95 research outputs found

    An Experimental Study on NOx Reduction Performance of Low Pressure SCR System

    Get PDF
    ์„ธ๊ณ„ ์šด์†ก์‹œ์žฅ์—์„œ ์„ ๋ฐ•์œผ๋กœ ์šด์†ก๋˜์–ด์ง€๋Š” ํ™”๋ฌผ์˜ ๋น„์ค‘์€ ๋งค์šฐ ํฌ๋ฉฐ ๊ฐˆ์ˆ˜๋ก ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ์„ ๋ฐ•์— ์˜ํ•œ ์šด์†ก์€ ์ „ ์„ธ๊ณ„ ํ™”๋ฌผ ์šด์†ก๋Ÿ‰์˜ ์•ฝ 80%๋ฅผ ์ฐจ์ง€ํ•˜๋ฉด์„œ ํƒ„์†Œ๋ฐฐ์ถœ๋Ÿ‰์€ ์„ธ๊ณ„ ํƒ„์†Œ๋ฐฐ์ถœ๋Ÿ‰์˜ 3.3% ์ •๋„๋กœ ๋‚ฎ์€ ์ˆ˜์ค€์ด๊ธฐ ๋•Œ๋ฌธ์— ์„ ๋ฐ•์€ ํƒ€ ์šด์†ก์ˆ˜๋‹จ๊ณผ ๋น„๊ตํ•˜์—ฌ ํšจ์œจ์ ์ด๋ฉฐ ์นœํ™˜๊ฒฝ์ ์ธ ์šด์†ก์ˆ˜๋‹จ์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์„ ๋ฐ•์˜ ์ถ”์ง„๊ธฐ๊ด€ ๋ฐ ๋ฐœ์ „๊ธฐ๊ด€์œผ๋กœ ์ฃผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ๋””์ ค์—”์ง„์€ ์—ฐ์†Œ๊ณผ์ • ์ค‘์— ์œ ํ•ด ๋ฐฐ๊ธฐ๊ฐ€์Šค์ธ ์งˆ์†Œ์‚ฐํ™”๋ฌผ(NOx)์„ ๋‹ค๋Ÿ‰์œผ๋กœ ๋ฐœ์ƒ์‹œํ‚ค๋Š” ๋ฌธ์ œ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์ด์— ๋”ฐ๋ผ ๊ตญ์ œํ•ด์‚ฌ๊ธฐ๊ตฌ๋Š” ํ•ด์–‘์˜ค์—ผ๋ฐฉ์ง€ํ˜‘์•ฝ(MARPOL 73/78) ๋ถ€์†์„œ VI์— ์˜ํ•ด ์„ ๋ฐ• ๋ฐฐ๊ธฐ๊ฐ€์Šค์— ํฌํ•จ๋œ ์งˆ์†Œ์‚ฐํ™”๋ฌผ์˜ ๋ฐฐ์ถœ ์ œํ•œ์„ ๊ฐ•ํ™”ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฐ์ถœ ๊ทœ์ œ ๊ธฐ์ค€์„ ๋งŒ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•˜์—ฌ ํ˜„์žฌ ์„ ๋ฐ•์šฉ ๋””์ ค์—”์ง„์—์„œ๋Š” SCR ์‹œ์Šคํ…œ์ด ๋„๋ฆฌ ์ด์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” SCR ์‹œ์Šคํ…œ ์ค‘ ์ €์••ํ˜• SCR ์‹œ์Šคํ…œ์˜ ์‹œ์ œํ’ˆ์„ ์œก์ƒ ์‹คํ—˜์šฉ ์—”์ง„์— ์ง์ ‘ ์„ค์น˜ํ•˜์—ฌ IMO NOx Technical Code์— ๋”ฐ๋ผ Tier III ์„ฑ๋Šฅ์„ ๋งŒ์กฑํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ์‹ค์ฆ์‹คํ—˜์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ์œก์ƒ์—”์ง„ ์‹ค์ฆ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ, ํ•ด๋‹น ์ €์••ํ˜• SCR ์‹œ์Šคํ…œ์˜ ํ™˜์›์ œ ๋ถ„์‚ฌ๋Ÿ‰ ์ œ์–ด ์ƒํƒœ ๋ฐ ์•”๋ชจ๋‹ˆ์•„ ์Šฌ๋ฆฝ ์ƒํƒœ ๋“ฑ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ ์ตœ์ข…์ ์œผ๋กœ ํ•ด๋‹น ์ €์••ํ˜• SCR ์‹œ์Šคํ…œ์ด MARPOL ๋ถ€์†์„œ โ…ฅ ์ œ13๊ทœ์น™์—์„œ ๊ทœ์ •ํ•˜๊ณ  ์žˆ๋Š” Tier III์˜ NOx ๋ฐฐ์ถœ ๊ธฐ์ค€์น˜๋ฅผ ๋งŒ์กฑํ•˜๋Š” NOx ์ €๊ฐ ์„ฑ๋Šฅ์„ ๋‚˜ํƒ€๋‚ด๊ณ  ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. |The share of freight transported by ship in the world transport market is very large and freight volume by ship is also increasing. Shipping by ship accounts for about 80% of the world's freight traffic. In addition, carbon emissions from shipping are as low as 3.3% of global carbon emissions. Therefore, ships are an efficient and environmentally friendly means of transportation compared to other modes of transportation. However, the diesel engine, which is mainly used as a propulsion engine and a power generation engine of a ship, has a problem that a large amount of NOx(Nitrogen Oxide), which is harmful exhaust gas, is generated. According to Annex VI of Maritime Pollution Prevention Convention(MARPOL 73/78), the IMO Tier โ…ข standard, which tightened the emission limits of nitrogen oxides contained in ship exhaust gases, was applied when ships built after 2016 navigate the NECA(NOx Emission Control Area) since 2010. The SCR system is widely used to satisfy these emission control standards In this study, the experimental equipment of SCR system was installed, which is widely used as the nitrogen oxides abatement system and the demonstration experiment was conducted to see if it meets the Tier III performance according to the IMO NOx Technical Code. The performance of the SCR system was verified through NOx abatement performance test and ammonia slip test for each load variation and it was confirmed that the performance of the low pressure type SCR system satisfies the emission standard of Tier III as stipulated in Regulation 13 of MARPOL Annex VI.๋ชฉ์ฐจ Abstract โ…ถ 1. ์„œ ๋ก  1.1 ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  1 1.2 ์—ฐ๊ตฌ์˜ ๋ฐฉ๋ฒ• 3 2. ๋Œ€๊ธฐ์˜ค์—ผ๋ฌผ์งˆ ๋ฐฐ์ถœ๊ทœ์ œ ๋™ํ–ฅ ๋ฐ ์ €๊ฐ ๊ธฐ์ˆ  2.1 ๋Œ€๊ธฐ์˜ค์—ผ๋ฌผ์งˆ์˜ ์ข…๋ฅ˜ ๋ฐ ๊ทœ์ œ ๋™ํ–ฅ 4 2.1.1 ๋Œ€๊ธฐ์˜ค์—ผ๋ฌผ์งˆ์˜ ์ข…๋ฅ˜ 4 2.1.2 ๋ฐฐ๊ธฐ๋ฐฐ์ถœ๋ฌผ์˜ ๊ทœ์ œ ๋™ํ–ฅ 10 2.2 ์งˆ์†Œ์‚ฐํ™”๋ฌผ์˜ ์ƒ์„ฑ์›๋ฆฌ ๋ฐ ์ €๊ฐ ๊ธฐ์ˆ  17 2.2.1 ๋””์ ค๊ธฐ๊ด€์˜ ์งˆ์†Œ์‚ฐํ™”๋ฌผ ์ƒ์„ฑ์›๋ฆฌ 17 2.2.2 ๋””์ ค๊ธฐ๊ด€์˜ ์งˆ์†Œ์‚ฐํ™”๋ฌผ ์ €๊ฐ ๊ธฐ์ˆ  23 3. ์‹คํ—˜์žฅ์น˜ ๋ฐ ์‹คํ—˜๋ฐฉ๋ฒ• 3.1 ์‹คํ—˜์—”์ง„ ๋ฐ ๋™๋ ฅ๊ณ„ 34 3.1.1 ์‹คํ—˜์—”์ง„ 34 3.1.2 ๋™๋ ฅ๊ณ„ 37 3.2 SCR ์‹œ์Šคํ…œ 38 3.2.1 SCR ์‹œ์Šคํ…œ ์„ค๊ณ„๊ธฐ์ค€ 38 3.2.2 ์ด‰๋งค๋ชจ๋“ˆ 42 3.2.3 ๊ธฐ๊ณ„์žฅ์น˜ 43 3.2.4 ์š”์†Œ์ˆ˜์šฉ์•ก ๊ณต๊ธ‰ ์‹œ์Šคํ…œ 47 3.2.5 ๊ณ„์ธก์šฉ ์„ผ์„œ 48 3.2.6 ์ œ์–ด ์‹œ์Šคํ…œ 50 3.3 ๊ฐ€์Šค๋ถ„์„ ์‹œ์Šคํ…œ 52 3.3.1 ์—”์ง„ ๋ฐฐ๊ธฐ ํ›„๋‹จ ๊ฐ€์Šค๋ถ„์„์‹œ์Šคํ…œ 52 3.3.2 ์ด‰๋งค๋ฐ˜์‘๊ธฐ ์ „๋‹จ ๊ฐ€์Šค๋ถ„์„์‹œ์Šคํ…œ 54 3.3.3 ์ด‰๋งค๋ฐ˜์‘๊ธฐ ํ›„๋‹จ ๊ฐ€์Šค๋ถ„์„์‹œ์Šคํ…œ 56 3.3.4 ๋ฐฐ์ถœ๊ฐ€์Šค ํ†ตํ•ฉ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ 58 3.4 ์‹คํ—˜๋ฐฉ๋ฒ• 60 3.4.1 SCR ์‹œ์Šคํ…œ ๊ตฌ์„ฑํ’ˆ ์ž‘๋™์‹คํ—˜ 61 3.4.2 ์—”์ง„ ๋ถ€ํ•˜๋ณ„ ์—”์ง„ ํŒŒ๋ผ๋ฏธํ„ฐ ํš๋“์‹คํ—˜ 63 3.4.3 NOx ์ €๊ฐ์„ฑ๋Šฅ ๋ฐ ์•”๋ชจ๋‹ˆ์•„ ์Šฌ๋ฆฝ ์ธก์ •์‹คํ—˜ 65 4. ์‹คํ—˜๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ 4.1 SCR ๊ตฌ์„ฑํ’ˆ ์ž‘๋™์‹คํ—˜ 68 4.2 ์—”์ง„ ๋ถ€ํ•˜๋ณ„ ์—”์ง„ ํŒŒ๋ผ๋ฏธํ„ฐ ํš๋“์‹คํ—˜ 71 4.3 NOx ์ €๊ฐ์„ฑ๋Šฅ ๋ฐ ์•”๋ชจ๋‹ˆ์•„ ์Šฌ๋ฆฝ ์ธก์ •์‹คํ—˜ 73 4.3.1 ์‹คํ—˜์—”์ง„ NOx ๋ฐฐ์ถœ ํŠน์„ฑ 78 4.3.2 ๋ฐ˜์‘๊ธฐ ์ž…๊ตฌ์™€ ์ถœ๊ตฌ NOx ๋†๋„ ๋น„๊ต 79 4.3.3 ์•”๋ชจ๋‹ˆ์•„ ์Šฌ๋ฆฝ 80 4.3.4 NOx ์ €๊ฐ ์„ฑ๋Šฅ 81 5. ๊ฒฐ๋ก  ์ฐธ๊ณ  ๋ฌธํ—Œ 85Maste

