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ABSTRACT

Study of highly sensitive and reproducible
paper-based SERS sensors for detection of

trace pesticides

Minwoo Lee

Department of Chemistry Education
The Graduate School

Seoul National University

As a cost-effective approach for detecting trace amounts of pesticides, paper-based
surface-enhanced Raman scattering (SERS) sensors have been the subject of
intensive research. However, one of the hurdles to overcome is the difficulty of
retaining nanoparticles on the paper surface due to the hydrophilic nature of the
cellulose fibers in paper. Furthermore, another hurdle is high surface roughness and
non-uniformity of the paper surface due to the size variation and conformation of
cellulose fibrils in paper. These hurdles reduce the sensitivity and reproducibility of
paper-based SERS sensors due to the low density of nanoparticles, short retention
time of analytes and non-uniform surface by many pores and high surface roughness
on the paper surface. Furthermore, conventional SERS sensors have difficulty to use
as universal SERS sensors due to difference of binding affinities between molecules

and metal nanoparticle depending on functional groups of molecules.



In this study, a highly sensitive and reproducible filter paper-based SERS sensor was
developed. To increase the sensitivity and reproducibility of the sensor, the
hydrophilic nature of the filter paper was modified to become hydrophobic one by
using alkyl ketene dimer (AKD) treatment. In addition, cellulose nanofibril (CNF)
coating was applied to the hydrophobic filter paper to increase the uniformity of the
paper surface by filling pores and reducing the surface roughness of the filter paper.
Finally, using CNF coated hydrophobic filter paper, a charge-selective paper-based
SERS sensor was developed to detect polar organic pollutants for expanding the
generality of SERS based molecular detection.

Thus, this thesis contains three chapters that focus on: fabricating a highly sensitive
and reproducible filter paper-based SERS sensor by hydrophobic modification,
developing a uniform surface for the filter paper-based SERS sensor for highly
reproducible SERS detection by introducing CNF coating, and applying the
developed paper-based SERS sensor for fabricating of a charge-selective SERS
detection to expand the generality of SERS based molecular detection.

Chapter | describes the fabrication of hydrophobically modified filter paper to
increase sensitivity and reproducibility of paper-based SERS sensor. Conventional
paper-based SERS sensors quickly absorb nanoparticle and analyte solutions
because of their hydrophilic nature. In addition, the short retention time of the analyte
solution on the paper surface provides insufficient time for the analyte to bond on
the surface of the nanoparticle. Thus, conventional paper-based SERS sensors show

low sensitivities and reproducibilities. To overcome disadvantages of conventional



paper-based SERS sensor, the surface of filter paper was modified hydrophobically
by introducing AKD on filter paper. By introducing AKD on filter paper, the
retention time of the silver nanoparticle (AgNP) and analyte solutions on the paper
surface was increased because the AKD treatment changed hydrophilic nature of
filter paper to hydrophobic one. The AKD treatment increased the contact angle of
the aqueous AgNP solution, which consequently increased the density of AgNP on
the paper-based SERS sensor within reduced contact area. In addition, the retention
time of the aqueous solution was increased by preventing its rapid absorption into
the filter paper, and the AgNP solution was dried on the paper surface without
absoprtion to the filter paper. As a result, because the increased density of AgNP on
a small contact area on hydrophobic filter paper, the number of increased SERS hot-
spots, and strongly enhanced the SERS signal. The sensitivity and reproducibility of
the SERS signal were optimized by controlling the distribution of AgNP on the
surface of the filter paper, which was achieved by adjusting the concentration of the
AgNP solution. The spot-to-spot variation of the SERS intensities of 4-
aminothiophenol (4-ATP) at 25 AgNP spots on hydrophobic filter paper-based SERS
sensor was approximately 6.2% of relative standard deviation (RSD), and the limits
of detections (LODs) of thiram and ferbam were 0.461 and 0.491 nM, respectively.
These proof-of-concept results indicate that this low-cost and easily fabricated
paper-based SERS sensor can provide highly sensitive pesticide detection.

Chapter 11 describes reducing the surface roughness and pores of the filter paper-

based SERS sensor using CNF coating for highly reproducible SERS detection.



Because of non-uniform filter paper surface originated from the large number of
pores and high surface roughness, conventional paper-based SERS were difficult to
measure uniform SERS signals, resulting in low reproducibility. To overcome the
low reproducibility of paper-based SERS sensors, CNF coating was introduced on
the surface of filter paper to fill the pores and to flatten the surface of filter paper.
Double CNF coatings on the surface of the hydrophobic filter paper increased the
coverage of AgNP on the paper surface from 87 to 95%. Furthermore, the AgNP
were uniformly introduced onto the surface of the filter paper by reduced surface
roughness and the number of pores on the paper surface were redcued, as confirmed
using field-emission scanning electron microscopy (FE-SEM). Applying double
CNF coatings on hydrophobic filter paper-based SERS sensor reduced the RSD of
the SERS intensity from 28 to 9% and the LOD of 4-ATP from 3.782 to 0.426 nM.
These CNF surface modifications on paper-based SERS sensor provided a base to
fabricate a highly reproducible paper-based SERS sensor.

Chapter 111 describes the development of a paper-based SERS sensor for detecting
polar organic pollutants to expand the generality of SERS based molecular detection.
Conventional paper-based SERS sensors are difficult to use as universal SERS
sensors because the functional group in molecule have different affinity toward the
metal. To expand the generality of paper-based SERS sensor, a charge-selective
paper-based SERS sensor was developed by modifying the surface charge of AgNP.
The citrate ion capped AgNP were exhibited negative surface charge due to negative

charged citrate ion and attracted positively charged molecule by electrostatic



attraction. However, it was hard to detect negatively charged molecule by
electrostatic repulsion. To detect negatively charged molecules, the positively
surface charged AgNP was fabricated by modifying the surface charge of AgNP by
applying poly(diallyldimethylammonium chloride) (PDDA) on AgNP surface. The
PDDA encapsulated AgNP (AgNP@PDDA) exhibited positive surface charge, and
attracted negatively charged molecule. The introduction of PDDA on AgNP was
confirmed by zeta-potential change and high resolution transmission electron
microscopy (HR-TEM) images. Charged Raman dyes were applied to the charge-
selective paper-based SERS sensor to verify its feasibility. By using charge-selective
paper-based SERS sensor, positively charged Raman dyes were successfully
detected using the AgNP spots, and negatively charged Raman dyes were
successfully detected using the PDDA encapsulated AgNP (AgNP@PDDA) spots
by electrostatic attraction.. To expand its applicability for field test, polar organic
pollutants (e.g., aniline and benzoic acid derivatives) were detected using the charge-
selective paper-based SERS sensor. Aniline and benzoic acid derivatives were
detected by AgNP and AgNP@PDDA spots, respectively. Furthermore, aniline and
benzoic acid were detected at low concentration of tens of micromolar concentration
with a less than 10% RSDs. Thus, the developed charge-selective paper-based SERS
sensor could expand the generality of SERS based molecular detection with a high

sensitivity and reproducibility by modifying the surface charge of the AgNP.
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Study of highly sensitive and
reproducible paper-based SERS
sensors for detection of trace pesticides



