90 research outputs found

    ๋‹ด๋„์•” ์ง„๋‹จ์—์„œ ๊ณ ์‹์ ๋„๋ง๊ณผ ์•ก์ƒ์„ธํฌ๊ฒ€์‚ฌ์˜ ์ง„๋‹จ ํšจ๋Šฅ ๋น„๊ต

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์˜๊ณผ๋Œ€ํ•™ ์˜ํ•™๊ณผ, 2023. 2. ๊น€์šฉํƒœ.Background and Aims: Tissue sampling under endoscopic retrograde cholangiopancreatography (ERCP) is the primary diagnostic test for biliary tract cancer. However, it suffers from its low sensitivity. Liquid-based cytology (LBC) has been shown to improve the diagnostic efficacy of brush cytology for thyroid, cervical and pancreatic cancer. But the data on LBC in biliary tract cancer is still limited. To evaluate the diagnostic performance of LBC for biliary tract cancer, we compared it with conventional smears and forceps biopsies. Methods: A retrospective study was conducted of all consecutive patients who underwent brush cytology under ERCP from January 2010 to April 2020. The primary outcome was the diagnostic efficacy of conventional smears and LBC. The difference between the two groups was corrected using stabilized inverse probability weighting (IPW). The secondary outcome was the sensitivity of forceps biopsy alone and forceps biopsy combined with brush cytology. The secondary outcome was evaluated in patients who underwent both methods. Results: Among 162 patients, conventional smears were performed in 70 patients, and LBC was performed in 92 patients. In the primary analysis using stabilized IPW, the sensitivity of conventional smears and LBC was 76.00% and 92.75% respectively (P = 0.003). The accuracy was 78.46% for conventional smears and 86.67% for LBC (P = 0.178). In the secondary analysis, LBC improved sensitivity when combined with forceps biopsy (97.06% vs 88.24%, P = 0.041). Conclusions: Liquid-based cytology demonstrated better sensitivity and accuracy than conventional smears. Moreover, LBC revealed improvement in sensitivity when combined with forceps biopsies.๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์ : ๋‚ด์‹œ๊ฒฝ์ ์—ญํ–‰์„ฑ๋‹ด์ทŒ๊ด€์กฐ์˜์ˆ ์„ ์ด์šฉํ•œ ์กฐ์ง๊ฒ€์‚ฌ๋Š” ๋‹ด๋„์•”์ง„๋‹จ์˜ ์ฃผ์š” ๊ฒ€์‚ฌ์ด๋‹ค. ํ•˜์ง€๋งŒ ๊ฒ€์‚ฌ์˜ ๋ฏผ๊ฐ๋„๊ฐ€ ๋‚ฎ์•„ ์ง„๋‹จ์— ์–ด๋ ค์›€์„ ๊ฒช๋Š”๋‹ค. ์•ก์ƒ์„ธํฌ๊ฒ€์‚ฌ๋Š” ๊ฐ‘์ƒ์„ ์•”, ์ž๊ถ๊ฒฝ๋ถ€์•” ๋ฐ ์ทŒ์žฅ์•”์— ๋Œ€ํ•œ ๋ธŒ๋Ÿฌ์‰ฌ์„ธํฌ๊ฒ€์‚ฌ์˜ ์ง„๋‹จ ํšจ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํ•˜์ง€๋งŒ ์•ก์ƒ์„ธํฌ๊ฒ€์‚ฌ์˜ ๋‹ด๋„์•”์— ๋Œ€ํ•œ ์ง„๋‹จ ์„ฑ๋Šฅ์€ ๋ณด๊ณ ๋œ ๋ฐ”๊ฐ€ ์ ๋‹ค. ๋‹ด๋„์•”์— ๋Œ€ํ•œ ์•ก์ƒ์„ธํฌ๊ฒ€์‚ฌ์˜ ์ง„๋‹จ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ์•ก์ƒ์„ธํฌ๊ฒ€์‚ฌ๋ฅผ ๊ณ ์‹์ ๋„๋ง๊ฒ€์‚ฌ, ๊ฒธ์ž์ƒ๊ฒ€๊ณผ ๋น„๊ตํ•˜์˜€๋‹ค. ๋ฐฉ๋ฒ•: 2010๋…„ 1์›”๋ถ€ํ„ฐ 2020๋…„ 4์›”๊นŒ์ง€ ๋‚ด์‹œ๊ฒฝ์ ์—ญํ–‰์„ฑ๋‹ด์ทŒ๊ด€์กฐ์—ด์ˆ ์„ ํ†ตํ•ด ์„ธํฌ๊ฒ€์‚ฌ๋ฅผ ๋ฐ›์€ ๋ชจ๋“  ํ™˜์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ›„ํ–ฅ์  ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ฃผ์š”๊ฒฐ๊ณผ๋ณ€์ˆ˜๋Š” ๊ณ ์‹์ ๋„๋ง๊ฒ€์‚ฌ์™€ ์•ก์ƒ์„ธํฌ๊ฒ€์‚ฌ์˜ ์ง„๋‹จ ๋Šฅ๋ ฅ์ด์—ˆ๋‹ค. ๋‘ ๊ทธ๋ฃน ๊ฐ„์˜ ์ฐจ์ด๋Š” ์—ญํ™•๋ฅ ๊ฐ€์ค‘์น˜๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ณด์ •๋˜์—ˆ๋‹ค. 2์ฐจ๊ฒฐ๊ณผ๋ณ€์ˆ˜๋Š” ๊ฒธ์ž์ƒ๊ฒ€๋งŒ ์‹œํ–‰ํ•œ ๊ฒฝ์šฐ์™€ ๊ฒธ์ž์ƒ๊ฒ€๊ณผ ๋ธŒ๋Ÿฌ์‰ฌ์„ธํฌ๊ฒ€์‚ฌ๋ฅผ ๊ฒฐํ•ฉํ•œ ๊ฒฝ์šฐ์˜ ๋ฏผ๊ฐ๋„์ด์—ˆ๋‹ค. 2์ฐจ๊ฒฐ๊ณผ๋ณ€์ˆ˜๋Š” ๋‘ ๊ฐ€์ง€ ์กฐ์ง๊ฒ€์‚ฌ๋ฐฉ๋ฒ•์„ ๋ชจ๋‘ ์‹œํ–‰ํ•œ ํ™˜์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ‰๊ฐ€๋˜์—ˆ๋‹ค. ๊ฒฐ๊ณผ: 162๋ช…์˜ ํ™˜์ž ์ค‘, 70๋ช…์˜ ํ™˜์ž์—์„œ ๊ณ ์‹์ ๋„๋ง๊ฒ€์‚ฌ, 92๋ช…์˜ ํ™˜์ž์—์„œ ์•ก์ƒ์„ธํฌ๊ฒ€์‚ฌ๋ฅผ ์‹ค์‹œํ•˜์˜€๋‹ค. ์—ญํ™•๋ฅ ๊ฐ€์ค‘์น˜๋ฅผ ์ด์šฉํ•œ ๋ถ„์„์—์„œ ๊ณ ์‹์ ๋„๋ง๊ฒ€์‚ฌ์˜ ๋ฏผ๊ฐ๋„๋Š” 76.00%, ์•ก์ƒ์„ธํฌ๊ฒ€์‚ฌ์˜ ๋ฏผ๊ฐ๋„๋Š” 92.75%(P = 0.009)์˜€๋‹ค. ์ •ํ™•๋„๋Š” ๊ณ ์‹์ ๋„๋ง๊ฒ€์‚ฌ์˜ ๊ฒฝ์šฐ 78.46%, ์•ก์ƒ์„ธํฌ๊ฒ€์‚ฌ์˜ ๊ฒฝ์šฐ 86.67%(P = 0.178)์˜€๋‹ค. 2์ฐจ ๋ถ„์„์—์„œ ์•ก์ƒ์„ธํฌ๊ฒ€์‚ฌ๋Š” ๊ฒธ์ž์ƒ๊ฒ€๊ณผ ๊ฒฐํ•ฉํ•˜์˜€์„ ๋•Œ ๊ฒธ์ž์ƒ๊ฒ€๋งŒ ์‹œํ–‰ํ•œ ๊ฒฝ์šฐ์— ๋น„ํ•ด ๋ฏผ๊ฐ๋„์˜ ํ–ฅ์ƒ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค.(88.24% vs 97.06%, P=0.041) ๊ฒฐ๋ก : ์•ก์ƒ์„ธํฌ๊ฒ€์‚ฌ๋Š” ๊ณ ์‹์ ๋„๋ง๊ฒ€์‚ฌ๋ณด๋‹ค ๋” ๋†’์€ ๋ฏผ๊ฐ๋„์™€ ์ •ํ™•๋„๋ฅผ ๋ณด์˜€๋‹ค. ๋˜ํ•œ, ์•ก์ƒ์„ธํฌ๊ฒ€์‚ฌ๋Š” ๊ฒธ์ž์ƒ๊ฒ€๊ณผ ํ•จ๊ป˜ ์‹œํ–‰ํ•˜์˜€์„ ๋•Œ ๋ฏผ๊ฐ๋„์˜ ํ–ฅ์ƒ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค.Chapter 1. Introduction 1 Chapter 2. Methods 3 Chapter 3. Results 9 Chapter 4. Discussion 12 Bibliography 16 Abstract in Korean 21 Tables [Table 1] 22 [Table 2] 23 [Table 3] 24 [Table 4] 25 [Table 5] 26 [Figure 1] 27 [Figure 2] 28 [Figure 3] 29 [Table S1] 30 [Table S2] 31์„

    ์š”์–‘๋ณ‘์› ๊ฐ„ํ˜ธ์‚ฌ์˜ ์ง๋ฌด๋งŒ์กฑ์ด ์ด์ง์˜๋„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ

    Get PDF
    ๋ณด๊ฑด๋Œ€ํ•™์›/์„์‚ฌ์ด ์—ฐ๊ตฌ๋Š” ๋…ธ์ธ์ธ๊ตฌ ์ดˆ(่ถ…)๊ณ ๋ น ์‚ฌํšŒ์— ์ง„์ž… ์˜ˆ์ƒ๊ณผ ํ•จ๊ป˜ ์š”์–‘๋ณ‘์›์˜ ๊ธ‰์†ํ•œ ์ฆ๊ฐ€๋กœ ์ธํ•ด ๊ฐ„ํ˜ธ์ธ๋ ฅ ๊ด€๋ฆฌ๊ฐ€ ๋ฌด์—‡๋ณด๋‹ค๋„ ๋ณ‘์›๊ด€๋ฆฌ์—์„œ ๋งค์šฐ ์ค‘์š”ํ•œ ๋ถ€๋ถ„์„ ์ฐจ์ง€ํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ ์š”์–‘๋ณ‘์›์€ ํฌ๊ด„์ˆ˜๊ฐ€์ œ๊ฐ€ ์ ์šฉ๋˜๋ฉฐ ๊ฐ„ํ˜ธ์ธ๋ ฅ ํ™•๋ณด ์ˆ˜์ค€์— ๋”ฐ๋ผ ์ž…์›๋ฃŒ๊ฐ€ ๋“ฑ๊ธ‰๋ณ„ ๊ฐ€๊ฐ์ด ๋œ๋‹ค. ์š”์–‘๋ณ‘์› ๊ฐ„ํ˜ธ์‚ฌ๋Š” ๊ฐ€์กฑ์„ ๋Œ€์‹ ํ•˜์—ฌ ๋Œ๋ด„ ์—ญํ• ์„ ์ œ๊ณตํ•˜๋ฉฐ, ๊ฐ„ํ˜ธ์กฐ๋ฌด์‚ฌ์™€ ๊ฐ„๋ณ‘์ธ๋“ฑ์˜ ์ธ๋ ฅ๊ด€๋ฆฌ๋ฅผ ํ•˜๋Š” ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ์š”์–‘๋ณ‘์› ๊ฐ„ํ˜ธ์‚ฌ์˜ ๋†’์€ ์ด์ง๋ฅ ์„ ๋‚ฎ์ถ”๊ธฐ ์œ„ํ•ด์„œ ์š”์–‘๋ณ‘์› ๊ฐ„ํ˜ธ์‚ฌ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ง๋ฌด๋งŒ์กฑ์ด ์ด์ง์˜๋„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ์‹œํ–‰๋˜์—ˆ๋‹ค. ์—ฐ๊ตฌ๋ฐฉ๋ฒ•์œผ๋กœ ๊ตฌ์กฐํ™”๋œ ์„ค๋ฌธ์ง€๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ˆ˜๋„๊ถŒ์ง€์—ญ์— ์ž„์˜์„ ์ •ํ•œ 11๊ฐœ ์š”์–‘๋ณ‘์›์˜ ๊ฐ„ํ˜ธ์‚ฌ๋ฅผ ๋Œ€์ƒ์œผ๋กœ 480๋ถ€ ์ค‘์— 436๋ถ€๋ฅผ ํšŒ์ˆ˜ํ•˜์˜€๊ณ , 418๋ถ€(์‘๋‹ต๋ฅ :87.0%)๋ฅผ ์ตœ์ข…๋ถ„์„์— ํ™œ์šฉํ•˜์˜€๋‹ค. ๋ถ„์„๋ฐฉ๋ฒ•์€ ๊ธฐ์ˆ ํ†ต๊ณ„, ๋ถ„์‚ฐ๋ถ„์„, ์ƒ๊ด€๋ถ„์„, ๋‹ค์ค‘ํšŒ๊ท€๋ถ„์„ ๋ฐฉ๋ฒ•์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ๋Œ€์ƒํŠน์„ฑ์— ๋”ฐ๋ฅธ ์ง๋ฌด๋งŒ์กฑ๊ณผ ์ด์ง์˜๋„ ์ฐจ์ด๋ฅผ ๋ถ„์„ํ•˜๊ณ , ์ง๋ฌด๋งŒ์กฑ ์š”์ธ๋ณ„ ๋ถ„์„์„ ํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ๋Œ€์ƒํŠน์„ฑ๊ณผ ์ง๋ฌด๋งŒ์กฑ์ด ์ด์ง์˜๋„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ด์— ๋”ฐ๋ฅธ ์—ฐ๊ตฌ์˜ ์ฃผ์š”๊ฒฐ๊ณผ๋ฅผ ์š”์•ฝํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ์—ฐ๊ตฌ๋Œ€์ƒํŠน์„ฑ์— ๋”ฐ๋ฅธ ์ง๋ฌด๋งŒ์กฑ๊ณผ ์ด์ง์˜๋„ ์ฐจ์ด๋ฅผ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ์ง๋ฌด๋งŒ์กฑ์— ์—ฐ๋ น, ์ข…๊ต, ์ง์œ„, 5๋…„๊ฐ„์˜ ์ด์งํšŸ์ˆ˜๊ฐ€ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ ๊ด€๋ จ์„ฑ์ด ์žˆ์—ˆ๊ณ , ์ด์ง์˜๋„์—๋Š” ์—ฐ๋ น, ๊ฒฐํ˜ผ์œ ๋ฌด, ์ข…๊ต, ๊ทผ๋ฌดํ˜•ํƒœ, 5๋…„๊ฐ„ ์ด์งํšŸ์ˆ˜, ๋ณ‘์›๊ทœ๋ชจ๊ฐ€ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ ๊ด€๋ จ์„ฑ์ด ์žˆ์—ˆ๋‹ค. ์ง๋ฌด๋งŒ์กฑ ์š”์ธ์—์„œ๋Š” ๋ณด์ˆ˜์— ๋Œ€ํ•œ ๋งŒ์กฑ๋„๊ฐ€ ๊ฐ€์žฅ ๋‚ฎ๊ฒŒ ๋‚˜์™”๋‹ค. ๋‘˜์งธ, ์—ฐ๊ตฌ๋Œ€์ƒํŠน์„ฑ ๋ฐ ์ง๋ฌด๋งŒ์กฑ์ด ์ด์ง์˜๋„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•ด ๋ถ„์„ํ•ด ๋ณธ ๊ฒฐ๊ณผ ์—ฐ๋ น์ด ๋‚ฎ์€ ์ง‘๋‹จ์—์„œ ์ด์ง์˜๋„๊ฐ€ ๋‚ฎ์•˜๊ณ , ๋ณ‘์›๊ทœ๋ชจ๊ฐ€ ํด์ˆ˜๋ก ์ด์ง์˜๋„๊ฐ€ ๋‚ฎ์•˜๋‹ค. ์ง๋ฌด๋งŒ์กฑ์ด ๋†’์„์ˆ˜๋ก ์ด์ง์˜๋„๊ฐ€ ๋‚ฎ์•˜๋‹ค. ์…‹์งธ, ์—ฐ๊ตฌ๋Œ€์ƒ์ด ํŠน์„ฑ๊ณผ ์ง๋ฌด๋งŒ์กฑ ํ•˜๋ถ€์š”์ธ์ด ์ด์ง์˜๋„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•ด ๋ถ„์„ํ•ด ๋ณธ ๊ฒฐ๊ณผ ์—ฐ๋ น์ด ๋†’์€ ์ง‘๋‹จ, ๋‚ฎ๊ทผ๋ฌด ํ˜•ํƒœ ๊ทผ๋ฌด์ž, ๋ณ‘์›๊ทœ๋ชจ๊ฐ€ ํด์ˆ˜๋ก ์ด์ง์˜๋„๊ฐ€ ๊ฐ์†Œํ•˜์˜€๋‹ค. ๋ณ‘์› ์†Œ์žฌ์ง€๊ฐ€ ์„œ์šธ์— ๋น„ํ•ด ๊ฒฝ๊ธฐ๋„์ธ ๋ณ€์ˆ˜๊ฐ€ ์ด์ง์˜๋„ ์ฆ๊ฐ€ ํ•˜์˜€๋‹ค. ์ง๋ฌด๋งŒ์กฑ ์š”์ธ ์ค‘์—์„œ๋Š” ๋ณด์ˆ˜, ์ „๋ฌธ์ง ์˜์‹์ด ๋†’์„์ˆ˜๋ก ์ด์ง์˜๋„๊ฐ€ ๊ฐ์†Œํ•˜์˜€๋‹ค. ๋„ท์งธ, 300๋ณ‘์ƒ์„ ๊ธฐ์ค€์œผ๋กœ ๊ทœ๋ชจ๋ณ„ ๋‘ ๊ทธ๋ฃน์œผ๋กœ ๋‚˜๋ˆ  ์—ฐ๊ตฌ๋Œ€์ƒํŠน์„ฑ ๋ฐ ์ง๋ฌด๋งŒ์กฑ์ด ์ด์ง์˜๋„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•ด ๋ถ„์„ํ•ด ๋ณธ ๊ฒฐ๊ณผ ๋‘ ๊ทธ๋ฃน ๋ชจ๋‘ ์„ญ๋ฆฝํ˜•ํƒœ ๋ฐ ๋ณด์ˆ˜ ๋งŒ์กฑ๋„๊ฐ€ ์˜ํ–ฅ์„ ๋ฏธ์ณค๋‹ค. 300๋ณ‘์ƒ๋ฏธ๋งŒ ๊ทธ๋ฃน์—๋Š” ์ „๋ฌธ์ง ์˜์‹์ด ์ถ”๊ฐ€๋กœ ์˜ํ–ฅ์„ ๋ฏธ์ณค์œผ๋ฉฐ, 300๋ณ‘์ƒ์ด์ƒ ๊ทธ๋ฃน์€ ๋ณ‘์›์†Œ์žฌ์ง€๊ฐ€ ์ถ”๊ฐ€๋กœ ์˜ํ–ฅ์„ ๋ฏธ์ณค๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ ์ง๋ฌด๋งŒ์กฑ์ด ์ด์ง์˜๋„์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ์ด์— ์š”์–‘๋ณ‘์› ๊ฐ„ํ˜ธ์‚ฌ์˜ ์ง๋ฌด๋งŒ์กฑ์„ ๋†’์—ฌ์„œ ์ด์ง์˜๋„๋ฅผ ๋‚ฎ์ถ”๋Š” ๋ฐฉ์•ˆ์„ ๋ชจ์ƒ‰ํ•˜์—ฌ ํ•œ๋‹ค. ์ด ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ํ† ๋Œ€๋กœ ํ•˜๋ฉด ์š”์–‘๋ณ‘์› ๊ฐ„ํ˜ธ์‚ฌ์˜ ์ด์ง์˜๋„๋ฅผ ๋‚ฎ์ถ”๊ธฐ ์œ„ํ•ด ์ง๋ฌด๋งŒ์กฑ๋„๋ฅผ ๋†’์—ฌ์•ผ ํ•œ๋‹ค. ์ง๋ฌด๋งŒ์กฑ ์„ธ๋ถ€ํ•ญ๋ชฉ๋ณ„ ๋งŒ์กฑ๋„๋ฅผ ๋†’์—ฌ ํ–ฅํ›„ ์š”์–‘๋ณ‘์› ๊ฐ„ํ˜ธ์‚ฌ์˜ ์ด์ง์˜๋„๋ฅผ ๋‚ฎ์ถ”์–ด์„œ ์š”์–‘๋ณ‘์› ํ™˜์ž๋“ค์—๊ฒŒ ๊ธ์ •์ ์ธ ๊ฐ„ํ˜ธ์„œ๋น„์Šค์™€ ๊ฒฝ์˜์ธก๋ฉด์˜ ์˜๋ฃŒ์ˆ˜์ต ๊ด€๋ฆฌ์— ๊ธฐ์—ฌ ํ•  ๊ฒƒ์ด๋‹ค.ope