    The effect of serum hepcidin levels on the clinical outcomes in patients with chronic kidney disease

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์˜๊ณผ๋Œ€ํ•™ ์˜ํ•™๊ณผ, 2018. 2. ๋‚˜๊ธฐ์˜.165 (8.6%) patients with functional deterioration and 275 (14.4%) patients with dialysis initiation. In penalized smoothing splines curve analysis, the hazard of renal events steadily increased with the increase of serum hepcidin levels. In multivariate Cox-proportional hazard regression analysis, the hazard ratio and its 95% CI in the third and the forth serum hepcidin quartile were 1.514 (1.025-2.237, P = 0.037) and 1.752 (1.183-2.596, P = 0.005), respectively, compared to the first serum hepcidin quartile. In subgroup analysis, increased serum hepcidin levels were associated with increased hazard of future renal events development, particularly in diabetic male patients with lower levels of Hb, TSAT, ferritin, inflammation, and kidney function. Conclusions Investigator observed that kidney function was an independent factor of serum hepcidin levels. Increased serum hepcidin levels with the increase of ESA dosage may suggest the key role of hepcidin in ESA resistance. Although ferritin was not associated with anemia in CKD patients, regardless of kidney function, TSAT was associated with less severe anemia in early CKD patients, whereas serum hepcidin was associated with more severe anemia in advanced CKD patients. In this study, increased serum hepcidin levels independently predict the progression of CKD in non-dialysis CKD patients. Diabetic male patients with lower levels of Hb, TSAT, ferritin, inflammation, and kidney function may need to be treated more meticulously with special attention to the development of CKD progression.Background Anemia is common problem in patients with chronic kidney disease (CKD) and contributes to increased risk of poor clinical outcomes. In treating anemia in CKD patients, erythropoiesis stimulating agents (ESA) resistance is an important issue and hepcidin is suggested as a key peptide of ESA resistance. However, the clinical characteristics of hepcidin and its role on ESA resistance have not been validated in large-scaled multicenter cohort. Moreover, the relative contribution of hepcidin and iron indices on anemia severity in CKD has been studied little. Therefore investigator designed and performed this study to confirm the known association between hepcidin, kidney function, ESA resistance, and anemia, and to identify the effect of hepcidin on clinical outcomes in non-dialysis CKD patients. Methods Investigator reviewed data of 2238 patients from a large-scale multicenter prospective Korean study (2011โ€“2016). Among 2238 patients whose mean age was 54.2 years, serum of 2113 patients were analyzed to measure serum hepcidin levels using competitive enzyme-linked immunosorbent assay. Iron indices were transferrin saturation (TSAT) and ferritin. Anemia was defined as hemoglobin (Hb) 50% decrease in kidney function from the baseline values, doubling of serum creatinine, or dialysis initiation, which were detected and adjudicated annually. Results Markers of inflammation and iron status were positively associated with serum hepcidin levels, regardless of CKD stage. However, estimated glomerular filtration rate was inversely associated with serum hepcidin levels (beta -0.007, P < 0.001), particularly in patients with CKD stages 3bโ€“5, but not in those with CKD stages 1โ€“3a. Iron supplementation was associated with increased serum hepcidin levels (beta 0.306, P = 0.001), particularly in patients with CKD stages 1โ€“3a, but not in those with CKD stages 3bโ€“5. Use of ESA was associated with increased serum hepcidin levels (beta 0.802, P <0.001), particularly in patients with CKD stages 3bโ€“5, but not in those with CKD stages 1โ€“3a, and ESA dosage positively correlated with serum hepcidin levels. In subgroup analysis according to the causes of CKD, kidney function was negatively associated with serum hepcidin levels in patients with hypertensive nephropathy and glomerulonephritis. The positive association between ESA use and serum hepcidin levels was not affected by causes of CKD. TSAT and serum hepcidin were significantly associated with anemia status, whereas serum ferritin was not, regardless of anemia severity. In patients with CKD1-3a, a 10% increase of TSAT was associated with severe anemia [odds ratio (OR) 0.628, 95% confidence interval (CI) 0.515-0.765P <0.001] and moderate anemia (OR 0.672, 95% CI 0.476-0.950P = 0.024), whereas a 10-ng/ml increase of serum hepcidin was associated with mild anemia (OR 1.360, 95% CI 1.115-1.659P=0.002) and moderate anemia (OR 1.379, 95% CI 1.173-1.620P <0.001) in patients with CKD 3b-5 on multivariate logistic analysis. During a mean of 2.4 years, 333 patients developed renal events (17.4%)Introduction 1 Material and methods 3 Results 6 Discussion 36 Reference 43 Abstract in Korean 50Docto