Introduction



1. History of surface-enhanced Raman spectroscopy (SERS)
Raman spectroscopy is a technique for identifying vibrational and rotational normal
modes of molecule, and was discovered by C. V. Raman in 1928, After its discovery,
Raman spectroscopy became an attractive analytical technique because of several
advantages: the technique is non-destructive and allows for non-contact
measurement, the unique spectrum is produced by structure of molecule, and sample
preparation is simple?. However, because of the small Raman cross section, Raman
scattering shows weak signal, resulted in poor sensitivity. Thus, in the early stage,
Raman spectroscopy was only used for limited applications®. However, in 1974,
Fleischmann et al. discovered that Raman scattering of pyridine was significantly
enhanced by its absorption on a silver electrode. This phenomena was called as
surface-enhanced Raman scattering (SERS)*. The mechanisms of SERS
enhancement originate from electromagnetic (EM) enhancement and chemical
enhancement®. The exact mechanism is still under debate, however EM enhancement
is a more dominant mechanism for SERS enhancement known by several studies®>®.
The EM enhancement occurs when a molecule is placed near a metallic
nanostructure, and the Raman scattering of molecule is enhanced by the localized
surface plasmon resonance (LSPR) of the metallic nanostructure’®,

The discovery of the SERS phenomenon overcame the poor sensitivity of Raman

spectroscopy. Furthermore, the SERS phenomenon is suitable for multiplexed



detection because of the intrinsic SERS signal of each molecule and the narrow
bandwidth of the Raman spectrum®. Since its discovery, SERS has been used for a
variety of applications, such as biosensor’®!?, food detection'®***, chemical
detection'®>*, and in the fields of art'’, life science’®?, environmental science?*%3,
electrochemistry?+25,

Despite the advantages of SERS, even the same SERS sensors, the SERS signals of
sensors were shown poor reproducibility because the state of the metallic
nanostructure, such as its shape, size, conformation, and kinds of metal atoms,
affected the SERS signal’. Especially, the SERS signal is more enhanced when a
molecule lies on the edge or at a gap in the metallic nanostructure by concentration
of local EM field of nanostructure?®??, and this region is referred to as a SERS hot-
spot?. By the reason, although the SERS sensors are fabricated with same methods,
SERS sensors can exhibit different SERS intensities, and they cause several issues,
such as reproducibility and reliability for molecular detection?-3L, Furthermore, the
lack of a universally applicable substrate for molecular detection is a disadvantage
of SERS®2-*, The SERS signal of a molecule is affected by the distance between the
molecule and the metal, and the SERS signal dramatically decreases as the molecule
moves away from the surface of the metallic nanostructure®. However, because of
the affinity difference between molecule and metal®*, molecules with high affinities

toward the metal, such as thiol (-SH)* and isocyanide (-NC)%, produced



significantly enhanced SERS signals, however molecules with low affinities toward
the metal are hard to detect using SERS because the molecules are not close enough
to the surface of the metallic nanostructure. Therefore, it is difficult to produce
universal SERS-based molecular detection sensors, and many researchers have tried
to develop SERS sensors using various methods and substrates to overcome the

disadvantages of SERS.
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Figure 1. Conceptional illustration of SERS.



2. Development of SERS sensors

Ideal SERS sensors should satisfy the following requirements: 1) easy and cheap
fabrication, 2) highly sensitive detection, 3) reliable and reproducible detection, 4)
universal molecule detection, and 5) quantitative detection® 3-8, To increase
sensitivity and reproducibility of SERS sensors, SERS sensors have been developed
using various methods and substrates. In the early stage of development, SERS
sensors were fabricated as metal film on solid supports®**. Metal film on solid
support was deposited by vacuum sputtering or evaporating metal atom onto solid
supports. Vacuum deposition produced metal films with numerous nano-sized cracks
on solid supports, resulting in an enhanced SERS signal. However, the cracks were
randomly distributed in the metal film, resulted in poor reproducibility and reliability.
To increase the reproducibility of SERS sensors, wet etching*?“4 and lithography*>-
% based SERS sensors arose as attractive fabrication methods. Wet etching based
SERS sensors used liquid-phase etchants, such as HF*, KOH* and
tetramethylammonium hydroxide to etch the solid supports®, such as such as
silicon*>*3 and aluminum** to fabricate periodic patterns on solid supports followed
by metal deposition for fabrication SERS sensors. Chao et al. developed various
surface morphologies on silicon wafer by optimizing the etching conditions to
fabricate SERS sensor?. Furthrmore, Mehrvar et al. developed double nanocone

array by applying wet etching on silicon wafer to fabricate SERS sensor*3. However,



wet etching based SERS sensor was shown several disadvantages such as toxicity
issue and substrate contamination by etchants, and inappropriate for fine adjustment
of metallic nanostructures to optimization of SERS signal. The lithography method
was introduced to fabricate the SERS sensor in a different way from wet etching,
lithography based SERS sensors are fabricated the SERS sensors using two different
methods, which are electron-beam (E-beam) lithography and nanosphere
lithography. E-beam lithography is a method to fabricate custom shape on solid
support covered by an electron-sensitive film called a photo-resist. Kahl et al.
developed periodically structured metallic substrates on silicon wafer using E-beam
lithography*’. After that, various nanostructure shapes, such as squares, disks,
triangles, and ellipse dimers, were developed as SERS sensors using E-beam
lithography*> 484 Another type of lithography is nanosphere lithography, which
fabricates 2D periodic nanostructure arrays by metal deposition on a solid support
using polystyrene or SiO, bead arrays®°-3, After metal deposition, polystyrene and
SiO; bead arrays were removed using etchants. Lithography-based SERS sensors are
suitable for mass-produce, fabricating highly uniform surface and reproducible
SERS signals. In addition, they fabricate the SERS sensors in elaborate, custom
shapes to optimize SERS detection®" %3, However, lithography-based techniques
show the disadvantages inpoint of toxicity issue during the fabrication process and

highly expensive price because of complex process and expensive instrumentation.



Many researchers have developed SERS sensors using nanoparticle instead of metal
deposition on solid supports as a another approach to fabricate SERS sensors. To
bind nanoparticle on solid support, Natan et al, fabricated a self-assembled
monolayer (SAM) of a metal colloid on transmission electron microscopy (TEM)
grid to create SERS sensor®. To introduce a SAM of nanoparticles on the solid
support, the surface of the solid support (e.g., glass or silicon wafer) was modified
using molecule with functional group, such as amine and thiol®%%7. Furthermore,
using bifunctional molecules, which have dithiol or diamine functional group, the
3D structure of multi-layered nanoparticles was developed by introducing a chemical
linker between the SAM of the nanoparticles. SERS sensors with 3D structure of
nanopartilces were reported to enhance the SERS signal more than 2-3 orders of
magnitude®® 58, Polymers, such as polyvinylpyrrolidone (PVP) and poly(4-
vinylpyrrolidone) (P4VP) were also introduced onto a solid support to fabricate a
SAM of nanoparticles by electrostatic attraction®. Yoon et al. recently fabricated
AgNP dimers using P4VP-coated glass as universal SERS sensors®. Light-induced
growth of nanoparticles on solid supports were also applied to develop SERS
sensors®l-e3,

These SERS sensors are fabricated using solid supports, such as glass®-, silicon
wafers®, and polydimethylsiloxane (PDMS)®’. These substrates are suitable for

producing SERS sensors that exhibit high sensitivities and reproducibilities.



