbulence intensity values, 0.6%, 3.3% and 5.3% for four selected tip clearances, 1%, 3%, 10% and 15% of the blade chord were considered at a fixed Reynolds number of 200,000.1.Introduction 1.1. Background and Motivation 1.2. Literature Survey 1.3. Objectives 2. Test facility and Instrumentation 2.1. Test Facility 2.2. Blade Geometry 2.3. Turbulence Generator 2.4. Cascade and Measuring Points 2.5. Data Reduction Parameters 3. Discussion of Results 3.1. Local coefficient distribution at low turbulence level (Tu=0.6%) 3.2. Variation of loss distribution with tip clearance at high turbulence level (Tu=5.3%) 3.3. Mass-averaged Loss Coefficient 3.4. Flow Turning Characteristics 4. Conclusions References ๊ตญ๋ฌธ์ดˆ๋กMaste

    ๊ตญ๋ฐฉํš๋“ ์‚ฌ์—…์—์„œ์˜ ์‹ค๋ฌผ์˜ต์…˜์  ์‚ฌ๊ณ ๋ฐฉ์‹ ์ ์šฉ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    Thesis(doctor`s)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :ํ˜‘๋™๊ณผ์ • ๊ธฐ์ˆ ์ •์ฑ…์ „๊ณต, 2005.Docto

    ์Šคํ”ผ๋กœ์˜ฅ์‚ฌ์ง„์œผ๋กœ ์ฒ˜๋ฆฌํ•œ ํด๋ฆฌํ”„๋กœํ•„๋ Œ ์ง๋ฌผ์˜ ์ž์™ธ์„  ์ฐจ๋‹จ ์„ฑ๋Šฅ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์˜๋ฅ˜ํ•™๊ณผ,2003.Maste

    ์ด์‚ฐํ™”ํƒ„์†Œ ๊ฐœ์งˆ ๋ฐ˜์‘์šฉ Ni-MgO-Ce0.8Zr0.2O2 ์ด‰๋งค ์—ฐ๊ตฌ

    No full text
    Dept. of Environmental Engineering/์„์‚ฌThe carbon dioxide reforming of methane (CDR) has been carried out at a very high gas hourly space velocity (GHSV) over MgO promoted Ni-Ce0.8Zr0.2O2 catalysts. Ni-MgO-Ce0.8Zr0.2O2 catalyst exhibited higher catalytic activity and stability (CH4 conversion > 95% at a GHSV of 480,000 h-1 for 200 h) than the Ni-Ce0.8Zr0.2O2 catalyst.The outstanding catalytic performance is mainly due to an intimate interaction between Ni and MgO. The preparation method was optimized to get a highly active and stable MgO promoted Ni-Ce0.8Zr0.2O2 catalysts. Co-precipitation method produced Ni-MgOCe0.8Zr0.2O2 catalyst having better activity and stability than impregnated catalyst having the same composition. The higher activity and stability of co-precipitated catalyst is related to easy reducibility, high BET surface area, high dispersion and small Ni size. Coprecipitated Ni-MgO-Ce0.8Zr0.2O2 catalyst can be considered as one of the best catalyst for the CDR reaction.restrictio

    ์‹œ๊ณต๊ฐ„ ๋ฐ์ดํƒ€๋ฅผ ์œ„ํ•œ ํ™•์žฅ๋œ ์˜๋ฏธ๋ก ์  ์••์ถ• ๊ธฐ๋ฒ•

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ „๊ธฐ. ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2008.2.Maste
    corecore