    ๊ณ ์†์ฒ ๋„ ๊ฐœํ†ต์— ๋”ฐ๋ฅธ ๊ตญํ† ๊ณต๊ฐ„๊ตฌ์กฐ์˜ ๋ณ€ํ™”์ „๋ง ๋ฐ ๋Œ€์‘๋ฐฉ์•ˆ ์—ฐ๊ตฌ(The spatial impact of the high speed rail and its countermeasures)

    Get PDF
    ๋…ธํŠธ : ์ด ์—ฐ๊ตฌ๋ณด๊ณ ์„œ์˜ ๋‚ด์šฉ์€ ๊ตญํ† ์—ฐ๊ตฌ์›์˜ ์ž์ฒด ์—ฐ๊ตฌ๋ฌผ๋กœ์„œ ์ •๋ถ€์˜ ์ •์ฑ…์ด๋‚˜ ๊ฒฌํ•ด์™€๋Š” ์ƒ๊ด€์—†์Šต๋‹ˆ๋‹ค

    ๊ทธ๋ž˜ํ•€๊ณผ ์ดํ™ฉํ™”๋ชฐ๋ฆฌ๋ธŒ๋ด์˜ ๊ฒฐํ•จ ๊ณตํ•™: ๊ตฌ์กฐ์  ๋ฐ ์ „์ž์  ์„ฑ์งˆ์— ๋Œ€ํ•œ ์ œ์ผ์›๋ฆฌ๊ณ„์‚ฐ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์žฌ๋ฃŒ๊ณตํ•™๋ถ€,2019. 8. ์œค์˜์ค€.2004๋…„ ๊ทธ๋ž˜ํ•€์ด ์ฒ˜์Œ ํ•ฉ์„ฑ๋˜์—ˆ๊ณ  ๊ธฐ์กด์˜ ๋ฌผ์งˆ์—์„œ ์ฐพ์•„๋ณผ ์ˆ˜ ์—†์—ˆ๋˜ ๋›ฐ์–ด๋‚œ ํŠน์„ฑ๋“ค๊ณผ ๋ฌผ๋ฆฌ์  ํ˜„์ƒ์œผ๋กœ ์ธํ•ด ์‚ฌ๋žŒ๋“ค์˜ ๋งŽ์€ ๊ด€์‹ฌ์„ ๋Œ๊ฒŒ ๋˜์—ˆ๋‹ค. ์ด๋กœ๋ถ€ํ„ฐ ์ด์ฐจ์› ๋ฌผ์งˆ ์—ฐ๊ตฌ๋ผ๋Š” ์ƒˆ๋กœ์šด ๋ถ„์•ผ๊ฐ€ ์—ด๋ฆฌ๊ฒŒ ๋˜์—ˆ์œผ๋ฉฐ ๊ทธ๋ž˜ํ•€ ์ด์™ธ์—๋„ ์ „์ด๊ธˆ์† ๋””์นผ์ฝ”์ œ๋‚˜์ด๋“œ, ์œก๋ฐฉ์ •๊ณ„ ์งˆํ™”๋ถ•์†Œ, ํ‘๋ฆฐ ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ์ด์ฐจ์› ๋ฌผ์งˆ๋“ค์ด ์˜ˆ์ธก๋˜๊ณ  ํ•ฉ์„ฑ๋˜์–ด์ง€๊ณ  ์žˆ๋‹ค. ์ด์ฐจ์› ๋ฌผ์งˆ์˜ ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜ ๋งŒํผ์ด๋‚˜ ๊ทธ ์‘์šฉ๋ถ„์•ผ๋„ ๋‹ค์–‘ํ•˜์—ฌ ํˆฌ๋ช…์ „๊ทน, ํŠธ๋žœ์ง€์Šคํ„ฐ, ๊ด‘๊ฒ€์ถœ์†Œ์ž, ๋ฐฐํ„ฐ๋ฆฌ, ํ•„ํ„ฐ, ์ƒ๋ช…๊ณตํ•™ ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์—ฐ๊ตฌ๊ฐ€ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด์ฐจ์› ๋ฌผ์งˆ์ด ๊ธฐ์กด์— ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋Š” ๋ฌผ์งˆ์„ ๋Œ€์ฒดํ•˜๊ธฐ์—๋Š” ๋‹จ๊ฒฐ์ •/๋Œ€๋ฉด์  ํ•ฉ์„ฑ์ด๋ผ๋Š” ํฐ ์žฅ๋ฒฝ์ด ์กด์žฌํ•˜๊ณ  ์žˆ๋‹ค. ์ด์ฐจ์› ๋ฌผ์งˆ์˜ ํ•ฉ์„ฑ ๊ณผ์ •์—์„œ ์ƒ๊ธฐ๋Š” ๊ฒฐํ•จ์€ ์ด์ฐจ์› ๋ฌผ์งˆ์˜ ๋›ฐ์–ด๋‚œ ํŠน์„ฑ๋“ค์„ ์ €ํ•˜์‹œ์ผœ ์‘์šฉ์„ ์œ„ํ•œ ํšจ์šฉ์„ฑ์„ ์•ฝํ™”์‹œํ‚จ๋‹ค. ํ•˜์ง€๋งŒ ๊ฒฐํ•จ์„ ๊ธ์ •์ ์ธ ๋ฐฉํ–ฅ์œผ๋กœ ์ž˜ ํ™œ์šฉํ•˜๋ฉด ์ด์ฐจ์› ๋ฌผ์งˆ์˜ ํŠน์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ฑฐ๋‚˜, ๊ธฐ์กด์— ์—†๋˜ ํŠน์„ฑ์ด๋‚˜ ํ˜„์ƒ์„ ๋ฐœํ˜„ ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค๋Š” ์—ฐ๊ตฌ๋“ค๋„ ๋ณด๊ณ ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋“ค์„ ํ†ต์นญํ•˜์—ฌ ์ด์ฐจ์› ๋ฌผ์งˆ์˜ ๊ฒฐํ•จ ๊ณตํ•™ ์ด๋ผ๊ณ  ๋ถ€๋ฅผ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ฐ€๋„๋ฒ”ํ•จ์ˆ˜ ์ด๋ก ์— ๊ธฐ๋ฐ˜ํ•œ ์ œ์ผ์›๋ฆฌ๊ณ„์‚ฐ ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ทธ๋ž˜ํ•€๊ณผ ์ดํ™ฉํ™”๋ชฐ๋ฆฌ๋ธŒ๋ด์— ์กด์žฌํ•˜๋Š” ๊ฒฐํ•จ์˜ ๊ตฌ์กฐ์ , ์ „์ž์  ํŠน์„ฑ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ฒซ์งธ, ๊ทธ๋ž˜ํ•€์— ์กด์žฌํ•˜๋Š” ์ฒ  ์›์ž ์Œ์˜ ์ƒํ˜ธ์ž‘์šฉ์ด ๊ทธ๋ž˜ํ•€์˜ ๋ณ€ํ˜•์— ๋”ฐ๋ผ ์–ด๋–ค ๋ณ€ํ™”์–‘์ƒ์„ ๋ณด์ด๋Š”์ง€์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ทธ๋ž˜ํ•€์˜ ์ธ์ ‘ํ•œ ๋‘๊ฐœ์˜ ๊ณต๊ณต์— ๊ฐ๊ฐ ์ฒ  ์›์ž๊ฐ€ ๊ณต์œ  ๊ฒฐํ•ฉ์„ ์ด๋ฃจ๊ณ  ์žˆ์„ ๋•Œ ๋‘ ์ฒ  ์›์ž๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์œผ๋กœ ์ธํ•ด 2 ฮผB์˜ ์ž๊ธฐ ๋ชจ๋ฉ˜ํŠธ๊ฐ€ ์ƒ์„ฑ๋˜๊ฒŒ ๋œ๋‹ค. ํ•˜์ง€๋งŒ ๊ทธ๋ž˜ํ•€์— ์ธ์žฅ ๋ณ€ํ˜•์„ ๊ฐ€ํ•˜๊ฑฐ๋‚˜, ์••์ถ• ๋ณ€ํ˜•์„ ๊ฐ€ํ•˜๋ฉฐ ํœ˜๊ฒŒ ๋˜๋ฉด ์ฒ  ์›์ž๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์— ๋ณ€ํ™”๊ฐ€ ์ผ์–ด๋‚˜ ์ž๊ธฐ ๋ชจ๋ฉ˜ํŠธ๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์‚ฌ๋ผ์ง€๊ฒŒ๋˜๋Š” ํ˜„์ƒ์„ ๋ฐœ๊ฒฌํ•˜์˜€๋‹ค. ์ด ๊ณผ์ •์—์„œ ๋‘ ๊ฐœ์˜ ์ฒ  ์›์ž์™€ ๋™์‹œ์— ์ธ์ ‘ํ•œ ํƒ„์†Œ ์›์ž๊ฐ€ ์ฒ  ์›์ž๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ๋ฐฉํ•ดํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ ์ด์— ๋Œ€ํ•œ ์ „์ž๊ตฌ์กฐ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ๊ทธ ์›๋ฆฌ๋ฅผ ์„ค๋ช…ํ•˜์˜€๋‹ค. ๋‘˜์งธ, ๋‹จ์ผ์ธต ์ดํ™ฉํ™”๋ชฐ๋ฆฌ๋ธŒ๋ด์˜ ๋ชฐ๋ฆฌ๋ธŒ๋ด ์›์ž๊ฐ€ ํฌ๋กฌ๊ณผ ๋ฐ”๋‚˜๋“ ์›์ž๋กœ ์น˜ํ™˜๋˜์–ด ์žˆ์„ ๋•Œ ์ด์— ๋Œ€ํ•œ ๊ตฌ์กฐ์  ์•ˆ์ •์„ฑ๊ณผ ์ „์ž์  ์„ฑ์งˆ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ด๋•Œ ํฌ๋กฌ๊ณผ ๋ฐ”๋‚˜๋“ ๋ถˆ์ˆœ๋ฌผ์ด ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋Š” ์ „ํ•˜ ์ƒํƒœ๋ฅผ ๊ณ ๋ คํ•˜์˜€๊ณ  ํฌ๋กฌ๊ณผ ๋ฐ”๋‚˜๋“ ๋ถˆ์ˆœ๋ฌผ์ด ์ƒ์„ฑ๋  ๋•Œ์˜ ์‹คํ—˜์  ์ƒํ™ฉ์„ ๋ฌ˜์‚ฌํ•˜๊ธฐ ์œ„ํ•ด ํฌ๋กฌ-ํ™ฉ, ๋ฐ”๋‚˜๋“-ํ™ฉ์˜ ์ด์› ์ƒ๋“ค์„ ๊ณ ๋ คํ•˜์˜€๋‹ค. ํฌ๋กฌ์€ ์ „๊ธฐ์ ์œผ๋กœ ์ค‘์„ฑ์„ ๋ ๋ฉฐ, ๋ฐ”๋‚˜๋“์€ โˆ’1์˜ ์ „ํ•˜ ์ƒํƒœ์™€ ์ค‘์„ฑ ์ƒํƒœ๋ฅผ ๊ฐ€์งˆ ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๊ณ , ์ค‘์„ฑ ์ƒํƒœ์˜ ๋ฐ”๋‚˜๋“ ๋ถˆ์ˆœ๋ฌผ์€ 1 ฮผB์˜ ๊ตญ์†Œ์ ์ธ ์ž๊ธฐ ๋ชจ๋ฉ˜ํŠธ๋ฅผ ๊ฐ€์ง์„ ์ „์ž๊ตฌ์กฐ ๋ถ„์„์„ ํ†ตํ•ด ํ™•์ธํ•˜์˜€๋‹ค. ์…‹์งธ, ์‚ผ๊ฐํ˜• ํ˜•ํƒœ์˜ ์ดํ™ฉํ™”๋ชฐ๋ฆฌ๋ธŒ๋ด ๋‚˜๋…ธ๊ฒฐ์ •์ด ํ™ฉ ๊ณต๊ณต์˜ ์ƒ์„ฑ์œผ๋กœ ์ธํ•ด ๊ตฌ์กฐ์  ์ƒ์ „์ด ํ˜„์ƒ์„ ์ผ์œผํ‚ค๋Š” ๊ณผ์ •์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ดํ™ฉํ™”๋ชฐ๋ฆฌ๋ธŒ๋ด ๋‚˜๋…ธ๊ฒฐ์ •์— ์ผ์‚ฐํ™”ํƒ„์†Œ ๊ธฐ์ฒด๋ฅผ ํ†ตํ•œ ์—ด์ฒ˜๋ฆฌ๋ฅผ ๊ฐ€ํ•˜๊ฒŒ ๋˜๋ฉด 2H์ƒ์—์„œ 1T์ƒ์œผ๋กœ ๋ณ€ํ™”ํ•˜๋Š” ์ตœ๊ทผ ์‹คํ—˜๊ฒฐ๊ณผ๋ฅผ ์„ค๋ช…ํ•˜๊ธฐ ์œ„ํ•ด ๋ฐ˜์‘ ์žฅ๋ฒฝ ์—๋„ˆ์ง€ ๊ณ„์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋‚˜๋…ธ๊ฒฐ์ •์˜ ๊ผญ์ง€์ ๊ณผ ๋ชจ์„œ๋ฆฌ์— ์กด์žฌํ•˜๋Š” ํ™ฉ ์›์ž๋“ค์ด ์ผ์‚ฐํ™”ํƒ„์†Œ ๋ถ„์ž์— ์˜ํ•ด ์‰ฝ๊ฒŒ ํƒˆ์ฐฉ๋  ์ˆ˜ ์žˆ์Œ์„ ๋ฐ˜์‘ ์žฅ๋ฒฝ ์—๋„ˆ์ง€ ๊ณ„์‚ฐ์„ ํ†ตํ•ด ํ™•์ธํ•˜์˜€์œผ๋ฉฐ, ๋˜ํ•œ ํ™ฉ ๊ณต๊ณต์ด ์ƒ์„ฑ๋˜๋ฉด์„œ ์ƒ๊ธด ๋นˆ ๊ณต๊ฐ„์œผ๋กœ ๋‚˜๋…ธ๊ฒฐ์ •์˜ ๊ธฐ์ €๋ฉด์— ์กด์žฌํ•˜๋Š” ํ™ฉ ์›์ž๋“ค์ด ์‰ฝ๊ฒŒ ์ด๋™ํ•˜์—ฌ ๊ตญ๋ถ€์ ์ธ ๊ตฌ์กฐ๊ฐ€ 1T์ƒ์œผ๋กœ ๋ณ€ํ™”ํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ํ™ฉ ๊ณต๊ณต ์ƒ์„ฑ๊ณผ ํ™ฉ ์›์ž ์ด๋™์œผ๋กœ ์„ค๋ช…๋˜๋Š” ์›์ž ์ˆ˜์ค€์˜ ์ƒ์ „์ด ๊ธฐ์ž‘์„ ์ œ์‹œํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด์ƒ์˜ ์—ฐ๊ตฌ๋“ค์„ ํ†ตํ•ด ์šฐ๋ฆฌ๋Š” ์ด์ฐจ์› ๋ฌผ์งˆ๋“ค์„ ๋Œ€ํ‘œํ•˜๋Š” ๋ฌผ์งˆ์ธ ๊ทธ๋ž˜ํ•€๊ณผ ์ดํ™ฉํ™”๋ชฐ๋ฆฌ๋ธŒ๋ด์— ์กด์žฌํ•˜๋Š” ๊ฒฐํ•จ์˜ ๊ตฌ์กฐ์ , ์ „์ž์  ์„ฑ์งˆ์— ๋Œ€ํ•œ ์‹ฌ๋„ ์žˆ๋Š” ์ดํ•ด๋ฅผ ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์‹œ๋œ ๊ฒฐ๊ณผ๋“ค์€ ์ด์ฐจ์› ๋ฌผ์งˆ์˜ ๊ฒฐํ•จ ๊ณตํ•™์„ ํ†ตํ•œ ์ƒˆ๋กœ์šด ๋‚˜๋…ธ์†Œ์ž์™€ ์ด‰๋งค ๋“ฑ์˜ ๊ฐœ๋ฐœ์— ๋Œ€ํ•œ ๊ฐ€์ด๋“œ๋ผ์ธ์ด ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.In 2004, graphene was first synthesized and started to attract lot of attention because of its outstanding properties and physical phenomena that were not found in conventional materials. From this, a new field of 2D materials research has been opened. In addition to graphene, various 2D materials such as transition metal dichalcogenides, hexagonal boron nitride, and phosphorene were being predicted and synthesized. The applications, such as transparent electrodes, transistors, photodetectors, batteries, filters and biotechnology, are as diverse as the various types of 2D materials. However, there is a barrier of single-crystal/large-area synthesis to replace the conventional materials by 2D materials. Defects created during synthesis of 2D materials reduce the superior properties of the 2D materials and weaken their value for applications. However, research has also been reported to improve the properties of 2D materials or to manifest unprecedented characteristics or phenomena. These studies are collectively referred to as defect engineering of 2D materials. In this dissertation, we study the structural and electronic properties ofdefects in graphene and MoS2 using first-principles calculations. First, we investigated how the interaction of Fe atom pairs in graphene changes with deformation of graphene. When Fe atoms are covalently bonded to adjacent two vacancies of graphene, the interaction between two Fe atoms exhibits magnetic moment of 2 ฮผB. However, we found that when stretching or compressively outward bending was applied, interaction between Fe atoms was changed and magnetic moment was vanished dramatically. In this process, it was confirmed that the adjacent carbon atoms hindered interaction between Fe atoms, and the electronic structure analysis was performed to explain our results. Second, stability and electronic properties of Cr and V substitutional dopants in monolayer MoS2 were investigated. We considered the charge states of Cr and V, and possible binary phases of Cr-S and V-S in order to describe the experimental situation when Cr and V dopants are formed. We confirmed that Cr Mo is electrically neutral and V Mo is stable in โˆ’1 and neutral state, and V Mo in neutral state has a local magnetic moment of 1 ฮผB. Third, we studied atomic-scale mechanism of the structural phase transition due to the formation of S vacancies in triangular MoS2 nanocrystals. Reaction barrier energy calculations were performed to explain recent experimental results of changing the 2H phase to 1T phase by CO gas annealing. The reaction barrier energy calculations confirmed that the S atoms at the vertex and edge of the nanocrystals can be easily desorbed by CO molecules. Then, local structure changed to 1T phase when S atoms at basal plane migrate to the space around S vacancy. As a result, we could suggest novel atomic-scale mechanism of structural phase transition which is consisted of S vacancy formation and S atom migration. Through these studies, we were able to understand detailed structural and electronic properties of defects in graphene and MoS2. In addition, the results presented in this dissertation are expected to be a guideline for the development of novel nanodevices and catalysts through defect engineering of 2D materials.List of tables................................................................................................. vi List of figures .............................................................................................. vii Chapter 1. Introduction ............................................................................... 1 1.1. Emergence of 2D materials research .............................................................. 1 1.2. Defects in 2D materials and its negative effects ............................................. 5 1.3. Defect engineering of 2D materials .............................................................. 10 1.4. Objective of the dissertation ......................................................................... 15 1.5. Bibliography ................................................................................................. 16 Chapter 2. Theoretical background ......................................................... 