However, the overall processes for fabricating SERS sensors using these substrates
are complex and sophisticated, in some cases, expensive and complex equipment is
often required to fabricate SERS sensors based on these substrates. Furthermore,
solid supports are difficult to functionalize, not eco-friendly, and expensive. For
these reasons, developing cheap, simple, and easily producible SERS sensors is

required.
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Figure 3. SERS sensors fabricated by lithography methods. (a) Scheme of

fabrication of E-beam lithography based SERS sensor*’. (b) Scanning electron

microscope (SEM) image of various nanostructures fabricated by E-beam

lithography*®, and (c) characterization of elevated gold bowtie on Si post. SEM

image (left) and SERS spectra (right) of p-mercaptoaniline on elevated (red line) and
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Figure 4. SERS sensors fabricated by SAM of nanoparticles. (a) Schematic
illustration and field-emission scanning electron microscopy (FE-SEM) image of
self-assembled gold nanostars®. (b) AgNP immobilization on the P4VP coated glass
substrate. Blue dot means aniline, and red dot means target molecules®, and (c)
nanoparticle on film structure on PVP coated glass substrates, and SERS spectra of

several molecules using SERS sensor®®.
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3. Paper-based SERS sensors

Paper-based SERS sensors were developed as alternatives for overcoming the
disadvantages of conventional SERS sensors. Paper-based SERS sensors show
several advantages, including high flexibility, low cost, easy fabrication and
functionalization of the paper surface, and good biodegradability and disposability®.
Therefore, paper-based SERS sensors are emerging as potential replacements for the
conventional SERS sensors.

In their early stage, paper-based SERS sensors were developed by direct nanoparticle
growth on the paper surface® . Arthur et al. grew nanoparticle using Tollen’s
reaction on the filter paper surface’, and Cabalin et al. grew nanoparticle by spraying
reducing agents on wet filter paper treated with sliver nitrate solution®. After that,
various methods, such as electrostatic adsorption’"2, filtration”®, chemical- or light-
induced deposition of nanoparticle’*’®, metal vapor deposition using metal
evaporation’’, and screen and inkjet printing "®°, have been studied to develop
paper-based SERS sensors. In addition, paper-based SERS sensors have been applied
to label-free detection of biological samples (e.g., cancer screening®, on-site
bioassay®! and seminal plasma®), micro-fluidic channels for multiplexed detection®,
and lateral flow for biomolecule detection®-8,

However, the aforementioned sensor fabrication methods still face drawbacks of

non-uniform nanoparticle distribution, large spot-to-spot variation of the SERS



intensity, and requirement of complicated instrument, complex processes, and high
substrate fabrication costs. Furthermore, it is difficult to retain the nanoparticles and
analyte solution on the paper surface because of the hydrophilic nature of the paper,
and the solution is quickly absorbed into the paper and become widely dispersed.
The hydrophilic nature of the paper provides a low sensitivity and reproducibility
because it is difficult to concentrate the analyte solution. In addition, because of the
size variation and conformation of cellulose fibers in the paper, paper-based SERS
sensors show high surface roughness and numerous pores, resulted in low
reproducibility of the SERS signal. The affinity difference between the nanoparticle
and molecule depending on functional group of molecule still affects the generality
of the SERS sensor, and conventional paper-based SERS sensors was possible to
detect only a few molecules which have specific functional group such as thiol,
amine and isocyanide. This disadvantage hinders the expansion of generality of

SERS based moelcular detection.
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Figure 5. Paper-based SERS sensors by growth of nanoparticle on paper surface. (a)
Schematic illustration of fabrication of nanoparticle on silicon wafer, glass and paper
by laser-induced photothermal effect’”. (b) Schmatic illustration of the growth of
silver nanoparticle on polydophamine treated filter paper®, and (c) fabrication of

nanoparticles array on filter paper by irradiating LED™.

. 2 A g ) 8t



(a) Before

After

Extinction (a. u.)

Au NR loaded paper

T T
Au NR solution

45 500 550 600 650 700

Wavelength (nm)

™

800

(b)

SERS Probe|

lPuuing ‘Woven Mesl|

h

@
6

¢

4
o s

7 ’

o s H
s £

SERS Spectra

500 1000 1500
Raman Shift (cm")

Figure 6. Paper-based SERS sensors by attachment of nanoparticles on paper

surface. (a) Photographs and ultraviolet/visible (UV/Vis) extinction spectrum of gold

nanorod coated filter paper’. (b) Schematic illustration of gold nanoparticle array

loaded filter paper®”, and (c) schematic illustration of fabrication screen printed

paper-based SERS sensor’®.

16



4. Research Objectives

In this study, a simple, inexpensive, and easily fabricated filter paper-based SERS
sensor with high sensitivity, reproducibility, and expanding generality of SERS
based molecular detection was designed and fabricated by modifying the surface of
the filter paper and nanoparticle to overcome the disadvantages of conventional
paper-based SERS sensors.

At first, hydrophobic modification of filter paper was described to increase
sensitivity and reproducibility of paper-based SERS sensor in chapter I. Due to the
hydrophilic property of paper-based SERS sensor, the aqueous solutions of
nanoparticle and analyte were quickly absorbed and spread into the paper. As a result,
the paper-based SERS sensor showed low sensitivity and reproducibility. To
overcome disadvantage of conventional paper-based SERS sensor, hydrophillic
property of filter paper was changed hydrophobic one by treatment of AKD on filter
paper.

Secondly, fabrication of a uniform and smooth paper-based SERS sensor is described
in chapter I1. To increase the sensitivity of the paper-based SERS sensors, the SERS
spectra were measured using a objective lens with high numerical aperture (NA) to
increase the solid angle of the scattered light. However, using a objective lens with
high NA for SERS measurement, conventional paper-based SERS sensors showed a

low reproducibility because of their high surface roughness and numerous pores on



the paper surface. To fabricate a highly uniform and smooth paper-based SERS
sensor, cellulose nanofibrils (CNFs) were introduced on the surface of the
hydrophobically modified filter paper. By CNF coating, the surface roughness and
the number of pores reduced, and the uniformity of filter paper was increased,
resulted in increasing reproducibility of paper-based SERS sensor.

Finally, fabrication of a charge-selective paper-based SERS sensor to detect polar
organic pollutants is described in chapter Ill. Because of the different affinity
between the molecule and metal, only a few molecules could be detected by
conventional SERS sensors. Thus, in order to expand the generality of SERS based
molecular detection, polar organic pollutants, which was hard to detect using
conventional SERS sensors due to low binding affinity, were detected using a
charge-selective paper-based SERS sensor by electrostatic attraction. In order to
increase the affinity between the AgNPs and polar organic pollutants, two different
surface charged nanoparticles were synthesized and applied to fabricate a charge-

selective paper-based SERS sensor.



Chapter I. Hydrophobic
modification of filter paper for
highly sensitive and reproducible
paper-based SERS sensor
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1. Experimental section

1. 1. Chemicals and reagents

Silver nitrate  (AgNOs;, 99.999%), sodium citrate tribasic dihydrate
(CeHsO7Naz-2H,0, 99%), 4-aminothiophenol (4-ATP, CgH;NS, 98%) and
tetramethylthiuram disulfide (thiram, C¢H12N2S4, 97%) were purchased from Sigma-
Aldrich (St. Louis, USA), and iron(lll) dimethyldithiocarbamate (ferbam,
CoH1sFeNsSg, 97%) were purchased from Tokyo Chemical Industry Co., Ltd. (Tokyo,
Japan). Filter paper was purchased from Advantec (grade 5C, Dublin, USA), and
alkyl ketene dimer (AKD) was purchased from Solenis (Hercon-WI1 155, Kimchun,

Korea). All chemicals were used without further purification.