    ๋ฏธ๋Ÿ‰์˜ ๋†์•ฝ ๊ฒ€์ถœ์„ ์œ„ํ•œ ๊ณ ๊ฐ๋„ ๊ณ ์žฌํ˜„์„ฑ์˜ ์ข…์ด ๊ธฐ๋ฐ˜ ํ‘œ๋ฉด ์ฆ๊ฐ• ๋ผ๋งŒ ์‚ฐ๋ž€ ์„ผ์„œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‚ฌ๋ฒ”๋Œ€ํ•™ ๊ณผํ•™๊ต์œก๊ณผ, 2018. 2. ์ •๋Œ€ํ™.๋ฏธ๋Ÿ‰์˜ ๋†์•ฝ ๊ฒ€์ถœ์„ ์œ„ํ•œ ํšจ์œจ์ ์ธ ๋ฐฉ๋ฒ• ์ค‘์— ํ•˜๋‚˜๋กœ ๊ฐ๊ด‘๋ฐ›๋Š” ํ•„ํ„ฐ ํŽ˜์ดํผ ๊ธฐ๋ฐ˜์˜ ํ‘œ๋ฉด ์ฆ๊ฐ• ๋ผ๋งŒ ์‚ฐ๋ž€ (SERS) ์„ผ์„œ๋Š” ์ง€๋‚œ ์‹ญ์ˆ˜๋…„๊ฐ„ ์—ฐ๊ตฌ๋˜์–ด ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ•„ํ„ฐ ํŽ˜์ดํผ์˜ ์นœ์ˆ˜์„ฑ ์„ฑ์งˆ์— ์˜ํ•ด ์šฉ์•ก๋“ค์€ ์ข…์ด ํ‘œ๋ฉด์— ๊ณ ์ •๋˜์ง€ ์•Š๊ณ  ๋น ๋ฅด๊ฒŒ ์ข…์ด ๋‚ด๋ถ€๋กœ ํก์ˆ˜๋˜๊ฒŒ ๋  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ข…์ด๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ์…€๋ฃฐ๋กœ์˜ค์Šค ์„ฌ์œ ์˜ ๊ตฌ์กฐ์ , ํฌ๊ธฐ์  ๋‹ค์–‘์„ฑ์— ์˜ํ•ด ๋งŽ์€ ์ˆ˜์˜ ๊ณต๊ทน๊ณผ ๋†’์€ ์ข…์ด ํ‘œ๋ฉด ๋‹จ์ฐจ๋ฅผ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ข…์ด์˜ ํŠน์„ฑ์œผ๋กœ ์ธํ•ด ๋‚ฎ์€ ์ข…์ด ๊ธฐ๋ฐ˜์˜ SERS ์„ผ์„œ์˜ ๊ฐ๋„์™€ ์žฌํ˜„์„ฑ์ด ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋˜ํ•œ ๋ถ„์ž์™€ ๊ธˆ์† ์‚ฌ์ด์˜ ๊ฒฐํ•ฉ๋ ฅ ์ฐจ์ด์— ์˜ํ•ด ์ผ๋ถ€์˜ ๋ถ„์ž๋งŒ ๊ฒ€์ถœ์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ ๋‹ค์–‘ํ•œ ๋ถ„์ž๋ฅผ ๊ฒ€์ถœํ•  ์ˆ˜ ์žˆ๋Š” ๋ฒ”์šฉ์  ์„ผ์„œ๋กœ๋Š” ์‚ฌ์šฉ์ด ์–ด๋ ค์› ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๊ธฐ์กด์˜ ์ข…์ด์˜ ํŠน์„ฑ์— ์˜ํ•ด ๋ฐœ์ƒํ•˜๋Š” ๋‹จ์ ์„ ๊ทน๋ณตํ•˜๊ณ  ๊ณ ๊ฐ๋„, ๊ณ ์žฌํ˜„์„ฑ์˜ SERS ์‹ ํ˜ธ๋ฅผ ๋‚ด๋Š” ํ•„ํ„ฐ ํŽ˜์ดํผ ๊ธฐ๋ฐ˜ SERS ์„ผ์„œ๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์šฐ์„  ํ•„ํ„ฐ ํŽ˜์ดํผ ๊ธฐ๋ฐ˜์˜ SERS ์„ผ์„œ์˜ ๊ฐ๋„๋ฅผ ๋†’์ด๊ธฐ ์œ„ํ•˜์—ฌ ์•Œํ‚ฌ์ผ€ํ…๋‹ค์ด๋จธ๋ฅผ (AKD) ์ข…์ด์— ์ฒ˜๋ฆฌํ•˜์—ฌ ํ•„ํ„ฐ ํŽ˜์ดํผ์˜ ์นœ์ˆ˜์„ฑ ์„ฑ์งˆ์„ ์†Œ์ˆ˜์„ฑ์œผ๋กœ ๊ฐœ์งˆํ•˜์˜€๋‹ค. ๋˜ํ•œ ์†Œ์ˆ˜์„ฑ ์ฒ˜๋ฆฌ๋œ ํ•„ํ„ฐ ํŽ˜์ดํผ ํ‘œ๋ฉด์— ์…€๋ฃฐ๋กœ์˜ค์Šค ๋‚˜๋…ธ์„ฌ์œ ๋ฅผ (CNF) ๋„์ž…ํ•˜์—ฌ ์ข…์ด ํ‘œ๋ฉด์˜ ๋‹จ์ฐจ ๋ฐ ๊ณต๊ทน์„ ์ค„์—ฌ ํ•„ํ„ฐ ํŽ˜์ดํผ ๊ธฐ๋ฐ˜ SERS ์„ผ์„œ์˜ ํ‘œ๋ฉด์˜ ๊ท ์ผ์„ฑ์„ ์ฆ๊ฐ€์‹œ์ผฐ๋‹ค. ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•„ํ„ฐ ํŽ˜์ดํผ ๊ธฐ๋ฐ˜์˜ SERS ์„ผ์„œ์˜ ์žฌํ˜„์„ฑ์„ ๋†’์ด๊ณ ์ž ํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๊ธฐ์กด์— ๊ฒ€์ถœ์ด ์–ด๋ ค์› ๋˜ ๊ทน์„ฑ ์œ ๊ธฐ ๋ถ„์ž์˜ ๊ฒ€์ถœ์ด ๊ฐ€๋Šฅํ•œ ํ•„ํ„ฐ ํŽ˜์ดํผ ๊ธฐ๋ฐ˜์˜ SERS ์„ผ์„œ๋ฅผ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•ด ์„œ๋กœ ๋‹ค๋ฅธ ์ „ํ•˜๋ฅผ ๊ฐ€์ง€๋Š” ๋‚˜๋…ธ์ž…์ž๋ฅผ ๋„์ž…ํ•˜์—ฌ ์ „ํ•˜ ์„ ํƒ์  ๊ฒ€์ถœ์ด ๊ฐ€๋Šฅํ•œ ํ•„ํ„ฐ ํŽ˜์ดํผ ๊ธฐ๋ฐ˜์˜ SERS ์„ผ์„œ๋ฅผ ์ œ์ž‘ํ•˜์˜€๊ณ  ์ด๋ฅผ ํ†ตํ•ด SERS ๊ธฐ๋ฐ˜์˜ ๋ถ„์ž ๊ฒ€์ถœ์˜ ๋ณดํŽธ์„ฑ์„ ํ™•์žฅํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๊ทธ๋ ‡๊ธฐ์— ๋ณธ ์—ฐ๊ตฌ๋Š” ํฌ๊ฒŒ ์†Œ์ˆ˜์„ฑ ์ฒ˜๋ฆฌ๋ฅผ ํ†ตํ•œ ๊ณ ๊ฐ๋„ ํ•„ํ„ฐ ํŽ˜์ดํผ ๊ธฐ๋ฐ˜ SERS ์„ผ์„œ ์ œ์ž‘, ์…€๋ฃฐ๋กœ์˜ค์Šค ๋‚˜๋…ธ์„ฌ์œ ์˜ ๋„์ž…์„ ์ด์šฉํ•œ ๊ณ ์žฌํ˜„์„ฑ์„ ๋‚˜ํƒ€๋‚ด๋Š” ํ•„ํ„ฐ ํŽ˜์ดํผ ๊ธฐ๋ฐ˜ SERS ์„ผ์„œ ์ œ์ž‘, ๋งˆ์ง€๋ง‰์œผ๋กœ ๊ทน์„ฑ ์œ ๊ธฐ ๋ถ„์ž ๊ฒ€์ถœ์„ ์œ„ํ•œ ์ „ํ•˜ ์„ ํƒ์  ๊ฒ€์ถœ์„ ๋„์ž…ํ•œ ํ•„ํ„ฐ ํŽ˜์ดํผ ๊ธฐ๋ฐ˜ SERS ์„ผ์„œ๋ฅผ ์ œ์ž‘ ๋ฐ ์ ์šฉ ์ด๋ ‡๊ฒŒ ์„ธ ํŒŒํŠธ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค. ์ฑ•ํ„ฐ 1์—์„œ๋Š” ์†Œ์ˆ˜์„ฑ์œผ๋กœ ๊ฐœ์งˆ๋œ ํ•„ํ„ฐ ํŽ˜์ดํผ์˜ ๊ฐœ๋ฐœ์— ๋Œ€ํ•ด์„œ ๋‹ค๋ฃจ๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด์˜ ์ข…์ด ๊ธฐ๋ฐ˜์˜ SERS ์„ผ์„œ๋Š” ์นœ์ˆ˜์„ฑ์˜ ์„ฑ์งˆ๋กœ ์ธํ•ด ์šฉ์•ก์ด ์ข…์ด ๋‚ด๋ถ€๋กœ ๋น ๋ฅด๊ฒŒ ํก์ˆ˜๋˜์–ด ์ข…์ด ํ‘œ๋ฉด์— ๋‚˜๋…ธ์ž…์ž๊ฐ€ ๊ฑฐ์˜ ์กด์žฌํ•˜์ง€ ์•Š์•˜์œผ๋ฉฐ ๋˜ํ•œ ๋ถ„์„ ๋ฌผ์งˆ์ด ๋‚˜๋…ธ์ž…์ž์™€ ๊ฒฐํ•ฉํ•˜๊ธฐ์— ์‹œ๊ฐ„์ด ์ถฉ๋ถ„์น˜ ์•Š์•„ ๋‚ฎ์€ SERS ์‹ ํ˜ธ ๋ฏผ๊ฐ๋„์™€ ์žฌํ˜„์„ฑ์„ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ์ด๋ฅผ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•ด ์ข…์ด์— AKD ์ฒ˜๋ฆฌ๋ฅผ ํ†ตํ•ด ์†Œ์ˆ˜์„ฑ ์„ฑ์งˆ์„ ๋‚˜ํƒ€๋‚ด๋„๋ก ํ•˜์˜€๋‹ค. ์†Œ์ˆ˜์„ฑ ๊ฐœ์งˆ์„ ํ†ตํ•ด ์ข…์ด ํ‘œ๋ฉด์—์„œ ์ˆ˜์šฉ์•ก์˜ ์ ‘์ด‰๊ฐ๊ณผ ์œ ์ง€ ์‹œ๊ฐ„์ด ์ฆ๊ฐ€ํ•˜์˜€์œผ๋ฉฐ, ์ฆ๊ฐ€๋œ ์ ‘์ด‰๊ฐ์œผ๋กœ ์ธํ•ด ์šฉ์•ก์˜ ์ ‘์ด‰ ๋ฉด์ ์ด ๊ฐ์†Œํ•˜์˜€๋‹ค. ์ด๋กœ ์ธํ•ด ์ข…์ด ํ‘œ๋ฉด์— ์€ ๋‚˜๋…ธ์ž…์ž (AgNP) ์˜ ๋ฐ€๋„๊ฐ€ ์ฆ๊ฐ€ํ•˜๊ฒŒ ๋˜์–ด ์ˆ˜๋งŽ์€ SERS hot-spot ์„ ํ˜•์„ฑํ•˜์˜€๊ณ , ์ด๋กœ ์ธํ•ด SERS ์‹ ํ˜ธ์˜ ๊ธ‰๊ฒฉํ•˜๊ฒŒ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ๋˜ํ•œ AgNP ์šฉ์•ก์˜ ๋†๋„๋ฅผ ์กฐ์ ˆํ•˜์—ฌ ํ•„ํ„ฐ ํŽ˜์ดํผ ์œ„์˜ AgNP ๋ถ„ํฌ๋ฅผ ์กฐ์ ˆํ•˜์˜€์œผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด SERS ์‹ ํ˜ธ์˜ ๋ฏผ๊ฐ๋„์™€ ์žฌํ˜„์„ฑ์„ ์ตœ์ ํ™” ํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๊ฐœ๋ฐœํ•œ ์ข…์ด ๊ธฐ๋ฐ˜์˜ SERS ์„ผ์„œ๋Š” 6.19%์˜ SERS ์‹ ํ˜ธ์˜ ํ‘œ์ค€ ํŽธ์ฐจ๋ฅผ ๋‚˜ํƒ€๋ƒˆ์œผ๋ฉฐ thiram ๊ณผ ferbam ์ด ๊ฐ๊ฐ 0.461 nM ๊ณผ 0.491 nM ์˜ ๊ฒ€์ถœ ํ•œ๊ณ„๋ฅผ ๋‚˜ํƒ€๋ƒ„์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ข…์ด์˜ ์†Œ์ˆ˜์„ฑ ์ฒ˜๋ฆฌ๋ฅผ ํ†ตํ•ด ์ €๋ ดํ•˜๊ณ  ์‰ฌ์šด ๋ฐฉ๋ฒ•์œผ๋กœ ๋ฏธ๋Ÿ‰์˜ ๋†์•ฝ์„ ๋†’์€ ์žฌํ˜„์„ฑ์œผ๋กœ ๊ฒ€์ถœ ํ•  ์ˆ˜ ์žˆ๋Š” ํ•„ํ„ฐ ํŽ˜์ดํผ ๊ธฐ๋ฐ˜์˜ SERS ์„ผ์„œ๋ฅผ ๊ฐœ๋ฐœ ํ•  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ฑ•ํ„ฐ 2์—์„œ๋Š” CNF ์ฝ”ํŒ… ๋„์ž…์„ ํ†ตํ•ด ์ข…์ด ํ‘œ๋ฉด์˜ ๋‹จ์ฐจ ๋ฐ ๊ณต๊ทน์„ ์ค„์—ฌ ์ข…์ด ๊ธฐ๋ฐ˜์˜ SERS ์„ผ์„œ์˜ ์‹ ํ˜ธ ์žฌํ˜„์„ฑ์„ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ๊ฒƒ์— ๋Œ€ํ•ด ๋‹ค๋ฃจ๊ณ  ์žˆ๋‹ค. ๋งŽ์€ ์ˆ˜์˜ ๊ณต๊ทน๊ณผ ๋†’์€ ํ‘œ๋ฉด ๋‹จ์ฐจ์— ์˜ํ•ด ์ข…์ด ํ‘œ๋ฉด์€ ๋ถˆ๊ท ์ผํ•œ ํŠน์„ฑ์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ ์ด๋กœ ์ธํ•ด ๊ธฐ์กด์˜ ์ข…์ด ๊ธฐ๋ฐ˜์˜ SERS ์„ผ์„œ๋Š” ๋‚ฎ์€ SERS ์‹ ํ˜ธ ์žฌํ˜„์„ฑ์„ ๋‚˜ํƒ€๋‚ด๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด CNF ์ฝ”ํŒ…์„ ๋„์ž…ํ•˜์—ฌ ์ข…์ด ํ‘œ๋ฉด์˜ ๊ณต๊ทน์„ ์ฑ„์šฐ๊ณ  ํ‘œ๋ฉด ๋‹จ์ฐจ๋ฅผ ์ค„์ด๊ณ ์ž ํ•˜์˜€๋‹ค. ๋‘ ๋ฒˆ์˜ CNF ์ฝ”ํŒ…์˜ ๋„์ž…์— ๋”ฐ๋ผ ํ•„ํ„ฐ ํŽ˜์ดํผ์˜ ํ‘œ๋ฉด์—์„œ์˜ AgNP ์ปค๋ฒ„๋ฆฌ์ง€๊ฐ€ 87% ์—์„œ 95% ๊นŒ์ง€ ์ฆ๊ฐ€๋จ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ, CNF ์ฝ”ํŒ… ๋„์ž…์— ๋”ฐ๋ฅธ ์ข…์ด ํ‘œ๋ฉด์˜ ํ‘œ๋ฉด ๋‹จ์ฐจ ๊ฐ์†Œ ๋ฐ ๊ณต๊ทน์˜ ์ˆ˜ ๊ฐ์†Œ๋กœ ์ธํ•ด AgNP ๊ฐ€ ๊ท ์ผํ•˜๊ฒŒ ๋„์ž…๋จ์„ FE-SEM ์ด๋ฏธ์ง€ ๋ถ„์„์„ ํ†ตํ•ด ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋‘ ๋ฒˆ์˜ CNF ์ฝ”ํŒ…์„ ํ•„ํ„ฐ ํŽ˜์ดํผ์— ๋„์ž…ํ•จ์— ๋”ฐ๋ผ SERS ์‹ ํ˜ธ์˜ ์ƒ๋Œ€ ํ‘œ์ค€ ํŽธ์ฐจ๋Š” 28%์—์„œ 9%๋กœ ๊ฐ์†Œํ•˜์˜€์œผ๋ฉฐ 4-ATP ์˜ ๊ฒ€์ถœ ํ•œ๊ณ„๋Š” 3.782 nM ์—์„œ 0.426 nM ๋กœ ๊ฐ์†Œํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. CNF ์ฝ”ํŒ… ๋„์ž…์— ๋”ฐ๋ฅธ ํ‘œ๋ฉด ๊ท ์ผ์„ฑ ์ฆ๊ฐ€๋Š” SERS ์‹ ํ˜ธ ์žฌํ˜„์„ฑ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์‹ ํ˜ธ ๋ฏผ๊ฐ๋„ ๊นŒ์ง€ ์ฆ๊ฐ€์‹œํ‚ด์„ ํ™•์ธํ•˜์˜€๊ณ  ์ด๋Š” ์ข…์ด ๊ธฐ๋ฐ˜์˜ SERS ์„ผ์„œ์˜ ์‹ ํ˜ธ ์žฌํ˜„์„ฑ์˜ ์ฆ๊ฐ€์— ๊ธฐ๋ณธ ์—ฐ๊ตฌ๊ฐ€ ๋  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ์ฑ•ํ„ฐ 3 ์—์„œ๋Š” ๊ทน์„ฑ ์œ ๊ธฐ ๋ถ„์ž๋ฅผ ๊ฒ€์ถœ ํ•  ์ˆ˜ ์žˆ๋Š” ์ „ํ•˜ ์„ ํƒ์  ์ข…์ด ๊ธฐ๋ฐ˜์˜ SERS ์„ผ์„œ ๊ฐœ๋ฐœ์— ๋Œ€ํ•ด์„œ ๋‹ค๋ฃจ๊ณ  ์žˆ๋‹ค. ๋ถ„์ž์— ์žˆ๋Š” ์ž‘์šฉ๊ธฐ์— ๋”ฐ๋ผ ๋ถ„์ž์™€ ๊ธˆ์†์€ ์„œ๋กœ ๋‹ค๋ฅธ ์นœํ™”๋„๋ฅผ ๋‚˜ํƒ€๋‚ด๋ฉฐ, ์ด๋กœ ์ธํ•ด ๊ธฐ์กด์˜ ์ข…์ด ๊ธฐ๋ฐ˜์˜ SERS ์„ผ์„œ๋Š” ํŠน์ •ํ•œ ๋ถ„์ž๋งŒ ๊ฒ€์ถœ ๊ฐ€๋Šฅํ•˜์˜€๋‹ค. ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ณ  SERS ๊ธฐ๋ฐ˜์˜ ๋ถ„์ž ๊ฒ€์ถœ์˜ ๋ณดํŽธ์„ฑ์„ ํ™•๋Œ€์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ „ํ•˜ ์„ ํƒ์  ๊ฒ€์ถœ์ด ๊ฐ€๋Šฅํ•œ ์ข…์ด ๊ธฐ๋ฐ˜์˜ SERS ์„ผ์„œ๋ฅผ ์ œ์ž‘ํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์„œ๋กœ ๋‹ค๋ฅธ ์ „ํ•˜๋ฅผ ๊ฐ€์ง€๋Š” AgNP๋ฅผ ํ•„ํ„ฐ ํŽ˜์ดํผ์— ๋„์ž…ํ•˜์—ฌ ์ „ํ•˜ ์„ ํƒ์  ์ข…์ด ๊ธฐ๋ฐ˜์˜ SERS ์„ผ์„œ๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๊ธฐ์กด์˜ AgNP์€ ์‹œํŠธ๋ฅด์‚ฐ ์ด์˜จ์— ์˜ํ•ด ์Œ์ „ํ•˜๋ฅผ ๋‚˜ํƒ€๋‚ด๋ฉฐ, ์ด๋Ÿฌํ•œ AgNP ํ‘œ๋ฉด์— ์–‘์ „ํ•˜๋ฅผ ๋„๋Š” ๊ณ ๋ถ„์ž์ธ poly(allyldimethylammonium chloride) (PDDA)์„ ๋„์ž…ํ•œ AgNP@PDDA๋ฅผ ๊ฐœ๋ฐœํ•˜์—ฌ ์–‘์ „ํ•˜๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ๋‚˜๋…ธ ์ž…์ž๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์„œ๋กœ ๋‹ค๋ฅธ ์ „ํ•˜๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” AgNP์™€ AgNP@PDDA๋ฅผ ์ข…์ด ํ‘œ๋ฉด์— ๋„์ž…ํ•˜์—ฌ ์ „ํ•˜ ์„ ํƒ์  ๊ฒ€์ถœ์ด ๊ฐ€๋Šฅํ•œ ์ข…์ด ๊ธฐ๋ฐ˜์˜ SERS ์„ผ์„œ๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. AgNP์— PDDA ๊ณ ๋ถ„์ž๊ฐ€ ๋„์ž…๋จ์„ UV/Vis ์ŠคํŽ™ํŠธ๋Ÿผ, ์ œํƒ€ ์ „์œ„ ๋ณ€ํ™” ๋ฐ ๊ณ ํ•ด์ƒ๋„ ํˆฌ๊ณผ ์ „์ž ํ˜„๋ฏธ๊ฒฝ์„ ์ด๋ฏธ์ง€ ๋ณ€ํ™”๋ฅผ ํ†ตํ•ด ํ™•์ธํ•˜์˜€๋‹ค. ์ œ์ž‘ํ•œ ์„ผ์„œ์˜ ์ „ํ•˜ ์„ ํƒ์  ๊ฒ€์ถœ์˜ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ์ „ํ•˜๋ฅผ ๋„๋Š” ๋ผ๋งŒ ์—ผ๋ฃŒ๋ฅผ ๊ฐ๊ฐ์˜ ์„ผ์„œ์— ์ ์šฉํ•˜์˜€์œผ๋ฉฐ AgNP ๊ฐ€ ์ฒ˜๋ฆฌ๋œ ์„ผ์„œ์—์„œ๋Š” ์–‘์ „ํ•˜๋ฅผ ๋ˆ ๋ผ๋งŒ ์—ผ๋ฃŒ๊ฐ€, AgNP@PDDA ๊ฐ€ ์ฒ˜๋ฆฌ๋œ ์„ผ์„œ์—์„œ๋Š” ์Œ์ „ํ•˜๋ฅผ ๋ˆ ๋ผ๋งŒ ์—ผ๋ฃŒ๊ฐ€ ๊ฒ€์ถœ๋จ์„ ํ™•์ธํ•˜์˜€๊ณ , ์ด๋Š” ๋‚˜๋…ธ ์ž…์ž์™€ ์ „ํ•˜๋ฅผ ๋„๋Š” ๋ถ„์ž ์‚ฌ์ด์— ์ž‘์šฉํ•˜๋Š” ์ •์ „๊ธฐ์  ์ธ๋ ฅ์— ์˜ํ•ด์„œ ๋‚˜ํƒ€๋‚จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๊ฐœ๋ฐœ๋œ ์ „ํ•˜ ์„ ํƒ์  ์ข…์ด ๊ธฐ๋ฐ˜์˜ SERS ์„ผ์„œ์˜ ์ „ํ•˜ ์„ ํƒ์  ๋ถ„์ž ๊ฒ€์ถœ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ํ™•์ธํ•˜์˜€๊ณ , ๊ทน์„ฑ ์œ ๊ธฐ ๋ถ„์ž์˜ ๊ฒ€์ถœ ํ™•์ธ์„ ์œ„ํ•ด ์•„๋‹๋ฆฐ๊ณผ ๋ฒค์กฐ์‚ฐ ์œ ๋„์ฒด๋ฅผ ๋„์ž…ํ•˜์˜€๋‹ค. ๊ฐ๊ฐ์˜ ๊ทน์„ฑ ์œ ๊ธฐ ๋ถ„์ž๋Š” AgNP ๋ฐ AgNP@PDDA ์„ผ์„œ์—์„œ ๋ถ„๋ฆฌ ๊ฒ€์ถœ๋จ์„ ํ™•์ธ๋˜์—ˆ์œผ๋ฉฐ, ์•„๋‹๋ฆฐ๊ณผ ๋ฒค์กฐ์‚ฐ์ด ์ˆ˜์‹ญ ๋งˆ์ดํฌ๋กœ ๋ชฐ ๋†๋„์˜ ์ˆ˜์ค€๊นŒ์ง€ ๊ฒ€์ถœ๋จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ 10% ์ดํ•˜์˜ ์ƒ๋Œ€ ํ‘œ์ค€ ํŽธ์ฐจ๋ฅผ ๋‚˜ํƒ€๋ƒ„์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ ์ด๋ฅผ ํ†ตํ•ด ๊ฐœ๋ฐœํ•œ ์ „ํ•˜ ์„ ํƒ์  ์ข…์ด ๊ธฐ๋ฐ˜์˜ SERS ์„ผ์„œ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ธฐ์กด์˜ ๊ฒ€์ถœ์ด ์–ด๋ ค์› ๋˜ ๋ถ„์ž๋ฅผ ๊ณ ๊ฐ๋„, ๊ณ ์žฌํ˜„์„ฑ ๊ฒ€์ถœ์ด ๊ฐ€๋Šฅํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์‹œํ•œ ์ข…์ด ๊ธฐ๋ฐ˜์˜ SERS ์„ผ์„œ ๊ฐœ๋ฐœ์€ ์ข…์ด ๊ธฐ๋ฐ˜์˜ SERS ์„ผ์„œ์˜ ๊ธฐ์ดˆ ์—ฐ๊ตฌ๋กœ์„œ ๋‹ค๋ฅธ ์—ฐ๊ตฌ์˜ ๊ธธ์žก์ด๊ฐ€ ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋ผ ์ƒ๊ฐํ•œ๋‹ค.As a cost-effective approach for detecting trace amounts of pesticides, paper-based surface-enhanced Raman scattering (SERS) sensors have been the subject of intensive research. However, one of the hurdles to overcome is the difficulty of retaining nanoparticles on the paper surface due to the hydrophilic nature of the cellulose fibers in paper. Furthermore, another hurdle is high surface roughness and non-uniformity of the paper surface due to the size variation and conformation of cellulose fibrils in paper. These hurdles reduce the sensitivity and reproducibility of paper-based SERS sensors due to the low density of nanoparticles, short retention time of analytes and non-uniform surface by many pores and high surface roughness on the paper surface. Furthermore, conventional SERS sensors have difficulty to use as universal SERS sensors due to difference of binding affinities between molecules and metal nanoparticle depending on functional groups of molecules. In this study, a highly sensitive and reproducible filter paper-based SERS sensor was developed. To increase the sensitivity and reproducibility of the sensor, the hydrophilic nature of the filter paper was modified to become hydrophobic one by using alkyl ketene dimer (AKD) treatment. In addition, cellulose nanofibril (CNF) coating was applied to the hydrophobic filter paper to increase the uniformity of the paper surface by filling pores and reducing the surface roughness of the filter paper. Finally, using CNF coated hydrophobic filter paper, a charge-selective paper-based SERS sensor was developed to detect polar organic pollutants for expanding the generality of SERS based molecular detection. Thus, this thesis contains three chapters that focus on: fabricating a highly sensitive and reproducible filter paper-based SERS sensor by hydrophobic modification, developing a uniform surface for the filter paper-based SERS sensor for highly reproducible SERS detection by introducing CNF coating, and applying the developed paper-based SERS sensor for fabricating of a charge-selective SERS detection to expand the generality of SERS based molecular detection. Chapter I describes the fabrication of hydrophobically modified filter paper to increase sensitivity and reproducibility of paper-based SERS sensor. Conventional paper-based SERS sensors quickly absorb nanoparticle and analyte solutions because of their hydrophilic nature. In addition, the short retention time of the analyte solution on the paper surface provides insufficient time for the analyte to bond on the surface of the nanoparticle. Thus, conventional paper-based SERS sensors show low sensitivities and reproducibilities. To overcome disadvantages of conventional paper-based SERS sensor, the surface of filter paper was modified hydrophobically by introducing AKD on filter paper. By introducing AKD on filter paper, the retention time of the silver nanoparticle (AgNP) and analyte solutions on the paper surface was increased because the AKD treatment changed hydrophilic nature of filter paper to hydrophobic one. The AKD treatment increased the contact angle of the aqueous AgNP solution, which consequently increased the density of AgNP on the paper-based SERS sensor within reduced contact area. In addition, the retention time of the aqueous solution was increased by preventing its rapid absorption into the filter paper, and the AgNP solution was dried on the paper surface without absoprtion to the filter paper. As a result, because the increased density of AgNP on a small contact area on hydrophobic filter paper, the number of increased SERS hot-spots, and strongly enhanced the SERS signal. The sensitivity and reproducibility of the SERS signal were optimized by controlling the distribution of AgNP on the surface of the filter paper, which was achieved by adjusting the concentration of the AgNP solution. The spot-to-spot