20 2.1. Density functional theory.............................................................................. 20 2.1.1. Hohenberg-Kohn theorem .................................................................................. 20 2.1.2. Kohn-Sham equation .......................................................................................... 22 2.1.3. Exchange-correlation energy .............................................................................. 24 2.2. Supercell calculations for neutral and charged defects ................................. 26 2.3. Bibliography ................................................................................................. 31 Chapter 3. Deformation induced control of interaction between Fe dopants in monolayer graphene ............................................................... 32 3.1. Motivation ..................................................................................................... 32 3.2. Computational details ................................................................................... 35 3.3. Results and discussion .................................................................................. 36 3.3.1. Magnetic properties control of Fe dopants through structural deformations of graphene ........................................................................................................................ 36 3.3.2. Electronic structure analysis on the interaction between Fe dopants ................. 41 3.3.3. Discussion ........................................................................................................... 47 3.4. Summary ....................................................................................................... 51 3.5. Bibliography ................................................................................................. 52 Chapter 4. Cr and V substitutional dopants in monolayer MoS 2 .......... 54 4.1. Motivation ..................................................................................................... 54 4.2. Computational details ................................................................................... 57 4.3. Results and discussion .................................................................................. 59 4.3.1. Chemical potential calculations considering binary phases of relevant elements ...................................................................................................................................... 59 4.3.2. Stable charge states of Cr and V substitutional dopants and transition level diagram ......................................................................................................................... 64 4.3.3. Density of states analysis of stable charge states of Cr and V substitutional dopants .......................................................................................................................... 66 4.3.4. Discussion ........................................................................................................... 68 4.4. Summary ....................................................................................................... 69 4.5. Bibliography ................................................................................................. 70 Chapter 5. S vacancy induced structural phase transition of MoS 2 nanocrystals ................................................................................................ 71 5.1. Motivation ..................................................................................................... 71 5.2. Computational details ................................................................................... 75 5.3. Results and discussion .................................................................................. 76 5.3.1. Edge S coverage dependent structural stability of MoS 2 nanocrystals............... 76 5.3.2. Detailed atomic-scale mechanism of phase transition of triangular MoS 2 nanocrystals .................................................................................................................. 78 5.3.3. Discussion ........................................................................................................... 84 5.4. Summary ....................................................................................................... 87 5.5. Bibliography ................................................................................................. 88 Chapter 6. Conclusion and perspective ................................................... 90 ๊ตญ๋ฌธ ์ดˆ๋ก .................................................................................................... 93 Publication list ............................................................................................ 96Docto