1. 2. Preparation of silver nanoparticles (AgNPs)

AgNP were synthesized by the citrate-based reduction of silver nitrate®. In order to
synthesize of AgNP solution, the 70 mg of silver nitrate was dissolved in 400 mL of
distilled water (DW). The silver nitrate solution was heated until boiling in a 3-neck
round bottom flask with vigorous stirring. After boiling the silver nitrate solution,
the 8 mL of 1 wt% sodium citrate solution was rapidly injected into the 3-neck round
bottom flask. After 30 min further boiling, it was cooled at room temperature. To

remove excess citrate in AgNP solution, the AgNP solution was centrifuged with the



condition 3000 rpm, 15 min. After centrifugation, the AgNP was dispersed in DW.
The TEM image, FE-SEM image, UV/Vis extinction spectrum and size distribution
of AgNP were shown in Figure 1-1. The synthesized AgNP showed a plasmonic
band at 422 nm and averaged size of AgNP is 92 + 21 nm by FE-SEM images
analysis. The concentration of synthesized AgNP solution was 0.15 nM, measured

by a Nanosight (LM10, Malvern, UK).
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Figure 1-1. Characterization of synthesized AgNP. (a) The FE-SEM image, (b) the
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1. 3. Fabrication of hydrophobically modified filter paper
To fabricate a sensitive and reproducible filter paper—based SERS sensor, the filter
paper was subjected to calendering followed by AKD treatment. An overall
schematic illustration of the fabrication of the hydrophobic filter paper-based SERS
sensor is shown in Figure 1-2. First, the filter paper was cut to a size of 80 mm by
50 mm. Calendering was then conducted to filter paper for reducing the roughness
of the paper. For the calendering process, the paper was passed between pressing
rollers. The conditions of rolling speed, calendering temperature, relative humidity
and line pressure were set as 10 m/min, 23 °C, 50% and 130 kgf/cm?, respectively.
The roughness of the filter paper was then evaluated using a Parker Print Surf (PPS)
instrument (ISO 8791-4, Lorentzen & Wettre, Sweden). After calendering, the filter
paper was treated with AKD as a hydrophobic agent to increase its hydrophobicity.
The calendered filter paper was soaked in 0.1% AKD dispersion dissolved in DW
for 2 min. After AKD treatment, the filter paper was rinsed with DW to eliminate the
remaining AKD. Excess water on AKD-treated filter paper was eliminated using
another filter paper, and the treated filter paper was dried using a drum drier. The
temperature of the drum was 120 °C. The contact angles of 5 puL. water droplets on
the bare and AKD-treated filter papers were measured by a contact angle meter

(DSA100, Kriss, Germany).



1. 4. Fabrication of SERS-active AgNP spots on
hydrophobically modified filter paper
For fabrication of SERS-active AgNP spots on the hydrophobic filter paper, 2 uL
droplet of AgNP solution was dropped and dried on the hydrophobic filter paper at
room temperature for about 1 h. After drying of the AgNP solution, 5 puL droplet of
each analyte solution was dropped and dried on the AgNP spots for SERS
measurement. The photographs of AgNP spots on bare filter paper and hydrophobic

filter paper were shown in Figure 1-3.
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Figure 1-2. The schematic illustration of fabrication process of filter paper-based

SERS sensor.

Figure 1-3. The photographs of AgNP spots on fiter papers. (a) AgNP spots on bare

filter paper and (b) AgNP spots on AKD-treated filter paper.
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1. 5. SERS measurement

The SERS spectra were obtained by a custom-made Raman read-out system for
large-area scanning. A 643-nm laser (110-81040-019, Ondax, US) was used for the
excitation source, and the output of laser power was set as 1.5 mW. The laser was
delivered through a 2-axis galvanometric mirror with an area of 300 pm x 300 pm
at the center of an AgNP spots using 20x objective lens (Numerical aperture (NA) =
0.40, Olympus, Japan). The scanning time of scanning area was 10 seconds. The

scattered light was read by a charge-coupled device (iDus 419, Andor, UK).

1. 6. DDA calculation for theoretical E-field distributions
To investigate the dependency of SERS intensity about concentration of AgNP
solution, electric field (E-field) of the AgNP nanostructure was calculated by using
discrete dipole approximation (DDA, DDSCAT 7.1)%. The calculated structure was
shown in Figure 1-4. The diameter of the AgNP was set as 80 nm, and interparticle
distance between AgNPs and interdipole distance between dipoles were set as 4 nm.
The dielectric constant was used value measured by Palik®, and the surrounding
medium of nanostructure was set as vacuum with refractive index of 1.00 + 0i. The
incident wavelength was set as 643 nm, which was same as for the SERS

measurement.
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Figure 1-4. The calculated AgNP nanostructure for understanding of dependency of
SERS enhancement about AgNP concentration treated on hydrophobic paper-based

SERS sensors.



1. 7. Estimation of limit of detection (LOD)

To calculate limit of detection (LOD) of molecules, the log of SERS intensity versus

log of concentration of analyte was linearly fitted as the followed equation.

Fitting equation:
log(SERS intensity (a.u.))
= a+ b X log(Concentration of analyte solution (nM))

(a:intercept, b: slope) (eq.1)

The criteria of LOD was used as 36 +yo, and the SERS intensity of blank sample was
that of AgNP spot on the hydrophobic filter paper-based SERS senser®.

(o: the standard deviation of SERS intensity of blank sample, y0: the SERS intensity
of blank sample)

As a result, the LOD of analyte was calculated as the followed equation. LOD of

analyte solution was used the equation as shown in below.

log(30 +y,) = a+ b xlog(LOD of analyte (nM))

log(30+yg)—a

LOD of analyte (nM) = 100" » ! (eq. 2)



2. Results and Discussions

2. 1. Hydrophobic modification of filter paper
In an effort to overcome the low sensitivity and reproducibility of conventional
paper—based SERS sensors, the filter paper was treated with AKD, which changed
property of filter paper from hydrophilic to hydrophaobic. The aim of the hydrophobic
modification was to prevent the quick absorption and to increase the retention time
of aqueous solution into the filter paper. The hydrophobic modification of filter paper
allowed the AgNP and analyte solutions to be retained as an aqueous droplet on the
filter paper until drying within reduced contact area. These results allow to increase
AgNP and analyte density on filter paper, resulted in generation of SERS hot-spot
and increasing of SERS intensity of hydrophobic paper-based SERS sensor. Before
surface modification of the filter paper, it was subjected to a calendering process® to
reduce the surface roughness of filter paper. For calendering process, filter paper was
passed between two rolls at high pressure and temperature to reduce its roughness.
Through the calendering process, the PPS roughness of the filter paper was reduced
from 9.4 um to 4.0 um, as shown in Figure 1-5a. After calendering, the filter paper
was immersed into AKD solution to allow esterification reaction of AKD with the
hydroxyl groups of the cellulose fibers in the filter paper. Through the AKD

treatment, the cellulose fibers were functionalized with alkyl groups, which modified



the nature of the filter paper from hydrophilic to hydrophobic. To verify the
hydrophobic modification of the filter paper, the contact angles of filter paper before
and after AKD treatment were measured, as shown in Figure 1-5b. The contact angle
of a water droplet on bare filter paper was 15°, and the droplet was immediatly
absorbed into the paper. However, the contact angle of a water droplet on AKD-
treated filter paper was increased to 114°, and the droplet was retained on the surface
of the paper for 1 h until drying. As a consequence, the AgNP and analyte solutions

could be retained within a small area of the filter paper surface for a longer time.
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To investigate the effect of hydrophobic modification on the SERS activity of AgNP
spots on the filter papers, 4-ATP was used as a test analyte. To evaluate the SERS
intensity of each filter paper, the AgNP solution was dropped and dried to form SERS
active spots on the surface of filter paper and AKD-treated filter paper, and then, 5
uL of 1 uM 4-ATP solution was dropped and dried on each SERS active spot.