variation of the SERS intensities of 4-aminothiophenol (4-ATP) at 25 AgNP spots on hydrophobic filter paper-based SERS sensor was approximately 6.2% of relative standard deviation (RSD), and the limits of detections (LODs) of thiram and ferbam were 0.461 and 0.491 nM, respectively. These proof-of-concept results indicate that this low-cost and easily fabricated paper-based SERS sensor can provide highly sensitive pesticide detection. Chapter II describes reducing the surface roughness and pores of the filter paper-based SERS sensor using CNF coating for highly reproducible SERS detection. Because of non-uniform filter paper surface originated from the large number of pores and high surface roughness, conventional paper-based SERS were difficult to measure uniform SERS signals, resulting in low reproducibility. To overcome the low reproducibility of paper-based SERS sensors, CNF coating was introduced on the surface of filter paper to fill the pores and to flatten the surface of filter paper. Double CNF coatings on the surface of the hydrophobic filter paper increased the coverage of AgNP on the paper surface from 87 to 95%. Furthermore, the AgNP were uniformly introduced onto the surface of the filter paper by reduced surface roughness and the number of pores on the paper surface were redcued, as confirmed using field-emission scanning electron microscopy (FE-SEM). Applying double CNF coatings on hydrophobic filter paper-based SERS sensor reduced the RSD of the SERS intensity from 28 to 9% and the LOD of 4-ATP from 3.782 to 0.426 nM. These CNF surface modifications on paper-based SERS sensor provided a base to fabricate a highly reproducible paper-based SERS sensor. Chapter III describes the development of a paper-based SERS sensor for detecting polar organic pollutants to expand the generality of SERS based molecular detection. Conventional paper-based SERS sensors are difficult to use as universal SERS sensors because the functional group in molecule have different affinity toward the metal. To expand the generality of paper-based SERS sensor, a charge-selective paper-based SERS sensor was developed by modifying the surface charge of AgNP. The citrate ion capped AgNP were exhibited negative surface charge due to negative charged citrate ion and attracted positively charged molecule by electrostatic attraction. However, it was hard to detect negatively charged molecule by electrostatic repulsion. To detect negatively charged molecules, the positively surface charged AgNP was fabricated by modifying the surface charge of AgNP by applying poly(diallyldimethylammonium chloride) (PDDA) on AgNP surface. The PDDA encapsulated AgNP (AgNP@PDDA) exhibited positive surface charge, and attracted negatively charged molecule. The introduction of PDDA on AgNP was confirmed by zeta-potential change and high resolution transmission electron microscopy (HR-TEM) images. Charged Raman dyes were applied to the charge-selective paper-based SERS sensor to verify its feasibility. By using charge-selective paper-based SERS sensor, positively charged Raman dyes were successfully detected using the AgNP spots, and negatively charged Raman dyes were successfully detected using the PDDA encapsulated AgNP (AgNP@PDDA) spots by electrostatic attraction.. To expand its applicability for field test, polar organic pollutants (e.g., aniline and benzoic acid derivatives) were detected using the charge-selective paper-based SERS sensor. Aniline and benzoic acid derivatives were detected by AgNP and AgNP@PDDA spots, respectively. Furthermore, aniline and benzoic acid were detected at low concentration of tens of micromolar concentration with a less than 10% RSDs. Thus, the developed charge-selective paper-based SERS sensor could expand the generality of SERS based molecular detection with a high sensitivity and reproducibility by modifying the surface charge of the AgNP.Introduction 1 1. History of surface-enhanced Raman spectroscopy (SERS) 2 2. Development of SERS sensors 6 3. Paper-based SERS sensors 13 4. Research Objectives 17 Chapter I. Hydrophobic modification of filter paper for highly sensitive and reproducible paper-based SERS sensor 19 1. Experimental section 20 1. 1. Chemicals and reagents 20 1. 2. Preparation of silver nanoparticles (AgNPs) 20 1. 3. Fabrication of hydrophobically modified filter paper 23 1. 4. Fabrication of SERS-active AgNP spots on hydrophobically modified filter paper 24 1. 5. SERS measurement 26 1. 6. DDA calculation for theoretical E-field distributions 26 1. 7. Estimation of limit of detection (LOD) 28 2. Results and Discussion 29 2. 1. Hydrophobic modification of filter paper 29 2. 2. Control of AgNP distribution of paper-based SERS sensor for SERS intensity optimization 34 2. 3. Reproducibility and sensitivity test of paper based-SERS sensor 43 2. 4. Application to pesticides detection 49 Chapter II. Surface roughness reduced paper-based SERS sensor by introducing cellulose nanofibrils (CNF) on paper for increasing reproducibility 53 1. Experimental 54 1. 1. Chemicals and reagents 54 1. 2. Preparation of cellulose nanofibrils (CNF) coated hydrophobic filter paper 54 1. 3. Fabrication of SERS-active AgNP spots on CNF coated filter paper 57 1. 4. SERS measurement 57 2. Results and Discussion 58 2. 1. Effect of numerical apertures on sensitivity and reproducibility of paper-based SERS sensor 58 2. 2. Analysis of surface morphology of CNF coated paper-based SERS sensor 62 2. 3. Reproducibility of CNF coated filter paper-based SERS sensors 69 2. 4. Sensitivity test of CNF coated paper-based SERS sensors 72 Chapter III. Expanding generality of SERS based molecular detection by charge-selective paper-based SERS sensor 76 1. Experimental 77 1. 1. Chemicals and reagents 77 1. 2. Preparation of positive charged polymer encapsulated AgNPs 78 1. 3. Fabrication of SERS-active AgNP and AgNP@PDDA spots on modified filter paper 78 1. 4. Samples preparation for SERS measurement 82 1. 5. SERS measurement 84 2. Results and Discussion 85 2. 1. Design of charge-selective paper-based SERS sensor 85 2. 2. Characterization of surface modification of AgNP and AgNP@PDDA 87 2. 3. Evaluation of charge-selective paper-based SERS sensor using charged Raman dyes 91 2. 4. Effect of ionization of aniline and benzoic acid on SERS intensity 94 2. 5. Application to detect polar organic pollutants by charge-selective paper-based SERS sensor 97 Conclusion 102 References 107 Abstract in Korean 124Docto