    Identification of putative gene controlling stem growth habit in soybean

    No full text
    Thesis(masters) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์‹๋ฌผ์ƒ์‚ฐ๊ณผํ•™๋ถ€(์ž‘๋ฌผ์ƒ๋ช…๊ณผํ•™์ „๊ณต),2008. 2.Maste

    ์ธํŠธ๋ผ๋„ท์„ ์œ„ํ•œ Ethernet Wrapper์˜ ์„ค๊ณ„ ๋ฐ ๊ตฌํ˜„

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ปดํ“จํ„ฐ๊ณตํ•™๊ณผ,1999.Maste

    Overall success and factors predicting failure for endoscopic extrahepatic biliary stone extraction

    No full text
    ์˜ํ•™๊ณผ/์„์‚ฌ[ํ•œ๊ธ€] ์ตœ๊ทผ ๋‚ด์‹œ๊ฒฝ๊ธฐ๊ธฐ ๋ฐ ๋‚ด์‹œ๊ฒฝ์  ์ˆ˜๊ธฐ์˜ ๋ฐœ์ „์— ๋”ฐ๋ผ ๋‚ด์‹œ๊ฒฝ ์‹œ์ˆ ์€ ์น˜๋ฃŒ๋ถ„์•ผ์— ๋„๋ฆฌ ์‘์šฉ๋˜๊ณ  ์žˆ์œผ๋ฉฐ ํŠนํžˆ ๊ฐ„์™ธ๋‹ด๋„ ๊ฒฐ์„์˜ ์ง„๋‹จ๊ณผ ์น˜๋ฃŒ์—๋Š” ๊ทธ ์„ฑ๊ณผ๊ฐ€ ๋งค์šฐ ํš๊ธฐ์ ์ด๋‹ค. ๊ทธ๋™์•ˆ ๊ฐ„์™ธ๋‹ด๋„ ๊ฒฐ์„์˜ ๋‚ด์‹œ๊ฒฝ์  ์น˜๋ฃŒ์ˆ ์— ์žˆ์–ด ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๊ตญ์†Œ์  ์ œ์•ฝ ์กฐ๊ฑด์ด์—ˆ๋˜ ๊ฑฐ๋Œ€ ๊ฒฐ์„์˜ ์น˜๋ฃŒ๋„ ๋‹ค์–‘ํ•œ ์‡„์„์šฉ ๊ธฐ๊ธฐ๋“ค(๊ธฐ๊ณ„์  ์‡„์„๊ธฐ, ์ „๊ธฐ์ˆ˜์•• ์‡„์„๊ธฐ, ์ฒด์™ธ์ถฉ๊ฒฉํŒŒ ์‡„์„๊ธฐ, ๋ ˆ์ด์ € ์‡„์„๊ธฐ)์˜ ๊ฐœ๋ฐœ๋กœ ๋‚ด์‹œ๊ฒฝ์  ์น˜๋ฃŒ๊ฐ€ ์šฉ์ดํ•˜๊ฒŒ ๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‡„์„์šฉ ๊ธฐ๊ธฐ๋“ค์€ ๊ณ ๊ฐ€์˜ ์žฅ๋น„์ด๋ฏ€๋กœ ๋ณ‘์›๋งˆ๋‹ค ์‡„์„์šฉ ๊ธฐ๊ธฐ๋ฅผ ๋ชจ๋‘ ๊ฐ–์ถœ ์ˆ˜ ์—†๊ณ  ์‡„์„์šฉ ๊ธฐ๊ธฐ์— ๋Œ€ํ•œ ์‹œ์ˆ  ์˜์‚ฌ์˜ ๊ฒฝํ—˜๊ณผ ์„ ํ˜ธ๋„๋„ ๋‹ฌ๋ผ ๊ฐ„์™ธ๋‹ด๋„ ๊ฒฐ์„ ์น˜๋ฃŒ์— ์‚ฌ์šฉ๋˜๋Š” ์‡„์„์šฉ ๊ธฐ๊ธฐ๋‚˜ ์น˜๋ฃŒ ๋ฐฉ๋ฒ•์ด ์กฐ๊ธˆ์”ฉ ๋‹ค๋ฅด๊ณ  ๊ทธ์—๋”ฐ๋ผ ์น˜๋ฃŒ ์„ฑ์ ๋„ ์ฐจ์ด๊ฐ€ ์žˆ๋‹ค. ์ด์— ์—ฐ๊ตฌ์ž๋Š” ์—ฐ์„ธ๋Œ€ํ•™๊ต ์›์ฃผ์˜๊ณผ๋Œ€ํ•™ ๋ถ€์† ์›์ฃผ๊ธฐ๋…๋ณ‘์› ๋‚ด๊ณผ์—์„œ ๊ฐ„์™ธ๋‹ด๋„ ๊ฒฐ์„์œผ๋กœ ์ง„๋‹จ๋œ ํ™˜์ž๊ฐ€์šด๋ฐ ์™ธ๊ณผ์  ์ˆ˜์ˆ ์„ ์ผ์ฐจ ์น˜๋ฃŒ ๋ฐฉ๋ฒ•์œผ๋กœ ์„ ํƒํ•œ ๊ฒฝ์šฐ๋ฅผ ์ œ์™ธํ•œ 214๋ช…์„ ๋Œ€์ƒ์œผ๋กœ ๊ธฐ๊ณ„์  ์‡„์„๊ธฐ์™€ ์ฒด์™ธ์ถฉ๊ฒฉํŒŒ ์‡„์„๊ธฐ๋ฅผ ํฌํ•จํ•œ ๋‚ด์‹œ๊ฒฝ์  ์น˜๋ฃŒ์˜ ์„ฑ๊ณต์œจ๊ณผ ์ด์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ์„ ์•Œ์•„๋ณด๊ณ ์ž ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ 1. ๊ฐ„์™ธ๋‹ด๋„ ๊ฒฐ์„์— ๋Œ€ํ•œ ๋‚ด์‹œ๊ฒฝ์  ์น˜๋ฃŒ ์„ฑ๊ณต์œจ์€ 93.5%์ด์—ˆ๋‹ค. ๋‚ด์‹œ๊ฒฝ์  ์น˜๋ฃŒ์— ์‹คํŒจํ•œ ์›์ธ์œผ๋กœ๋Š” ์œ ๋‘๊ด„์•ฝ๊ทผ ์ ˆ๊ฐœ์— ์‹คํŒจํ•œ ๊ฒฝ์šฐ๊ฐ€ 2.3%, ๊ธฐ์ˆ ์ ์œผ๋กœ ๋‚ด์‹œ๊ฒฝ์  ์ œ๊ฑฐ๊ฐ€ ์–ด๋ ค์› ๋˜ ๊ฒฝ์šฐ๊ฐ€ 2.3%, ๋‚ด์‹œ๊ฒฝ ์‹œ์ˆ ์ค‘์— ๋‹ด๋‚ญ์—ผ์ด ์•…ํ™”๋œ ๊ฒฝ์šฐ๊ฐ€ 1.9%์ด์—ˆ๋‹ค. 2. ๊ฐ„์™ธ๋‹ด๋„ ๊ฒฐ์„์— ๋Œ€ํ•œ ๋‚ด์‹œ๊ฒฝ์  ์น˜๋ฃŒ ์„ฑ๊ณต์œจ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ์€ ๊ฒฐ์„์˜ ํฌ๊ธฐ ๋ฐ ๋ชจ์–‘, ๋‹ด๋‚ญ๊ณผ ๊ฐ„๋‚ด๋‹ด๋„ ๊ฒฐ์„์˜ ๋™๋ฐ˜, ์›์œ„๋ถ€ ์ด๋‹ด๊ด€ ํ˜‘์ฐฉ๋“ฑ์ด์—ˆ๋‹ค. 3. ์ดˆํฌ ์น˜๋ฃŒ ์„ฑ๊ณต์œจ์€ 56.5%์ด์—ˆ๋‹ค. ์ดˆํฌ ์น˜๋ฃŒ ์„ฑ๊ณต์œจ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ์€ ๊ฒฐ์„์˜ ์ˆ˜, ํฌ๊ธฐ ๋ฐ ๋ชจ์–‘๊ณผ ๋‚ด์› ๋‹น์‹œ ํŒจํ˜ˆ์ฆ ๋™๋ฐ˜์ด์—ˆ๋‹ค. 4. ๊ฐ„์™ธ๋‹ด๋„ ๊ฒฐ์„์˜ ๋‚ด์‹œ๊ฒฝ์  ์น˜๋ฃŒ์ˆ ์˜ ํ•ฉ๋ณ‘์ฆ์œผ๋กœ๋Š” ๋Œ€์ถœํ˜ˆ์ด 2.5%, ์ทŒ์žฅ์—ผ์ด 9.0%์ด์—ˆ๊ณ  ํ›„๋ณต๋ง‰ ์ฒœ๊ณต์˜ˆ๋Š” ์—†์—ˆ๋‹ค. ์ด์ƒ์˜ ๊ฒฐ๊ณผ๋กœ ๊ฐ„์™ธ๋‹ด๋„ ๊ฒฐ์„์— ๋Œ€ํ•˜์—ฌ ๊ธฐ๊ณ„์  ์‡„์„์ˆ ๊ณผ ์ฒด์™ธ ์ถฉ๊ฒฉํŒŒ ์‡„์„์ˆ ์„ ํฌํ•จํ•œ ๋‚ด์‹œ๊ฒฝ์  ์น˜๋ฃŒ๋Š” ๊ฐ„์™ธ๋‹ด๋„ ๊ฒฐ์„ ํ™˜์ž์˜ ์ผ์ฐจ์ ์ธ ์น˜๋ฃŒ๋กœ ์•ˆ์ „ํ•˜๊ณ  ํšจ๊ณผ์ ์ธ ๋ฐฉ๋ฒ•์ด๋ผ๊ณ  ์ƒ๊ฐ๋˜๋ฉฐ ๊ฑฐ๋Œ€ ๊ฒฐ์„ ๋ฐ ํƒ„ํ™˜ํ˜• ๊ฒฐ์„์˜ ๊ฒฝ์šฐ, ๋‹ด๋‚ญ๊ณผ ๊ฐ„๋‚ด๋‹ด๋„์˜ ๊ฒฐ์„์ด ๋™๋ฐ˜๋œ ๊ฒฝ์šฐ, ์› ์œ„๋ถ€ ์ด๋‹ด๊ด€ ํ˜‘์ฐฉ์ด ์žˆ๋Š” ๊ฒฝ์šฐ์—๋Š” ์น˜๋ฃŒ ์„ฑ๊ณต์œจ์ด ๋‚ฎ์•„์ง์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. [์˜๋ฌธ] Developments in endoscopic technique and equipments have improved duct clearance rate in patients with extrahepatic bile duct(EHD) stone. In this study, we reviewed our experience in extracting EHD stones with standard and more advanced technique and equipments such as mechanical lithotripsy and extracorporeal shock wave lithotripsy. Aims of this study were to determine the overall success rate of endoscopic extracting for EHD stone, to identify risk factors for failed duct clearance at initial and final therapeutic ERCP. We retrospectively reviewed 214 consecutive patients who underwent ERCP(Endoscopic Retrograde Cholangiopancreatography) for EHD stone over 45 months period. Factors evaluated for failed duct clearance included stone size, stone number, stone shape, concomittant stone of gallbladder and intrahepatic duct, presence of distal bile duct stricture, periampullary diverticula(PAD), Billroth-โ…ก gastrojejunostomy(B-โ…ก op), and sepsis at admission. The overall success rate of endoscopic treatment for EHD stone was 93.5%(200/214), The causes of failed duct clearance were failed endoscopic sphincterotomy in 5/214(2.3%), technical failure of extracting stone in 5/214(2.3%), and aggravation of acute cholecystitis between therapeutic endoscopic sessions in 4/214(1.9%). Risk factors for failed duct clearance with endoscopic extraction of EHD stone were size and shape of the stone, concomittant stone of gallbladder and intrahepatic duct, and stricture of distal common bile duct. The duct clearance rate with initial therapeutic ERCP was 56.5%(121/200). Risk factors for failed duct clearance with initial therapeutic ERCP were size, shape and number of stone, and sepsis at admission. The complications of endoscopic treatment for EHD stone were major bleeding in 5/200(2.5%), pancreatitis in 18/20O(9.0%), but there was no peroration. With advanced technique and equipments, endoscopic duct clearance rate for EHD stone improved and most of patients with EHD stone can be managed endoscopically. Even though risk factors for failure of endoscopic treatment for EHD stone were giant or piston shaped stone, concomittant stone of gallbladder and intrahepatic duct and stricture of distal common bile duct, we conclude that endoscopic treatment for EHD stone is safe and effective treatment modality, and choice of treatment.restrictio

