5 research outputs found
๋ฏธ์ฏ๋น์ ๋ ์ ๋ จ ๋ก์์ Cu ์ ๋ จ ๊ณต์ ์์ ์ฌ์ฉํ๋ ๋์ค ์๋ช ์ฐ์ฅ์ ๋ํ ์ฐ๊ตฌ
ํ์๋
ผ๋ฌธ (๋ฐ์ฌ) -- ์์ธ๋ํ๊ต ๋ํ์ : ๊ณต๊ณผ๋ํ ์ฌ๋ฃ๊ณตํ๋ถ, 2021. 2. ์ด๊ฒฝ์ฐ.Smelting is the first step in the Mitsubishi continuous process for Cu production, resulting in the production of 68% copper matte and Fe-silicate slag. One of the main issues pertaining to the smelting furnace is the frequent interruption of operations required to allow the inspection and replacement of lances since lances are frequently fractured.
First, the present study was aimed at modifying the operating conditions of the smelting furnace to suppress lance fractures. A numerical model was developed to simulate the transport phenomena including multi-phase behaviors in the furnace. The simulation results showed that the lances were exposed to a severely erosive atmosphere with high temperatures. Further calculation indicated that raising the positions of the lances could lower the temperature of the lances, and reduce the occurrence of splashed melt, which contains erosive sulfides. This condition was applied and observed in the field operation. It was confirmed that by implementing such a change of the lance heights, the occurrence of lance failures had been considerably reduced without notably affecting the reaction ability of the smelting furnace. Additionally, modifying the feeding system was suggested that feeding continuously as a method of stabilizing the interior of smelting furnace during the process because the effective reactivity could be increased. Second, investigation of lances used in field operations, thermodynamic analysis and laboratory experiments were conducted for studying the reaction mechanism. By analyzing the lances, the surface of the lances was damaged and penetration of matte components into the lance was observed and the damage occurred to a certain height. Since the lance temperature varies depending on the height, we could estimate that damage on the lance is directly related to the temperature. Therefore, thermodynamics calculations were conducted and Cu-Fe alloy existed as a liquid phase at approximately 1100โ. Based on the experimental results, laboratory experiments were conducted and liquid copper was also produced at above 1100โ. From these results, it can be considered that temperature above 1100โ can cause the lance fracture and part of the lance located at higher temperature than 1100โ can be deteriorated and finally fractured. Thus, during the Mitsubishi process, when the lance is kept at a temperature below 1100 in the furnace, surface damage can be reduced and the lance life-time can be increased.
Through the present study, a numerical model within the S-furnace was developed and we suggested conditions to reduce the fracture of lance using this model. From microstructure analysis of lance, we found out the mechanism by which lance fracture occurs, and confirmed that maintaining the lance tip below 1100โ can result in stable conditions for increasing lance life-time.Contents
Abstract..........................................................................................................โ
Contents........................................................................................................ โ
ฃ
List of Figures................................................................................................. โ
ง
List of Tables.................................................................................................. XV
Chapter 1. Introduction.................................................................................. 01
Smelting furnace in Mitsubishi process.................................................... 01
Fracture of lance in S-furnace...................................................................05
Previous studies for the S-furnace............................................................ 07
Chapter 2. Numerical modeling ..................................................................... 09
2.1. Explanation of model............................................................................... 09
2.2. Governing equations................................................................................ 11
2.3. Calculation conditions.............................................................................. 18