The AgNP distribution and SERS spectrum of each filter paper were shown in Figure
1-6. Bare filter paper was showed low SERS intensity because of low AgNP density
on filter paper. However, the hydrophobic filter paper was showed highly enhanced
SERS intensity because of high AgNP density on AKD-treated filter paper. These
phenomena were originated that hydrophobic modification of filter paper confined
AgNP solution within small contact area by increasing contact angle of aqueous
solution. By reduced contact area of AgNP solution, the density of AgNP was
increased, and the AgNPs was formed small AgNP clusters, resulted in creating
SERS hot-spots. As a result, the SERS intensity of AKD-treated filter paper was
highly enhanced. These results confirmed that hydrophobic modification of the
paper surface successfully promoted the SERS intensity of the filter paper—based

SERS sensor.



18000

(C) ——Filter paper
——AKD treated filter paper
- 15000 -
3
]
~ 12000 -
=
»
$ 9000
e
£
w
[+4 6000 -
w
w
2000 _M
0

T T T T -
500 1000 1500 2000

Raman Shift (cm™)
Figure 1-6. Characterization of surface and SERS intensity depending on
modification of filter paper. The FE-SEM images of (a) AgNP spots on filter paper
and (b) AgNP spots on AKD-treated filter paper. (c) The SERS spectra of AgNP
spots on filter paper and AKD-treated filter paper treated by 5 pL of 1 uM 4-ATP

solution. The scale bar was set as 100 nm.

. ZjHEw=



2. 2. Control of AgNP distribution of paper-based SERS

sensor for SERS intensity optimization
Because SERS enhancement is affected by the distribution and conformation of
nanoparticles® 7, to optimize the SERS enhancement of the hydrophobic filter
paper—based SERS sensor, the SERS enhancements were compared as a function of
the concentrated ratios of the AgNP solutions. To evaluate the SERS enhancement,
the AgNP solutions of various concentrations were dropped and dried on surface of
hydrophobic filter paper. After drying of the AgNP solution, 5 pL of 1 uM 4-ATP
solution was dropped on the each AgNP spot, and the SERS spectrum of each AgNP
spot on hydrophobic filter paper was measured.
Figure 1-7 showed the AgNP distributions depending on the concentrated ratios of
the AgNP solutions on the hydrophobic filter paper. The concentration of synthesized
AgNP solution was 0.15 nM, and called as reference solution. The concentrated
ratios of AgNP solutions were set as 2.5, 5, 10, 20 and 40 times, which concentrations
were corresponded 0.375, 0.75, 1.5, 3.0 and 6.0 nM, respectively. As the
concentrated ratio of the AgNP solution was increased up to 10 times, the density of
AgNP increased and the AgNP clusters grew larger, formed a large structure on the
surface of hydrophobic filter paper. However, as the concentrated ratio of the AgNP
solution was increased to more than 10 times, the AgNP formed multilayer and three-

dimensional aggregated AgNP structure, which were larger than several micrometers



on the surface of hydrophobic filter paper. For comparison of the SERS enhancement
with different concentrated ratios of AgNP solutions, the SERS intensity 1073 cm?
band of 4-ATP on each AgNP spot with different concentrated ratio on hydrophobic
filter paper was used for the SERS enhancement. The SERS spectrum and SERS
intensity of 1073 cm™ band of 4-ATP on each AgNP spot were shown in Figure 1-8
and Figure 1-9, respectively. The SERS intensity of the 1073 cm™ band was
gradually increased as the concentrated ratio of the AgNP solution was increased,
and maximized when the concentrated ratio of the AgNP solution was 10 times.
However, the SERS intensity slightly decreased as the concentrated ratio of AgNP

solution was increased more than 10 times.



Figure 1-7. The AgNP distributions depending on concentration of AgNP on
hydrophobic filter paper. The FE-SEM images of (a) not concentrated AgNP
solution (reference AgNP solution, 0.15 nM), (b) 2.5 times concentrated (0.37 nM),
(c) 5 times concentrated (0.75 nM), (d) 10 times concentrated (1.5 nM), (e) 20 times
concentrated (3.0 nM), and (f) 40 times concentrated (6.0 nM) AgNP solution.The

scale bar was set as 1000 nm.
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Figure 1-8. The SERS spectra of 4-ATP treated on each AgNP spot with different
concentrated ratios of AgNP solution from 1 to 40 times. Each AgNP spot was

treated with 5 pL of 1 uM of 4-ATP solution.
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was treated with 5 pL of 1 pM 4-ATP solution.
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To investigate variation of SERS intensity depending on concentrations of AgNP, E-
field distributions of AgNP clusters with different number of AgNP layers were
calculated by DDA®, E-field distributions and maximum E-field intensities of those
structures were shown in Figure 1-10 and Figure 1-11. To identify the effect of the
size of the AgNP clusters on the E-field intensity, a series of AgNP clusters was
considered, as shown in Figure 1-4. The increase of size of AgNP cluster resulted in
an increase in the number of AgNP layers in the calculated nanostructures. As the
size of the AgNP clusters was increased, the maximum E-field intensity also
increased. However, as the cluster size was increased beyond the optimal value, the
maximum E-field intensity was steadily decreased as the number of AgNP layers in
the clusters more than two. The decrease in E-field intensity was caused by
delocalization of the E-field as the AgNP clusters grew larger. With small AgNP
clusters, the E-field was concentrated between AgNPs, which enhanced the
maximum E-field intensity. However, as the number of AgNP layers was increased,
the E-field of AgNP nanostructure became delocalized throughout the larger
structures, and maximum E-field intensity was decreased® . This was consistent
with the variation of SERS enhancement depending on concentrated ratio of AgNP
solution. For that reason, as the concentrated ratio of AgNP solution was increased,
the size of AgNP cluster was increased, resulted in decreasing of SERS intensity

because of delocalization of E-field in AgNP cluster. In addition, vertically piled



structures of nanoparticles showed decreasing of SERS intensity due to the
delocalization of optical field as well as hindrance of irradiation and the scattering
of light””. As a results, it was shown that the optimal concentration of AgNP solution
for fabrication of AgNP spots was 1.5 nM, which was corresponded with

concentrated ratio of 10 times of AgNP solution.
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Figure 1-10. The calculated electric field (E-field) distributions of AgNP clusters by

discrete dipole approximation (DDA) method: (a) Monomer, (b) 1 layer, (c) 2 layers,

(d) 3 layers, (e) 4 layers, (f) 5 layers, (g) 6 layers and (f) 7 layers of AgNP around

the center one. The red line means location of maximum E-field intensity.
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2. 3. Reproducibility and sensitivity test of paper based-
SERS sensor