    ์ž๋™ํ™”๋œ ์ƒ์‚ฐ์‹œ์Šคํ…œ์—์„œ ์ง€๋Šฅํ˜• ์ž๋™์œ ๋„์šด๋ฐ˜์ฐจ ๋ฐฐ์ •์ „๋žต์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธๅคงๅญธๆ ก ๅคงๅญธ้™ข :็”ฃๆฅญๅทฅๅญธ็ง‘,1995.Maste

    ์‹ ์ƒ๊ฒ€์œผ๋กœ ์ง„๋‹จ๋œ ์„ฑ์ธ ๋ฏธ์„ธ๋ณ€ํ™”๋ณ‘ ํ™˜์ž์˜ ์ž„์ƒ์–‘์ƒ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์˜ํ•™๊ณผ ๋ฉด์—ญํ•™ ์ „๊ณต, 2016. 2. ์ง„ํ˜ธ์ค€.์„œ๋ก : ๋ฏธ์„ธ๋ณ€ํ™”๋ณ‘์˜ ์žฅ๊ธฐ์˜ˆํ›„๋Š” ๋น„๊ต์  ์ข‹์€ ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๊ทธ๋ž˜์„œ ์žฅ๊ธฐ์˜ˆํ›„์™€ ๊ด€๋ จ๋œ ์ธ์ž์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ๊ฑฐ์˜ ์ด๋ฃจ์–ด์ง€์ง€ ์•Š์•˜๋‹ค. ๋˜ํ•œ ์žฌ๋ฐœ์˜ ์œ„ํ—˜์ธ์ž์— ๋Œ€ํ•ด์„œ๋„ ์‹œํ–‰๋œ ์—ฐ๊ตฌ๊ฐ€ ๋งŽ์ด ์—†๋Š” ์‹ค์ •์ด๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์„ฑ์ธ์—์„œ ์‹ ์ƒ๊ฒ€์œผ๋กœ ์ง„๋‹จ๋œ ๋ฏธ์„ธ๋ณ€ํ™”๋ณ‘ ํ™˜์ž์˜ ์ž„์ƒ์–‘์ƒ์— ๋Œ€ํ•ด ์•Œ์•„๋ณด๊ณ , ์žฅ๊ธฐ์ž„์ƒ๊ฒฐ๊ณผ ๋ฐ ์žฌ๋ฐœ๊ณผ ๊ด€๋ จ๋œ ์ธ์ž๋ฅผ ํ™•์ธํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋ฐฉ๋ฒ•: 2003๋…„ 4์›”๋ถ€ํ„ฐ 2013๋…„ 12์›” ์‚ฌ์ด ์ด 82๋ช…์˜ ํ™˜์ž๊ฐ€ ๋ฏธ์„ธ๋ณ€ํ™”๋ณ‘์œผ๋กœ ์ง„๋‹จ๋˜์—ˆ๋‹ค. ์ด๋“ค ์ค‘ ๋‚˜์ด๊ฐ€ 15์„ธ ๋ฏธ๋งŒ์ธ 4๋ก€, ์—ฐ๊ตฌ์‹œ์ž‘ํ›„ 1๋…„ ๋ฏธ๋งŒ์˜ ์ถ”์ ์ด ๋œ 13๋ก€, ์ดํ›„ ์‹ ์ƒ๊ฒ€์—์„œ ์ดˆ์ ์„ฑ ๋ถ„์ ˆ์„ฑ ์‚ฌ๊ตฌ์ฒด๊ฒฝํ™”์ฆ์œผ๋กœ ์ง„๋‹จ๋œ 1๋ก€๋ฅผ ์ œ์™ธํ•œ 64๋ช…์— ๋Œ€ํ•ด ์žฅ๊ธฐ์ž„์ƒ๊ฒฐ๊ณผ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ธ์ž์— ๋Œ€ํ•œ ๋ถ„์„์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์žฌ๋ฐœ์˜ ์œ„ํ—˜์ธ์ž๋ฅผ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ดˆ๊ธฐ ์†Œ๋ณ€ ๋‹จ๋ฐฑ-ํฌ๋ ˆ์•„ํ‹ฐ๋‹Œ ๋น„๊ฐ€ 3.0 g/g ๋ฏธ๋งŒ์ธ 5๋ก€์™€ ์ฒซ ๊ด€ํ•ด ์ดํ›„ ์ถ”์ ์ด 1๋…„ ๋ฏธ๋งŒ์ธ 8๋ก€๋ฅผ ์ถ”๊ฐ€์ ์œผ๋กœ ์ œ์™ธํ•œ 51๋ก€์— ๋Œ€ํ•ด ๋ถ„์„์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์žฅ๊ธฐ์ž„์ƒ๊ฒฐ๊ณผ๋กœ๋Š” ์‚ฌ๋ง, ํฌ๋ ˆ์•„ํ‹ฐ๋‹Œ ๋‘๋ฐฐ ์ƒ์Šน ํ˜น์€ ๋ง๊ธฐ์‹ ๋ถ€์ „ ๋ฐœ์ƒ์˜ ๋ณตํ•ฉ ๊ฒฐ๊ณผ์น˜๋ฅผ ์ด์šฉํ•˜์˜€๊ณ , ์žฌ๋ฐœ์€ ์†Œ๋ณ€ ๋‹จ๋ฐฑ-ํฌ๋ ˆ์•„ํ‹ฐ๋‹Œ ๋น„๊ฐ€ 3.0 g/g ์ด์ƒ ํ˜น์€ ์š”๊ฒ€์‚ฌ์ง€์—์„œ 3ํšŒ ์—ฐ์†์œผ๋กœ 3+ ๊ฐ€ ๋‹ค์‹œ ๋ฐœ์ƒํ•œ ๊ฒƒ์œผ๋กœ ์ •์˜ํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ: 5.0 (2.8-5.0)๋…„์˜ ์ถ”์ ๊ธฐ๊ฐ„ ๋™์•ˆ, 64๋ช…์ค‘์—์„œ 7๋ช…์—์„œ ๋ณตํ•ฉ ๊ฒฐ๊ณผ์น˜๊ฐ€ ๋ฐœ์ƒํ•˜์˜€๋‹ค. ์‚ฌ๊ตฌ์ฒด๋ฉด์—ญ์นจ์ฐฉ์œจ์€ ๋ณตํ•ฉ ๊ฒฐ๊ณผ์น˜ ๋ฐœ์ƒ๊ตฐ์—์„œ (57.1%) ๋น„๋ฐœ์ƒ๊ตฐ์— ๋น„ํ•ด ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•˜๊ฒŒ ๋†’์•˜๋‹ค (vs. 19.6%, P = 0.049). Kaplan-Meier๋ฒ•์œผ๋กœ ์ถ”์ •ํ•œ ๊ฒฐ๊ณผ ์‚ฌ๊ตฌ์ฒด๋ฉด์—ญ์นจ์ฐฉ๊ตฐ์€ ๋น„์นจ์ฐฉ๊ตฐ์— ๋น„ํ•ด ์œ ์˜ํ•˜๊ฒŒ ์งง์€ ์ƒ์กด๊ธฐ๊ฐ„์„ ๋ณด์˜€๋‹ค: ํ‰๊ท  (95% ์‹ ๋ขฐ๊ตฌ๊ฐ„) 4.1 (3.2-5.0) ๋…„๊ณผ 4.8 (4.6-5.0) ๋…„ (log-rank P = 0.034). ๋‹ค๋ณ€๋Ÿ‰ CoxํšŒ๊ท€๋ถ„์„์—์„œ ์‚ฌ๊ตฌ์ฒด๋ฉด์—ญ์นจ์ฐฉ์€ ๋ณตํ•ฉ ๊ฒฐ๊ณผ์น˜ ๋ฐœ์ƒ์˜ ๋…๋ฆฝ์ ์ธ ์œ„ํ—˜์ธ์ž์˜€๋‹ค (์œ„ํ—˜๋น„ 13.604, 95% ์‹ ๋ขฐ๊ตฌ๊ฐ„ 1.032-179.342, P = 0.047). 51๋ช…์˜ ํ™˜์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์‹œํ–‰ํ•œ ์žฌ๋ฐœ์— ๋Œ€ํ•œ ๋ถ„์„์—์„œ๋Š”, 50.9 (25.9-75.1) ๊ฐœ์›”์˜ ์ถ”์ ๊ด€์ฐฐ ๊ธฐ๊ฐ„ ๋™์•ˆ์—, 96.1%๊ฐ€ ์™„์ „๊ด€ํ•ด๋ฅผ ์ด๋ฃจ์—ˆ๊ณ , ๊ทธ ์™ธ๋Š” ์ตœ์†Œ ๋ถ€๋ถ„๊ด€ํ•ด์— ๋„๋‹ฌํ•˜์˜€๋‹ค. ์ด์ค‘ 56.9%์—์„œ 1ํšŒ ์ด์ƒ์˜ ์žฌ๋ฐœ์„ ๊ฒฝํ—˜ํ–ˆ๋‹ค. ์žฌ๋ฐœ๊ตฐ์—์„œ๋Š” ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•˜๊ฒŒ ์‚ฌ๊ตฌ์ฒด๋น„๋Œ€์œจ์ด ๋†’์•˜๋‹ค (34.5% vs. 9.1%P < 0.05). ์ด๋Š” ๊ต๋ž€๋ณ€์ˆ˜๋ฅผ ์ œ์–ดํ•ด๋„ ์œ ์ง€๋˜์—ˆ๋Š”๋ฐ ์žฌ๋ฐœ์— ๋Œ€ํ•œ ์˜ค์ฆˆ๋น„๋Š” 15.992 ์ด์—ˆ๋‹ค (95% ์‹ ๋ขฐ๊ตฌ๊ฐ„ 1.537-166.362, P = 0.020). ํ•˜์œ„๊ตฐ ๋ถ„์„์—์„œ๋Š” ์ค‘์•™๋‚˜์ด, ์„ฑ๋ณ„ ๊ทธ๋ฆฌ๊ณ  ์„ธ๋‡จ๊ด€์‚ฌ์ด์งˆ ์†์ƒ ์—ฌ๋ถ€๋ฅผ ํ™•์ธํ•˜์˜€๊ณ , ์‚ฌ๊ตฌ์ฒด๋น„๋Œ€์™€ ์žฌ๋ฐœ์˜ ๊ด€๋ จ์„ฑ์€ ๋‚จ์„ฑ๊ณผ ์„ธ๋‡จ๊ด€ ์‚ฌ์ด์งˆ ์†์ƒ์ด ์žˆ๋Š” ๊ตฐ์—์„œ ๋”์šฑ ๋ถ„๋ช…ํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ฒฐ๋ก : ์„ฑ์ธ์˜ ๋ฏธ์„ธ๋ณ€ํ™”๋ณ‘ ํ™˜์ž๋“ค์˜ ์žฅ๊ธฐ์ ์ธ ์˜ˆํ›„๋Š” ์•Œ๋ ค์ง„ ๋ฐ”์™€ ๊ฐ™์ด ์–‘ํ˜ธํ•˜์˜€๋‹ค. ์‚ฌ๊ตฌ์ฒด๋ฉด์—ญ์นจ์ฐฉ์€ ๋ณตํ•ฉ ๊ฒฐ๊ณผ์น˜ ๋ฐœ์ƒ์˜ ๋…๋ฆฝ์ ์ธ ์œ„ํ—˜์ธ์ž์˜€๋‹ค. ๋น„๋ก ๋ฏธ์„ธ๋ณ€ํ™”๋ณ‘ ํ™˜์ž๋“ค์˜ ๋งŽ์€ ์ˆ˜์—์„œ ์™„์ „๊ด€ํ•ด์— ๋„๋‹ฌํ•˜์ง€๋งŒ, ์žฌ๋ฐœ์ด 50% ์ด์ƒ์—์„œ ๋ฐœ์ƒํ•˜์˜€๋‹ค. ์‚ฌ๊ตฌ์ฒด๋น„๋Œ€๋Š” ์žฌ๋ฐœ๊ณผ ์œ ์˜ํ•˜๊ฒŒ ๊ด€๋ จ์ด ์žˆ๋Š” ์ธ์ž์˜€๋‹ค.์„œ๋ก  1 ์‹คํ—˜์žฌ๋ฃŒ ๋ฐ ๋ฐฉ๋ฒ• 3 ๊ฒฐ๊ณผ 9 ๊ณ ์ฐฐ 37 ์ฐธ๊ณ  ๋ฌธํ—Œ 44 Abstract 53Maste
    • โ€ฆ
    corecore