    A Study on the Analysis and Improvement of Heavy Marine Transport Market

    Get PDF
    The Heavy Marine Transport Market Segment is dedicated to the specialised heavy marine transport market associated with the offshore oil and gas industry. The dry transportation of offshore oil and gas production, drilling and terminal structures is a highly specialised activity with considerable inherent risk. These units are the largest physical entities regularly moved between nations and can be individually valued in excess of US$1 billion. The safe and effective transportation of these units has therefore developed into a niche sector of the shipping industry with a raft of specialist vessels.Abstract โ…ด ์ œ1์žฅ ์„œ ๋ก  1 ์ œ1์ ˆ ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ 1 1. ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ 1 2. ์—ฐ๊ตฌ์˜ ํ•„์š”์„ฑ 3 ์ œ2์ ˆ ์—ฐ๊ตฌ์˜ ๋ฐฉ๋ฒ•๊ณผ ๊ตฌ์„ฑ 6 ์ œ2์žฅ ์ค‘๋Ÿ‰ํ™”๋ฌผ ์šด์†ก์‹œ์žฅ์˜ ์˜์˜์™€ ์ „๋ง 8 ์ œ1์ ˆ ์ค‘๋Ÿ‰ํ™”๋ฌผ ์šด์†ก์‹œ์žฅ์˜ ์˜์˜ 8 1. ํ•ด์ƒ ์ค‘๋Ÿ‰ํ™”๋ฌผ ์šด์†ก์˜ ์—ญ์‚ฌ์  ๋ฐฐ๊ฒฝ 8 2. ์—๋„ˆ์ง€ ์ž์›๊ฐœ๋ฐœ๊ณผ ์„ธ๊ณ„๊ฒฝ์ œ ์ „๋ง 9 3. ํ•ด์ƒ ์ค‘๋Ÿ‰ํ™”๋ฌผ ์šด์†ก๊ณผ ์—๋„ˆ์ง€ ์ž์›๊ฐœ๋ฐœ๊ณผ์˜ ๊ด€๊ณ„ 10 ์ œ2์ ˆ ํ•ด์ƒ ์ค‘๋Ÿ‰ํ™”๋ฌผ ์‹œ์žฅ์˜ ์ „๋ง 13 1. ์ „ํ†ต ์—๋„ˆ์ง€ ๋ฐœ๊ตด ์ง€์—ญ๊ณผ ์ˆ˜์š” 13 2. ํ•ด์ƒ ์ค‘๋Ÿ‰ํ™”๋ฌผ ์ˆ˜์š” 16 3. ์‹œ์ถ”์žฅ๋น„์˜ ๋ฐœ์ „๊ณผ ๊ทœ๋ชจ 19 4. ์‹ฌํ•ด๋กœ ์ง„์ถœํ•˜๋Š” ์—๋„ˆ์ง€ ๊ฐœ๋ฐœ์ •์ฑ…๊ณผ ํ”Œ๋žœํŠธ์ˆ˜์š” 21 ์ œ3์žฅ ํ•ด์ƒ ์ค‘๋Ÿ‰ํ™”๋ฌผ ๋ฌผ๋ฅ˜์‹œ์žฅ ๋ถ„์„ 24 ์ œ1์ ˆ ํ•ด์ƒ ์ค‘๋Ÿ‰ํ™”๋ฌผ ์šด์†ก์˜ ์ •์˜์™€ ๋งˆ์ผ€ํŒ… 24 1. ํ•ด์ƒ ์ค‘๋Ÿ‰ํ™”๋ฌผ ์šด์†ก์˜ ์ •์˜ 24 2. ํ•ด์ƒ ์ค‘๋Ÿ‰ํ™”๋ฌผ ์šด์†ก์˜ ์„œ๋น„์Šค ๋งˆ์ผ€ํŒ… 26 ์ œ2์ ˆ ํ•ด์ƒ ์ค‘๋Ÿ‰ํ™”๋ฌผ ๋ฌผ๋ฅ˜์‹œ์žฅ์˜ ํ˜„ํ™ฉ 33 1. ์ค‘๋Ÿ‰ํ™”๋ฌผ ๋ฌผ๋ฅ˜์‹œ์žฅ ํ˜„ํ™ฉ 33 2. ์„ ๋ฐ• ๋ฐ ํŠน์ˆ˜์žฅ๋น„ ํ˜„ํ™ฉ 37 ์ œ3์ ˆ ์ฃผ์š” ํ•ด์ƒ ์ค‘๋Ÿ‰ํ™”๋ฌผ ์šด์†ก ๋™ํ–ฅ 40 1. Platform-Semisubmersible Rig ์šด์†ก๋™ํ–ฅ 41 2. Jack-Up ์šด์†ก๋™ํ–ฅ 43 ์ œ4์žฅ ํ•ด์ƒ ์ค‘๋Ÿ‰ํ™”๋ฌผ ๋ฌผ๋ฅ˜์‚ฌ์—…์˜ ์ „๋ง์— ๊ด€ํ•œ ๋ถ„์„ 45 ์ œ1์ ˆ ์ง„์ถœ ๊ธฐ์—…๋“ค์˜ ์˜์—… ํ˜„ํ™ฉ 45 1. ์„ ๋‘๊ธฐ์—… ๋„ํฌ์™€์ด์ฆˆ์‚ฌ์˜ ํŠน์„ฑ 45 2. ์ฃผ์š” ์—…์ฒด๋ณ„ ์˜์—…ํ˜„ํ™ฉ 48 ์ œ2์ ˆ ๊ตญ๋‚ด ๋ฌผ๋ฅ˜๊ธฐ์—…์˜ ์ค‘๋Ÿ‰ํ™”๋ฌผ ์‹œ์žฅ ์ง„์ž… ํ˜„ํ™ฉ 52 1. ๊ตญ๋‚ด๋ฌผ๋ฅ˜๊ธฐ์—…๊ณผ ์ค‘๋Ÿ‰ํ™”๋ฌผ ์šด์†ก์‹œ์žฅ 52 ์ œ3์ ˆ ์ค‘๋Ÿ‰ํ™”๋ฌผ ๋ฌผ๋ฅ˜์‹œ์žฅ SWOT๋ถ„์„ 57 1. ์™ธ๋ถ€ํ™˜๊ฒฝ ๋ถ„์„ 57 2. ๋‚ด๋ถ€ํ™˜๊ฒฝ ๋ถ„์„ 58 3. ์ค‘๋Ÿ‰ํ™”๋ฌผ ๋ฌผ๋ฅ˜์‹œ์žฅ ์ง„์ถœ์„ ์œ„ํ•œ ์ „๋žต ๋„์ถœ 60 ์ œ5์žฅ ๊ฒฐ ๋ก  63 ์ œ1์ ˆ ๊ฐ ์žฅ๋ณ„ ์—ฐ๊ตฌ๊ฒฐ๊ณผ ์š”์•ฝ 63 1. ์—ฐ๊ตฌ๊ฒฐ๊ณผ ์š”์•ฝ 63 2. ์ •์ฑ…์  ์‹œ์‚ฌ์  66 3. ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„์  67 ์ฐธ๊ณ ๋ฌธํ—Œ 6

    ํ˜„๋Œ€ ๊ฑด์ถ•์˜ ๊ด€์ ์—์„œ ๋ฐ”๋ผ๋ณธ ๊ณต๊ฐ„, ์‹œ๊ฐ„, ๊ฑด์ถ• ์˜ ์žฌํ•ด์„์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ฑด์ถ•ํ•™๊ณผ, 2012. 8. ์ตœ์žฌํ•„.Siegfried Giedions Space, Time, and Architecture gives useful insights into the background and cultural context of modern architecture and urban planning through the authors establishment of a new space-time concept. Though its significance lies in the introduction of a new concept of time, in light of the advancements in virtual space and time in this digital age, debate continues as to whether the so-called fourth dimension is applicable today. By extracting and analyzing core themes from Space, Time, and Architecture, this research aims to envisage how the book can be revised appropriate to inform the development of digital design and technology in architecture today. Through the analysis of the key themes of his book, this study shows that despite the apparent criticism regarding Giedions space-time conception, some of the themes can still inform a new understanding of the space-time concept that is relevant today. Through a literature review of the varying critiques of Giedions Space, Time and Architecture and development of digital technologies to architectural practice and the new understanding of space-time concept, the thesis identifies the appropriate persistence of a number of overarching themes informing architectural practice. With the themes Thinking and Feeling, Spirit of the Age, Constituent Fact comprising Giedions underlying synthesis in creating a new tradition, this study seeks to integrate them into contemporary discussions to identify a shift in space-time consideration in the digital age. In substantiating its claim the study conducts case studies on projects that have been specifically designed to extend and amplify the concept of transformation in movement which acts as a fundamental element speculating the established conceptions of space-time. The works illustrate the theoretical claim and provide a model for further practical exploitation. In so doing the thesis proposes a minor synopsis of 21stCenturySpace,TimeandArchitecture that is a reflection of Giedions theory on space conception and its potential to be integrated with the opportunities offered by the exploration of the digital medium.1. Introduction 1 2. Giedion and the Space-Time Concept 7 2.1. Background: Space, Time and Architecture 7 2.2. Space-Time and its Development 17 2.2.1. Before the 20thCenturySpace-TimeConception 17 2.2.2. Art and the New Space-Time Conception 22 3. Space-Time and its Underlying Themes 27 3.1. Thinking and Feeling 29 3.1.1. Need for Union in Art and Sciences 30 3.1.2. Cases 32 3.2. Spirit of the Age 35 3.2.1. Interrelationship among Various Fields 31 3.2.2. Relationship Among Human Needs, Materials and Methods 37 3.3. Constituent Facts 38 3.3.1. Cases 39 3.4. Discussion 42 4. 21stCenturySpace,Time,andArchitecture: A Synopsis 44 4.1. Introduction 44 4.1.1. Post-Giedion 20thCentury 44 4.1.2. Space-Time in Contemporary Digital Design 44 4.2. Unity in Thinking and Feeling Today 52 4.2.1. Union of Art and Science through Reconstitution of Movement in the 21stCentury 55 4.3. Spirit of the Age Today 53 4.3.1. Computational Thinking as a New Frontier 53 4.3.2. Generative Form Process & Parameter-based Strategies 57 4.3.3. Cases 57 4.4. Constituent Facts Today 60 4.4.1. Towards a Moving Architecture 60 4.4.2. Cases 60 4.5. A Different Perspective on Space, Time, and Architecture 66 4.5.1. Movement in the Eyes of Giedion 68 4.5.2. Movement in Architecture Today 72 5. Conclusion 77 Reference 82Maste