High reproducibility and sensitivity are important criteria for SERS sensor. At first,
to evaluate the reproducibility of the hydrophobic filter paper—based SERS sensor,
the SERS spectra of 25 AgNP spots treated with 5 uL of 1 pM 4-ATP solution were
measured. To measure the reproducibility, the spot-to-spot variation of SERS
intensity was quantified by the 1073 cm™ band of 4-ATP on the hydrophobic filter
paper-based SERS sensor. The SERS spectra and SERS intensities of the 1073 cm™
band of 4-ATP on AgNP spots were shown in Figure 1-12. The RSD of the SERS
intensities of the 1073 cm™ band of 4-ATP among the 25 AgNP spots was calculated
as 6.19%, slightly higher than or similar to those of previous studies’® °-°. The high
reproducibility evidently originated from the hydrophobic modification of the filter
paper, which prevented the aqueous AgNP solution from absorption into the filter
paper and allowed the AgNP to be uniformly retained on the surface of the paper.
Furthermore, the large area scanning system combined with micro Raman was also
affected to increase the reproducibility of paper-based SERS sensor because this
Raman system was averaged the SERS signal over the scanning area. As a result, it
was confirmed that the RSD of SERS intensity of the hydrophobic filter-paper based
SERS sensor was increased up to 6 % by combining of sensor and measurement

effect.



To evaluate the sensitivity of the hydrophobic filter paper—based SERS sensor, the
SERS spectra of AgNP spots treated with 5 pL droplets of 4-ATP with
concentrations from 0.1 nM to 1000 nM were measured, as shown in Figure 1-13a.
The SERS spectrum of each concentration was obtained from 7 AgNP spots. The
averaged SERS intensities of the 1073 cm™ band of 4-ATP with different 4-ATP
concentrations were shown in Figure 1-13b. The SERS intensity of 4-ATP decreased
as the concentration of 4-ATP was decreased, and it is hard to detect below 1 nM.
The LOD of 4-ATP using the hydrophobic filter paper-based SERS sensor was
estimated by linear fitting of the SERS intensities versus concentrations of 4-ATP,
as shown in Figure 1-14 and Table 1-1. The calculated LOD of 4-ATP using this
sensor was 0.603 nM. Furthermore, to evaluate the stability of the hydrophobic filter
paper-based SERS sensor, we collected the SERS spectra of AgNP spots treated with
5 uL of 1 uM 4-ATP solution during 15 days as shown in Figure 1-15. The SERS
intensity of 1073 cm™ band of 4-ATP was decreased in a few days and reached a
plateau there. After 5 days, the SERS intensity was maintained with the 15%

decreasing of SERS intensity compared with freshly prepared SERS sensor.
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Figure 1-12. The reproducibility of hydrophobic filter paper-based SERS sensor. (a)
The SERS spectra of 25 AgNP spots treated with 5 puL of 1-uM 4-ATP solution, and

(b) the SERS intensities of 1073 cm* band of 4-ATP of 25 AgNP spots.
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Figure 1-13. The sensitivity of hydrophobic filter paper-based SERS sensor. () The

SERS spectra of AgNP spots treated with different concentrations of 4-ATP from 0

nM to 1000 nM. (b) The SERS intensities of 1073 cm™ band of 4-ATP with different

concentrations of 4-ATP from 0.1 nM to 1000 nM. Each SERS intensity was

averaged from 7 AgNP spots. The error bars represent standard deviations. The

dotted red line means SERS intensity of AgNP spots, which was blank sample (=0

nM of 4-ATP).
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Figure 1-14. The linear fitting of SERS intensities versus concentrations of 4-ATP

to calculate LOD of 4-ATP by using the hydrophobic filter paper-based SERS sensor.
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Figure 1-15. The stability of the hydrophobic filter paper-based SERS sensor. (a)
The SERS spectra of hydrophobic filter paper-based SERS sensor during 15 days
and (b) the SERS intensity of 1073 cm™ band of 4-ATP treated on the hydrophobic
filter paper-based SERS sensor. The hydrophobic filter paper-based SERS sensor

was treated by 5 pulL of 1 uM of 4-ATP solution.
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2. 4. Application to pesticides detection

To confirm its applicability to detection of actual pesticides, the hydrophobic filter
paper-based SERS sensor was used to analyze thiram and ferbam. For this procedure,
the SERS spectra of AgNP spots treated with 5 uLL droplets of solution of pesticides
were measured. Both pesticides was dissolved in DW, and the concentrations of
pesticides were varied from 0.1 nM to 10000 nM, as shown in Figure 1-16a and 1-
16b. The averaged SERS intensities at 1400 cm™ with different concentrations of
pesticides were shown in Figure 1-165c and 1-16d. These SERS intensities were
collected from 10 AgNP spots on the hydrophobic filter paper-based SERS sensor.
Analysis of the SERS spectra as a function of the concentrations of pesticides
confirmed that thiram and ferbam could be detected at the nanomolar level, as shown
in Figure 1-16a and 1-16b. Furthermore, the LODs of thiram and ferbam, estimated
by linear fitting of the SERS intensity versus concentrations of each pesticide, were
0.461 nM and 0.491 nM, respectively, as shown in Figure 1-17 and Table 1-1. These
results confirmed that the SERS sensor based on hydrophobic filter paper-based
SERS sensor can be applied to the detection of trace amounts of pesticides at the

sub-nanomolar level.
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L. Yo
Sample (intercept of  (slope of (gltasng;rg idnet\:rﬁilto n (SERS intensity R? L?AD
fitted line) fitted line) & O-%° sample)y of blank sample) (nM)
4-ATP 2.693 0.4355 63.986 203.680 0.926 0.603
Thiram 2.710 0.3350 63.986 203.680 0.879 0.461
Ferbam 2.660 0.2030 63.986 203.680 0.819 0.491
Table 1-1. Estimation of limits of detections (LODs) of analytes.
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Chapter Il. Surface roughness
reduced paper-based SERS sensor
by introducing cellulose nanofibrils

(CNF) on paper for increasing

reproducibility
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1. Experimental

1. 1. Chemicals and reagents
Silver nitrate (AgNO3, 99.999%), sodium citrate tribasic dihydrate (CsHsO7Na3-2H-0,
99%), 4-aminothiophenol (4-ATP, HoNCesH4SH, 99%), and rhodamine 6G (R6G,
CasH31N203Cl, 99%) were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Filter paper was used as a substrate (5C, Advantec, Tokyo, Japan). The AKD was
purchased from Solenis (Hercon-WI 155, Kimchun, Korea). The carboxymethyl
cellulose (CMC) was purchased from CP Kelco Korea (DS 0.78, Finnfix 5, Seoul,
Korea). A bleached eucalyptus kraft pulp was purchased from Moorin P&P (Seoul,

Korea). All chemicals were used without further purification.

1. 2. Preparation of cellulose nanofibrils (CNF) coated
hydrophobic filter paper
To increase the uniformity of the paper-based SERS sensor, CNF suspension
containing a small amount of CMC was applied to filter paper. CMC was used to
control the rheological properties of the cellulose nanofibrils (CNF) suspension. A
bleached eucalyptus kraft pulp (Moorim P&P, Ulsan) was grinded with a grinder
(Super Masscolloider, Masuko Co., Japan) to prepare the CNF. After that, the

grinded pulp was treated by a laboratory valley beater to fibrillated CNF from pulp.