2.4. Heat source............................................................................................. 20
Chapter 3. Results of computational analysis.................................................... 21
3.1. Condition 1: Height of lance from melt surface.......................................... 21
3.1.1 Results of computational analysis ............................................................. 21
3.1.2 Microstructural analysis of lance surface....................................................28
3.1.3 Results of process application................................................................... 37
3.1.4 Summary....................................................................................................46
3.2. Conditions2: Feeding system........................................................................47
3.2.1 Comparing feeding system ....................................................................... 47
3.2.2. Result of computational analysis: Melt velocity........................................... 50
3.2.3. Result of computational analysis: Penetration depth................................... 54
3.2.4. Result of computational analysis: Melt splash............................................ 58
3.2.5. Result of computational analysis: Reaction area......................................... 60
3.2.6. Result of computational analysis: Temperature of lances........................... 77
Chapter 4. Results of microstructure analysis...................................................... 80
4.1. unused and fractured lance......................................................................... 83
4.2. Used lance in various height........................................................................ 93
4.3. High magnification analysis........................................................................ 105
4.4. Thermodynamics calculations..................................................................... 108
4.5. Lab experiments.......................................................................................... 117
4.5.1 Conditions of lab experiments....................................................................117
4.5.2 Condition 1: 1000โ .................................................................................. 119
4.5.3 Condition 2: 1100โ .................................................................................. 121
4.5.4 Condition 3: 1090โ ...................................................................................126
4.5.5 Summary....................................................................................................130
Chapter 5. Conclusions........................................................................................ 131
References...........................................................................................................133Docto
Axin2-GSK3ฮฒ ๋ณตํฉ์ฒด ๊ฒฐํฉ๋ถ์์ ๋ถ์ ํน์ฑํ
์น์ํ๊ณผ/๋ฐ์ฌ[ํ๊ธ]์ํ์์ 90% ์ด์์ด ์ํผ ๊ธฐ์์ ์์ข
์ด๋ฉฐ, ์ํผ๊ฐ์ฝ์ดํ ํ์์ ์์ ์ด๊ธฐ ๋จ๊ณ์์ ์นจ์ต์ฑ ์์ข
์ผ๋ก์ ์งํ ๊ณผ์ ์ ์ฐ๊ด๋์ด ์๋ค. Wnt ์ ํธ์ ๋ฌ์ Snail์ ์ธ์ฐํ๋ฅผ ์ต์ ์ํค๋๋ฐ, ์ด๋ฌํ ๊ณผ์ ์ Axin2์ ์ํ GSK3ฮฒ์ ํต์ธ ์์ก์ ํตํด ์ผ์ด๋๋ฉฐ ์ด๋ก ์ธํด E-cadherin ์ต์ ์ธ์์ธ Snail ๋ฐํ์ด ์ฆ๊ฐ๋๊ณ ์ํผ๊ฐ์ฝ์ดํ์ด ์ ๋๋๋ค. ์ด ๊ณผ์ ์์ LRP5/6๋ฅผ ํตํ Axin์ ํ์ฑํ๊ฐ Wnt ์ ํธ ์ ๋ฌ์ ํ์์ ์ธ ๊ฒ์ผ๋ก ์๋ ค์ ธ ์์ผ๋, LRP5/6๋ฅผ ํตํ nuclear GSK3 comparmentalization์ ๋ํด์๋ ๊ฑฐ์ ์๋ ค์ ธ ์์ง ์๋ค. ๋ํ ์ต๊ทผ์ ์๋ ค์ง Axin๊ณผ GSK3ฮฒ์ ๊ฒฐํฉ๊ตฌ์กฐ์ ๋ฐ๋ฅด๋ฉด, Axin๊ณผ GSK3ฮฒ ๊ฐ์๋ ๋ค์์ ์์์ฑ ๊ฒฐํฉ๊ณผ ํ๋์ ์์ ๊ฒฐํฉ์ด ์์ผ๋ฉฐ, Axin์์ ๋์ ํ์ โridgeโ๋ฅผ ์ด๋ฃจ๋ ์์์ฑ ์๋ฏธ๋
ธ์ฐ ์๊ธฐ ๋ถ์๊ฐ GSK3 ฮฒ์ ๋์ ํ ๊ตฌ์กฐ์ ์ฐ๊ฒฐ๋ ๋ฃจํ ๊ตฌ์กฐ ์ฌ์ด์ ํ์ฑ๋ ์์์ฑ์ โgrooveโ ๋ถ์๋ก ์ ํ ๋ค์ด๊ฐ๋ ํํ๋ก ๊ฒฐํฉ์ด ์ผ์ด๋๋ค. ๊ทธ๋ฌ๋ฏ๋ก LRP5/6๋ฅผ ๊ฒฝ์ ํ๋ Wnt ์ ํธ ์ ๋ฌ ๋ฐ EMT ์ ๋๊ณผ์ ์์ Axin๊ณผ GSK3์ ๊ฒฐํฉ ๋ถ์๋ Snail ๋ฐํ์ ์กฐ์ ํ ์ ์๋ ๋ถ์ ํ์ ์ผ๋ก์ ๊ฐ๋ฅ์ฑ์ด ์์ผ๋ ์ด์ ๋ํ ์ฐ๊ตฌ๋ ๊ฑฐ์ ์๋ค. ๋ฐ๋ผ์ ๋ณธ ์ฐ๊ตฌ๋ LRP5/6์ ์ํ GSK3 nuclear compartmentalization ์กฐ์ ๊ณผ ๊ทธ ๊ณผ์ ์์ Axin์ ์ญํ ์ ๊ท๋ช
ํ๊ณ , ๋ํ Axin2-GSK3ฮฒ ๋จ๋ฐฑ์ง ๊ฐ ๊ฒฐํฉ์ ๊ด์ฌํ๋ ์ฃผ์ ๋ถ์ ๊ฒฐํฉ๋ถ์๋ฅผ ํ์
ํ๊ณ ์ด๋ฅผ ํ๊ฒํ๋ ํํฉ๋ฌผ์ ์ด์ฉํ์ฌ Axin2-GSK3ฮฒ complex์ ์น๋ฃ ํ๊ฒ์ผ๋ก์์ ๊ฐ๋ฅ์ฑ์ ์์๋ณด๊ณ ์ ํ์๋ค. ๊ฒฐ๊ณผ๋ ๋ค์๊ณผ ๊ฐ๋ค. 1. LRP6 ๋ณด์กฐ ์์ฉ์ฒด๋ Snail์ ์์ ํ์ํค๊ณ ํต ๋ด ๋๋๋ฅผ ์ฆ๊ฐ์ํค๋๋ฐ, ์ด๋ Axin2์ ์ํ GSK3ฮฒ์ nuclear export function์ ์์กดํ๋ค.