    A Case of Fungal Endophthalmitis after Having Received Extraction of Wisdom Tooth in Healthy Woman

    Get PDF
    Purpose: To report a case of candida endogenous endophthalmitis in healthy women who had received extraction of wisdom tooth. Case summary: A 65-year-old medically healthy woman who had received extraction of wisdom tooth two weeks ago, presented with floater symptoms in her left eye. Best-corrected visual acuity was 20/40 and intraocular pressure was 17 mmHg in her left eye. Inflammatory cells were found in the anterior chamber and vitreous. Fluorescein angiography showed multiple hypofluorescence without vascular leakage. With provisional diagnosis of intermediate uveitis, she was prescribed oral steroid for two weeks. After that, inflammatory cells in anterior chamber was reduced but vitreous imflammatory cell was increased and fundus examination detected newly developed infiltrated lesion at superotemporal area. The patient was presumed to have fungal endophthalmitis and immediate intravitreal voriconazole injection was performed. Three days after intravitreal voriconazole injection, diagnostic vitrectomy and intravitreal voriconazole injection were performed. Vitreous cultures revealed the growth of Candida albicans. Despite the treatment, inflammatory response in anterior chamber and vitreous rapidly increased and visual acuity was decreased to hand movement. We changed anti-fungal agent, voriconazole to Amphotericin B. Additional three-time intravitreal injection was done and therapeutic vitrectomy with oil injection were performed. After treatment, the patientโ€™s fundus markedly improved and inflammatory response was decreased. Conclusions: This case report shows candida endophthalmitis in healthy woman who had received extraction of wisdom tooth. So to diagnose endophthalmitis, patientโ€™s medical history should carefully be checked including dental care history who presented with vitreous inflammation and inflammatory infiltrated lesion at fundus.ope

    Theoretical Investigation of Surface Plasmon Coupling in Sphere Tetramer System and Sphere Dimer on Plate System