The photograph of pulp and TEM image of the CNF were shown in Figure. 2-1. Most
CNFs were less than 50 nm in width but less fibrillated bundle were also existed
more than 100 nm.

In order to apply CNF to filer paper surface, the mixture of 10 mL of CNF and CMC
was applied to the hydrophobic filter paper surface, which have 15 cm <30 cm in
size. The concentration of CNF and CMC in suspension was 1 wt% and 0.03 wt%,
respectively. The prepared CNF suspension mixed with CMC was applied onto the
hydrophobic filter paper with a laboratory bar coater (Auto Bar Coater, GIST, Korea)
with wire bar (Bar No. 14). After the CNF coating on filter paper, the CNF coated
filter paper was dried under the 120 °C, overnight. After drying, to maintain
hydrophobicity of CNF coated filter paper for sensitive SERS detection, the CNF
coated filter paper was treated by AKD solution because the coated CNF had

hydrophilic nature by hydroxyl group in CNF.



Figure 2-1. The photograph of pulp (left) and TEM image of the CNF (right).
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1. 3. Fabrication of SERS-active AgNP spots on CNF coated
filter paper
To fabricate the SERS-active AgNP spots on the CNF coated hydrophobic filter paper,
the 2 uLL of AgNP solution was dropped and dried on filter papers, which applied
different number of CNF coatings. And then, the filter papers were dried at room
temperature for about 1 h. After drying of the AgNP solution, the 5 uL of analyte

solution was dropped and dried on the AgNP spots for SERS measurement.

1. 4. SERS measurement

The SERS spectra were obtained by a custom-made large-area Raman scanning
system combined with micro Raman system. The excitation source was used a 643-
nm laser (110-81040-019, Ondax, US), and the laser power was 1.5 mW. The
irradiated and scattered light was collected through 10x (NA=0.25, Olympus, Japan),
20x (NA=0.40, Olympus, Japan) and 40x (NA=0.75, Olympus, Japan) objective lens.
The scanning area were 600 um x 600 um (10x objective lens), 300 pum % 300 um
(20x objective lens) and 200 pm x 200 um (40x objective lens). The acquisition time
was 10 seconds. The scattered light was read by a charge-coupled device (iDus 419,

Andor, UK).



2. Results and Discussion

2. 1. Effect of numerical apertures on sensitivity and

reproducibility of paper-based SERS sensor
The sensitivity of SERS sensor was affected by the value of NA of objective lens
because the solid angle of light and confocal volume were affected by NA. In
addition, the SERS signal was increased as the value of NA was increased®’. To
confirm the change of confocal volume according to value of NA, The calculated
confocal volumes with different values of NA were calculated as shown in Figure 2-
2 for comparison of changing of confocal volume by value of NA®, As the value of
NA was increased, the confocal volume was decreased because the focal length and
beam size were decrease. However, the intensity of scattered light by objective lens
was increased because of increasing of solid angle. These tendencies indicated that
the SERS intensity was increased as the value of NA was increased, however, the
reproducibility of filter paper-based SERS sensor was decreased as the value of NA
was increased. Despite of the increasing SERS intensity by the high value of NA,
the reproducibility of SERS intensity was decreased because the height dependency
of the SERS measurement was increased due to small focusing volume. By nature
of filter paper, the numerous pores and high surface roughness of filter paper was

reduced the reproducibility of paper-based SERS sensor with high value of NA as



shown in Figure 2-3.

To investigate the effect of NA on the SERS signal in hydrophobic filter paper-based
SERS sensor, the SERS spectra of the hydrophobic paper-based SERS sensor treated
with 5 uL of 1 uM R6G were measured through the objective lens with different
values of NA. The SERS spectra and average SERS intesities of 1510 cm™ band of
R6G were shown in Figure 2-3a and 2-3b. For the SERS measurements, the value of
NA of objective lens were used 0.25, 0.40, 0.75, respectively. As the value of NA
were increased, the SERS intensity dramatically increased. However, the
reproducibility of SERS intensity was reduced as shown in Figure 2-3c. Each RSD
was obtained from 7 different AgNP spots. The RSDs of SERS intensities with
values of NA of 0.25, 0.40, 0.75 were 8.7%, 10.9% and 26.7%, respectively. These
tendencies meant that it was necessary to measure using objective lens with high NA
for highly sensitive SERS detection. However, the current paper-based SERS sensor
showed low reproducibility originated by high surface roughness and non-uniform
surface of filter paper. As a result, to realize highly sensitive SERS dection with
objective lens with high NA, paper-based SERS sensor with improved roughness

and uniformity of surface should be manufactured.
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Figure 2-2. The illustrations of light irradiation and theoretical effective confocal
volume with different values of NA. (a) NA: 0.25, (b) NA: 0.40, and (c) NA: 0.75.
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Figure 2-3. Characterization of SERS signals of hydrophobic filter paper-based

SERS sensor with different values of NA. (a) The SERS spectra of AgNP spots with

different NAs. (b) The SERS intensity of 1510 cm™ band of R6G on each AgNP spot

with different NAs. (c) The averaged SERS intensities of 1510 cm™ band of R6G

with different values of NA.
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2. 2. Analysis of surface morphology of CNF coated paper-

based SERS sensor
To improve surface uniformity of filter paper, the CNF coating was applied to the
hydrophobic filter paper. The CNF was a nanosize cellulose fibrils which produced
by differentiating pulp. By applying CNF to surface of filter paper, the nanosize CNF
filled the surface of filter paper. As a result, the pores and surface roughness of filter
paper were reduced. The schematic illustration of effect of CNF coating on filter
paper was shown in Figure 2-4. In addition, the structure of CNF was same with
cellulose fibrils in the paper because the components of both were same. As a result,
the CNF was not affected the backgound SERS signal. Thus, the CNF was a suitable

material for increasing surface uniformity of filter paper.
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Figure 2-4. The schematical illustration of filter paper-based SERS sensors. (a) The
hydrophobic filter paper—based SERS sensor and (b) the CNF coated the

hydrophobic filter paper-based SERS sensor.
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When the CNF coating was applied to the hydrophobic filter paper, the CMC was
added to CNF solution for controlling the rheology of the CNF solution on the
hydrophobic filter paper by increasing the viscosity of the CNF suspension. In
addition, the previous research showed that the addition of CMC improved the
dispersing of CNF by disentangling the nanofibrils and increasing the anionic charge
in the suspension®. By these reasons, CMC was added to CNF solution. This
dispersion of CNF on paper surface resulted in the formation of uniform paper
surface by filling the pores and reducing surface roughness of filter paper. After CNF
coating on hydrophobic filter paper, the CNF coated filter paper was applied to AKD
treatment for maintaining the hydrophobic property of filter paper for highly
sensitive SERS detection. The FE-SEM images of filer papers with different number
of CNF coatings were shown in Figure 2-5. As shown in Figure 2-5, uniformity of
the paper surface was improved by applying CNF coatings. Many large pores
remained on the CNF untreated filter paper, however, the most of the pores was
disappeared, and the surface smoothness was improved with the CNF coating

because the overall surface roughness was flattened by the filled CNF.