2. GSK3ฮฒ mutants๋ฅผ ์ด์ฉํ in vitro binding assay ๊ฒฐ๊ณผ, GSK3ฮฒ ์ Y216 and V267/268 ๋ถ์๊ฐ Axin2์์ ๊ฒฐํฉ์ ์ค์ํ ๋ถ์์ด๋ค.
3. Axin2์ ์์์ฑ ์๋ฏธ๋
ธ์ฐ ์๊ธฐ์ธ, L374์ L378๋ถ์๊ฐ Axin2-GSK3ฮฒ ๋จ๋ฐฑ๊ฐ ์ํธ์์ฉ์ ์ค์ํ ๋ถ์์ด๋ฉฐ, ์์๊ฒฐํฉ ๋ถ์์ธR377๋ถ์๋ Axin2-GSK3ฮฒ ๊ฒฐํฉ์ ๊ฒฐ์ ์ ์ด์ง ์์๋ค.
4. Pharmacophore ๋ชจ๋ธ์ ํตํด ์ ํ๋ Axin2-GSK3ฮฒ๊ฒฐํฉ์ต์ ์ ๋๋ฌผ์ง์ ํต ๋ด GSK3ฮฒ ๋ฐํ์ ์ฆ๊ฐ์ํค๊ณ , Snail์ ์ต์ ์์ผฐ๋ค. ๋ํ E-cahderin ๋ฐํ์ ์ฆ๊ฐ์ํค๊ณ ์์ธํฌ์ ์ด๋์ ์ต์ ์์ผฐ๋ค.
์ด์์ ๊ฒฐ๊ณผ์์ GSK3ฮฒ์ nucleocytoplasmic compartmentalization์ ์กฐ์ ์ LRP5/6 ๋ณด์กฐ์์ฉ์ฒด์ Axin2๊ฐ ๊ด์ฌํจ์ ์ ์ ์์๊ณ , Axin2-GSK3ฮฒ ๊ฒฐํฉ์ ๋ถ์๋ ์ํผ๊ฐ์ฝ์ดํ์ ์ต์ ํ๋ ํ๊ฒ์ผ๋ก ์ ์ ํจ์ ์ ์ ์์๋ค.
[์๋ฌธ]About 90% of human cancers originate from epithelial tissue, and epithelial mesechymal transition (EMT) is related in the conversion of early stage tumors into invasive malignancies. Wnt signaling inhibits Snail phosphorylation through Axin2-dependent nuclear export of GSK3ฮฒ, then consequently increases E-cadherin repressor, Snail protein levels and induces an EMT. The important roles of LRP5/6 on Axin activation had been described, but itโs roles of nuclear GSK3ฮฒ compartmentalization had not been well-known. According to the structure of Axin-GSK3ฮฒ complex reported recently, the Axin makes several hydrophobic interactions and only a single hydrogen bond to GSK3ฮฒ. Hydrophobic amino acid residues of Axin form a helical โridgeโ that packs into a hydrophobic โgrooveโ formed between helix and the extended loop in GSK3ฮฒ. The possibility of molecular target for Axin2-GSK3ฮฒ binding sites had not been verified yet. Thus, this study was aimed to elucidate the regulatory cascade of GSK3ฮฒ compartmentalization by Wnt co-receptor, LRP5/6 and clarify the roles of Axin2 during the process, and to verify potential therapeutic target for Axin2-GSK3ฮฒ complex though validate the anti-EMT effect of chemical candidates blocking the principal Axin2-GSK3ฮฒ protein-protein interaction sites. The results are as follows: 1. LRP6 stabilizes Snail and sustains its nuclear accumulation by Axin2-dependent nuclear export of GSK3ฮฒ. 2. Amino acid residues of Y216 and V267/268 in GSK3ฮฒ is crucial binding sites to interact with Axin2 according to in vitro binding assay with GSK3ฮฒmutants. 3. Hydrophobic amino acid residues of Axin2, L374 and L378 form principal Axin2-GSK3ฮฒ protein-protein interaction, but a single hydrogen bonding residue R377 is not critical for Axin2-GSK3ฮฒ binding. 4. The target molecule of Axin2-GSKฮฒ interaction, selected by pharmacophore model, increases nuclear GSK3ฮฒ expression and its activity, consequently decreases Snail expression. The target also increases E-cadherin expression, and inhibits cancer cell migration. The results of the study clarified the functional regulation of GSK3ฮฒ nucleocytoplasmic compartmentalization mediated by LRP5/6 and Axin2, and verified the possibility of molecular target for Axin2-GSK3ฮฒ binding sites as anti-EMT target.ope