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณผํ•™๊ต์œก๊ณผ(ํ™”ํ•™์ „๊ณต), 2012. 2. ์ •๋Œ€ํ™.ํ‘œ๋ฉด ์ฆ๊ฐ• ๋ผ๋งŒ ์‚ฐ๋ž€์€ ๋ถ„์ž๊ฐ€ ๊ธˆ์ด๋‚˜ ์€๊ณผ ๊ฐ™์€ ๊ท€๊ธˆ์† ํ‘œ๋ฉด์— ํก์ฐฉ๋˜์—ˆ์„ ๋•Œ ๋ผ๋งŒ ์‚ฐ๋ž€ ์‹ ํ˜ธ์˜ ์„ธ๊ธฐ๊ฐ€ ์ฆ๊ฐ€ํ•˜๋Š” ํ˜„์ƒ์ด๋‹ค. ๊ธˆ์†์— ๋น›์ด ์กฐ์‚ฌ๋˜๋ฉด ๊ธˆ์†์˜ ํ‘œ๋ฉด์— ์žˆ๋Š” ํ‘œ๋ฉด ํ”Œ๋ผ์ฆˆ๋ชฌ์ด ๋“ค๋œจ๊ฒŒ ๋˜๊ณ  ๊ทธ๋กœ ์ธํ•ด์„œ ํ‘œ๋ฉด ์ฆ๊ฐ• ๋ผ๋งŒ ์‚ฐ๋ž€ ํ˜„์ƒ์ด ๋ฐœ์ƒํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์›๋ฆฌ๊ฐ€ ์ „์ž๊ธฐ์žฅ ์›๋ฆฌ์ด๋‹ค. ์ „์ž๊ธฐ์žฅ ์›๋ฆฌ์— ๋”ฐ๋ฅด๋ฉด ์€ ๋‚˜๋…ธ ์ž…์ž์™€ ์€ ํ•„๋ฆ„ ์‚ฌ์ด์˜ ํ‘œ๋ฉด ์ฆ๊ฐ• ๋ผ๋งŒ ์‚ฐ๋ž€ ํ˜„์ƒ์€ ๊ธˆ์† ์ž…์ž์—์„œ ๋งŒ๋“ค์–ด์ง€๋Š” ํ‘œ๋ฉด ํ”Œ๋ผ์ฆˆ๋ชฌ ์Œ๊ทน์ž์™€ ๊ทธ ์Œ๊ทน์ž์— ๊ธˆ์† ํ•„๋ฆ„์— ๋งŒ๋“ค์–ด์ง„ ์ด๋ฏธ์ง€ ์Œ๊ทน์ž์™€์˜ ์ƒํ˜ธ์ž‘์šฉ์— ์˜ํ•ด์„œ ๋‚˜ํƒ€๋‚œ๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ์ ์ฐจ ์ปดํ“จํ„ฐ ๊ธฐ์ˆ ์ด ๋ฐœ์ „ํ•จ์— ๋”ฐ๋ผ์„œ ๋†’์€ ์ •ํ™•์„ฑ์„ ๊ฐ€์ง„ ์ˆ˜์น˜๊ณ„์‚ฐ์ด ๊ฐ€๋Šฅํ•˜๊ฒŒ ๋˜์—ˆ๊ณ  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋งฅ์Šค์›ฐ ๋ฐฉ์ •์‹์„ ์ด์šฉํ•œ ์—ฌ๋Ÿฌ ๊ธˆ์† ๋‚˜๋…ธ ์ž…์ž์˜ ๊ด‘ํ•™์ ์ธ ์„ฑ์งˆ์„ ์ด๋ก ์ ์œผ๋กœ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋‚˜๋…ธ ์ž…์ž์™€ ๊ธˆ์† ํ•„๋ฆ„ ์‚ฌ์ด์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ „์ž๊ธฐ์ ์ธ ์„ฑ์งˆ ๋ฐ ์ƒํ˜ธ์ž‘์šฉ์— ๋Œ€ํ•œ ์ด๋ก ์ ์ธ ๊ณ„์‚ฐ์„ ํ†ตํ•ด ์Œ๊ทน์ž์™€ ์ด๋ฏธ์ง€ ์Œ๊ทน์ž ์‚ฌ์ด์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ƒํ˜ธ์ž‘์šฉ์— ๋Œ€ํ•ด์„œ ์‚ดํŽด๋ณด๋ ค ํ•œ๋‹ค. ์šฐ์„  ๊ณ„์‚ฐ์˜ ์œ ํšจ์„ฑ์„ ๋ณด์ด๊ธฐ ์œ„ํ•ด์„œ Aravind์™€ Metiu์— ์˜ํ•ด ์„ ํ–‰ ์—ฐ๊ตฌ๊ฐ€ ์ด๋ฃจ์–ด์กŒ๋˜ ๊ตฌ์กฐ์— ๋Œ€ํ•ด์„œ ์ด์‚ฐ ์Œ๊ทน์ž ๊ทผ์‚ฌ ๋ฐฉ๋ฒ•์„ ํ†ตํ•œ ๊ณ„์‚ฐ๊ณผ ๋ณด๊ณ ๋œ ๊ณ„์‚ฐ ์‚ฌ์ด์—์„œ์˜ ์œ ์˜๋ฏธ์„ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ด๋•Œ ์‚ฌ์šฉ๋œ ๊ตฌ์กฐ๋Š” ์€ ๋‚˜๋…ธ ์ž…์ž ์ดํ•ฉ์ฒด ๊ตฌ์กฐ์™€ ์€ ํ•„๋ฆ„ ์œ„์— ๋‚˜๋…ธ ์ž…์ž๊ฐ€ ์˜ฌ๋ ค์ ธ ์žˆ๋Š” ๊ตฌ์กฐ์ด๋‹ค. ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ์— ๋Œ€ํ•ด์„œ ์ด์‚ฐ ์Œ๊ทน์ž ๊ทผ์‚ฌ ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•ด์„œ ๊ด‘ํ•™์  ์„ฑ์งˆ๋“ค์„ ๊ณ„์‚ฐํ•˜์˜€๊ณ  ๊ณ„์‚ฐ๋œ ๊ฒฐ๊ณผ๊ฐ€ ๊ธฐ์กด ๋…ผ๋ฌธ์—์„œ ์ œ์‹œ๋œ ๊ฒฐ๊ณผ๋“ค๊ณผ ์œ ์˜๋ฏธํ•œ ๊ด€๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์œ ์˜๋ฏธํ•œ ๊ด€๊ณ„๋ฅผ ํ†ตํ•ด์„œ ์ด์‚ฐ ์Œ๊ทน์ž ๊ทผ์‚ฌ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ํƒ€๋‹น์„ฑ๊ณผ ์œ ํšจ์„ฑ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด ๊ณ„์‚ฐ๋œ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์Œ๊ทน์ž ์‚ฌ์ด์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ƒํ˜ธ์ž‘์šฉ๊ณผ ์Œ๊ทน์ž์™€ ์ด๋ฏธ์ง€ ์Œ๊ทน์ž ์‚ฌ์ด์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ƒํ˜ธ์ž‘์šฉ์— ๋Œ€ํ•ด ์‚ดํŽด๋ณด์•˜๋‹ค. ์ƒํ˜ธ์ž‘์šฉ์„ ์‚ดํŽด๋ณด๊ธฐ ์œ„ํ•ด์„œ ์€ ๋‚˜๋…ธ ์ž…์ž ์‚ฌํ•ฉ์ฒด ๊ตฌ์กฐ์™€ ์€ ํ•„๋ฆ„ ์œ„์— ์€ ๋‚˜๋…ธ ์ž…์ž ์ดํ•ฉ์ฒด๊ฐ€ ๋†“์—ฌ์ง„ ๊ตฌ์กฐ์— ๋Œ€ํ•ด์„œ ์ด์‚ฐ ์Œ๊ทน์ž ๊ทผ์‚ฌ ๋ฐฉ์‹์„ ์ด์šฉํ•˜์—ฌ ์ด๋ก  ๊ณ„์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜์˜€๊ณ  ๊ฐ๊ฐ์˜ ๊ตฌ์กฐ์— ๋Œ€ํ•œ ์†Œ๊ด‘ ์ŠคํŽ™ํŠธ๋Ÿผ๊ณผ ์ „์ž๊ธฐ์žฅ์˜ ์„ธ๊ธฐ๋ฅผ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ์ „์ฒด์ ์ธ ์ „์ž๊ธฐ์žฅ์˜ ์„ธ๊ธฐ์— ๋Œ€ํ•ด์„œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์€ ํ•„๋ฆ„ ์œ„์— ์€ ๋‚˜๋…ธ ์ž…์ž ์ดํ•ฉ์ฒด๊ฐ€ ์žˆ๋Š” ๊ตฌ์กฐ๋Š” ์กฐ์‚ฌํ•ด์ค€ ๋น›์— ๊ด€๊ณ„ ์—†์ด ํ•„๋ฆ„๊ณผ ์ดํ•ฉ์ฒด ์‚ฌ์ด์—์„œ ์ „์ž๊ธฐ์žฅ ์„ธ๊ธฐ๊ฐ€ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ ๊ทธ ์„ธ๊ธฐ๋„ ํฐ ์ฐจ์ด๊ฐ€ ์—†์—ˆ๋‹ค. ๊ทธ์— ๋น„ํ•ด ์€ ๋‚˜๋…ธ ์ž…์ž ์‚ฌํ•ฉ์ฒด์˜ ๊ฒฝ์šฐ ์กฐ์‚ฌํ•ด์ค€ ๋น›์— ๊ด€๊ณ„์—†์ด ์ž๊ธฐ์žฅ ์„ธ๊ธฐ๊ฐ€ ์ฆ๊ฐ€ํ–ˆ์ง€๋งŒ ์กฐ์‚ฌํ•ด์ค€ ๋น›์˜ ํŽธ๊ด‘ ๋ฐฉํ–ฅ์— ๋”ฐ๋ผ์„œ ์ „์ž๊ธฐ์žฅ์˜ ์„ธ๊ธฐ๊ฐ€ ์ฆ๊ฐ€ํ•œ ์˜์—ญ์ด ๋‹ค๋ฅด๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋Œ€๊ฐ ์„ฑ๋ถ„๊ณผ์˜ ์ƒํ˜ธ์ž‘์šฉ๊ณผ ๊ด€๋ จํ•ด์„œ๋Š” ์€ ๋‚˜๋…ธ ์ž…์ž ์‚ฌํ•ฉ์ฒด ์—์„œ ์ „์ž๊ธฐ์žฅ์˜ ์„ธ๊ธฐ๊ฐ€ ๋” ๊ฐ•ํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํŠน์ดํ•œ ์ ์€ ํ•„๋ฆ„ ์œ„์— ์ž…์ž๊ฐ€ ์žˆ๋Š” ๊ตฌ์กฐ์™€๋Š” ๋‹ค๋ฅด๊ฒŒ ๋‘ ๊ตฌ์กฐ ์‚ฌ์ด์—์„œ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์€ ๋‚˜๋…ธ ์ž…์ž ์‚ฌํ•ฉ์ฒด ๊ตฌ์กฐ์—์„œ๋Š” ๋„ค ๊ฐœ์˜ ์ž…์ž ์ค‘์‹ฌ ๋ถ€๊ทผ ๋ถ€๋ถ„์—์„œ ์ฃผ๋ณ€๋ณด๋‹ค ์ „์ž๊ธฐ์žฅ์˜ ์„ธ๊ธฐ๊ฐ€ ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ์Œ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋Š” ์Œ๊ทน์ž์™€ ์ด๋ฏธ์ง€ ์Œ๊ทน์ž๋Š” ์„œ๋กœ ๋‹ค๋ฅธ ์›๋ฆฌ๋กœ ํ˜•์„ฑ์ด ๋˜๋ฉฐ ์ƒํ˜ธ์ž‘์šฉ์ด ๋‹ค๋ฅธ ๋ฐฉ์‹์œผ๋กœ ๋‚˜ํƒ€๋‚œ๋‹ค๊ณ  ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์Œ๊ทน์ž์˜ ๊ฒฝ์šฐ์—๋Š” ์ด๋ฏธ์ง€ ์Œ๊ทน์ž์™€๋Š” ๋‹ฌ๋ฆฌ ์ฃผ๋ณ€์— ๋ชจ๋“  ์Œ๊ทน์ž์™€ ์ƒํ˜ธ์ž‘์šฉ์„ ํ•  ์ˆ˜ ์žˆ์ง€๋งŒ ์ด๋ฏธ์ง€ ์Œ๊ทน์ž์˜ ๊ฒฝ์šฐ, ์ด๋ฏธ์ง€ ์Œ๊ทน์ž๋ฅผ ์œ ๋ฐœํ•˜๊ฒŒ ํ•ด์ค€ ์Œ๊ทน์ž๊ฐ€ ์•„๋‹Œ ๋‹ค๋ฅธ ์Œ๊ทน์ž ํ˜น์€ ๋‹ค๋ฅธ ์ด๋ฏธ์ง€ ์Œ๊ทน์ž์™€ ์ƒํ˜ธ์ž‘์šฉ์„ ํ•˜์ง€ ๋ชปํ•˜๋Š” ๊ฒƒ์ด๋ผ ๋ณผ ์ˆ˜ ์žˆ๊ฒ ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด์„œ ์Œ๊ทน์ž์™€ ์ด๋ฏธ์ง€ ์Œ๊ทน์ž์˜ ์ „์ž๊ธฐ์ ์ธ ์„ฑ์งˆ์ด ๊ตฌ์กฐ์™€ ํŽธ๊ด‘ ๋ฐฉํ–ฅ์— ๋”ฐ๋ผ์„œ ๋‹ค๋ฅด๊ฒŒ ๋‚˜ํƒ€๋‚จ์„ ํ™•์ธํ•˜์˜€๊ณ  ๋ณต์žกํ•œ ๊ตฌ์กฐ ์†์—์„œ์˜ ์Œ๊ทน์ž์™€ ์ด๋ฏธ์ง€ ์Œ๊ทน์ž ์‚ฌ์ด์—์„œ์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ด๋ฏธ์ง€ ์Œ๊ทน์ž์— ๋Œ€ํ•œ ๋”์šฑ๋” ์ •๊ตํ•œ ๋ชจ๋ธ๋ง์ด ํ•„์š”ํ•˜๋‹ค.Surface-enhanced Raman scattering (SERS) is a surface-sensitive phenomenon that enhances Raman scattering of molecules on roughened surface of noble metals such as gold and silver through the electromagnetic (EM) mechanism and chemical charge transfer (CHEM) mechanism. According to the EM mechanism, SERS phenomenon between silver nanoparticle and film can be interpreted in terms of coupling between surface plasmon dipole of its metal particle and its image dipole within metal substrate. Now with a help of high capacity of computation technology, high precision numerical calculation is possible for solving Maxwell equation of optical properties of various metal nanostructures. In this research, the interaction of surface plasmons of nanoparticles on metal film was re-investigated in order to get insights on dipole and image dipole interaction in silver nanoparticles and film system. First, sphere dimer system (SD system) for dipole and dipole interaction and sphere monomer on film system (SF system) for dipole and image-dipole interaction were investigated to compare with the results in the references and hence confirm the validity of calculation method. Then, sphere tetramer system (ST system) and sphere dimer on silver film system (SDF system) were calculated to investigate whether the dipole and image dipole coupling theory can apply to sphere dimer on film system. Theoretical calculation was carried by using discrete dipole approximation (DDA) method and extinction spectra and electromagnetic field (E-field) intensity maps were obtained. The optical properties of SD and SF system were qualitatively consistent with those of the references. So, the validity of calculation is guaranteed. To compare with property of dipole and image dipole, at first, intensity of E-field was calculated. Aspect of E-field intensity of SD and ST systems showed dependency on polarization direction but that of SF and SDF systems showed less dependency on polarization direction because mechanism of formation dipole coupling was different. Surface plasmon of particles was affected by polarization direction, but that of image dipole was only affected by pair dipole. So, E-field enhancement appeared in all systems excited by light but it was affected by polarization direction of light. Concretely, E-field enhanced spot site which was depending on polarization direction of light was changed in SD and ST systems but SF and SDF systems, E-field enhanced spot site was almost same about major and minor polarized light. And then, for identifying interaction between interaction of dipole-dipole and dipole-image dipole, E-field intensity of film surface above 1 nm was calculated. E-field intensity between gaps was larger than other spot in ST and SDF systems, but E-field intensity of the center was slightly increase in ST system, but not in SDF system. That was, there was interaction between dipole and diagonal dipole, on the other hand, there was no interaction between image dipole - diagonal dipole and image dipole โ€“ image dipole, so aspect of E-field intensity was different between ST and SDF system. This result reveals that the coupling between dipoles along the diagonal axis is possible but the coupling between dipole and image dipole along the diagonal axis is not possible and expansion of image dipole model about more complicated structure needs to be re-investigation.1.Introduction 1_x000D_ 2.Experimental Section 4_x000D_ 3.Results and Discussion 9_x000D_ 3.1.Validity of Calculated Dipole and Image-dipole Using DDA Calculation 9_x000D_ 3.2.Properties of Dipole and Image Dipole in Silver Tetramer and Silver Dimer on Silver Thin Film 16_x000D_ 4.Conclusion 23_x000D_ 5.References 24_x000D_ ๊ตญ๋ฌธ์ดˆ๋ก 26_x000D_Maste

    ์ƒˆ๋กœ์šด ๋‚˜์ดํ‹ฐ๋†€ ์™ธ๊ณจ๊ฒฉ PTFE ์Šคํ…ํŠธ-๊ทธ๋ผํ”„ํŠธ์˜ ์ƒ์ฒด ์ ํ•ฉ์„ฑ์— ๊ด€ํ•œ ์‹คํ—˜์  ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์˜ํ•™๊ณผ ๋ฐฉ์‚ฌ์„ ๊ณผํ•™์ „๊ณต,2004.Maste

    ๅฎŒ็ต์„ ่กจ็คบํ•˜๋Š” ่ฃœ่ชž์˜ ๆ„ๅ‘ณ์™€ ๆฉŸ่ƒฝ ็ก็ฉถ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธๅคงๅญธๆ ก ๅคงๅญธ้™ข :ไธญ่ชžไธญๆ–‡ๅญธ็ง‘ ไธญ่ชžๅญธๅฐˆๆ”ป,1997.Maste

    19์„ธ๊ธฐ ๆฐดๅˆฉ์‹œ์„ค์˜ ็งๅ ๊ณผ ๆฐด็จ… ๊ฐˆ๋“ฑ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ตญ์‚ฌํ•™๊ณผ,2008. 8.Maste
    • โ€ฆ
    corecore