CNF éqating 1

CNF coating: 2

Figure 2-5. The characterization of surface morphology change of hydrophobic filter
paper by CNF coating. The FE-SEM images of hydrophobic filter papers with
different number of CNF coatings. (a) CNF untreated, (b) one CNF coating and (c)

double CNF coating on hydrophobic filter paper.
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To identify the effect of CNF coating on uniformity of filter paper-based SERS
sensor, the distribution and converage of AgNP on each AgNP spot were analyzed
by FE-SEM images. The FE-SEM images of AgNP spots on hydrophobic filter
papers were shown in Figure 2-6. As the number of CNF coatings on the
hydrophobic filter paper was increased, the AgNP spot became more circular and
AgNP distribution was more uniform. In addition, overall surface roughness and the
number of pores of hydrophobic filter paper were decreased by CNF coating.

To analysis coverage of AgNP on AgNP spot, the FE-SEM images of AgNP spots
were analyzed by area of pores in overall AgNP spot. The coverage of AgNP was

calculated by the eq. 3.

AgNP covered area

The surface coverage of AgNP on AgNP spot = (eq. 3)

AgNP spotarea

The AgNP overage of AgNP spot was shown in Figure 2-7. The coverage of AgNP
of AgNP spot was increased as the number of CNF coatings was increased because
the surface roughness and pores on surface of filter paper were reduced by CNF
coating. Thus, CNF coating to hydrophobic filter paper reduced the pore and
flattened surface roughness of surface of filter paper. As a result, CNF coating made
more uniform AgNP spots on filter paper-based SERS sensor for increasing

reproducibility of filter paper-based SERS sensor.



Figure 2-6. Characterization of AgNP spots on hydrophobic filter paper with

different number of CNF coatings. FE-SEM images of AgNP spots on (a) CNF
untreated, (b) one CNF coating and (c) double CNF coatings on hydrophobic filter
paper. High magnified FE-SEM images of AgNP spots on (d) CNF untreated, (e)
one CNF coating and (f) double CNF coatings on hydrophaobic filter paper. The scale

bars of (a) — (c) were 200 um and those of (d) — (f) were 2 um.
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Figure 2-7. The AgNP coverage on AgNP spots on the hydrophobic filter paper with

the different number of CNF coatings.
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2. 3. Reproducibility of CNF coated filter paper-based SERS

Sensors
To compare the reproducibility of hydrophobic filter paper-based SERS sensors
treated with the different number of CNF coatings, the SERS spectrum of each sensor
was measured. Each sensor was treated with 5 uL of 1 uM R6G solution. The SERS
spectrum of each sensor was averaged 15 different AgNP spots on each sensor using
40x objective lens. The spot-to-spot variation of SERS intensity was quantified by
the 7 different bands of R6G. The SERS spectra, SERS intensity and RSD of SERS
intensity of each R6G band were shown in Figure 2-8 and Table 2-1. As the number
of CNF coatings on the hydrohpobic filter paper was increased, the SERS intensity
was gradually increased and highest when double CNF coatings was introduced on
the hydrophobic filter paper. In addition, the RSD of each SERS band of R6G was
dramatically decreased up to 9% when double CNF coating introduced on
hydrophobic filter paper. These results suggested that a simple CNF coating on filter
paper surface could greatly improved the uniformity of the AgNP distribution on
filter paper, which induced increase of the reproducibility of paper-based SERS

Sensors.
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Figure 2-8. The SERS spectra of R6G on AgNP spots on each CNF coated
hydrophobic filter paper-based SERS sensor treated with the different number of
CNF coatings. The number on SERS spectra meant R6G bands for comparing RSDs of

CNF coated hydrophobic filter paper-based SERS sensors.
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CNF coating : 0

CNF coating : 1

CNF coating : 2

Band Intensity RSD Intensity RSD Intensity RSD

No. @u) (%)  @u) (%)  @u) (%)
1 5118 28.5 6028 17.4 6842 9.3
2 2677 28.3 3508 17.2 4062 8.6
3 2537 28.8 3965 16.6 4650 9.0
4 4618 28.6 6416 15.9 7433 8.5
5 6911 28.7 10747 15.9 12528 8.7
6 7523 29.5 11488 15.4 13319 8.0
7 3442 29.2 5213 16.0 6054 9.3

Table 2-1. The SERS intensities and RSDs of each R6G band of each CNF coated

hydrophobic filter paper-based SERS sensor treated with the different number of CNF

coatings.
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2. 4. Sensitivity test of CNF coated paper-based SERS

Sensors
To compare the sensitivity of the filter paper-based SERS sensors depending on
number of CNF coatings, the SERS spectra of sensor treated with 5 pL of 1 uM 4-
ATP solutions with different concentrations from 0.1 nM to 1000 nM were measured
as shown in Figure 2-9. The SERS spectra were obtained from 15 different AgNP
spots on each sensor using 40x objective lens. The SERS intensities of the 1073 cm’
! band of 4-ATP of different concentrations were shown in Figure 2-10. The SERS
intensities of filter paper-based SERS sensors treated by CNF coating were increased
more than 2 times compared with that of CNF untreated filter paper-based SERS
sensor. Furthermore, the LODs of 4-ATP of filter paper-based was decreased as the
number of CNF coatings was increased, and the that of double CNF coating
introduced filter paper-based SERS sensor was decreased up to 0.426 nM as shown
in Table 2-2. These results indicated that the inroducing CNF coating on paper-based
SERS sensor improved uniformity of surface of filter paper, which was affected to

sensitivity of paper-based SERS sensor.
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coating on filter paper-based SERS sensor and (¢) double CNF coatings on filter
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Figure 2-10. The averaged SERS intensities of 1073 cm™ band of 4-ATP treated on
AgNP spots on each CNF coated hydrophobic filter paper-based SERS sensor. The

concentrations of 4-ATP were varied from 0.1 nM to 1000 nM.
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()
a b . o Yo
Sample (intercept of  (slope of (Standard deviation (SERS intensity R? LOD

fitted line)  fitted line) ‘:)ffsbfaﬁ ‘;‘aﬁﬁg of blank sample) (M)
CNF:0 2320 0.502 70.061 197.36 0.904  3.782
CNF:1  2.829 0.557 173.737 385.94 0.925  1.702
CNF:2 2946 0.513 67.790 366.88 0.928 0426

Table 2-2. Estimation of limit of detections (LODs) of 4-ATP of each filter paper-

based SERS sensor with the different number of CNF coatings.
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Chapter I11. Expanding generality
of SERS based molecular detection
by charge-selective paper-based
SERS sensor
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1. Experimental

1. 1. Chemicals and reagents
Silver nitrate  (AgNOs;, 99.999 %), sodium citrate tribasic dehydrate
(CsHsO7Naz-2H0, 99 %), rhodamine 6G (R6G, CasH31N2OsCl, 99 %), sunset
yellow (SY, CisH10N2Na;07S;, 90 %), methyl orange (MO, C14H14N3NaOsS, 85 %),
aniline (AN, CeéHsNHz, 99.5 %), benzoic acid (BA, C¢HsCOOH, 99.5 %), 4-
methylaniline (4-MA, CHs;CgHsNH2, 99 %), 4-methylbenzoic acid (4-MB,
CH3CsH4COOH, 98 %), hydrochloric acid (HCI, 37%), sodium hydroxide (NaOH,
98%), sodium chloride (NaCl, 99%) and poly(diallyldimethylammonium chloride)
(PDDA, (CsH16CIN)n, 35 wt% in H;0, average molecular weight < 100,000) were
purchased from Sigma-Aldrich (St. Louis, MO, USA). Tris(2,2-
bipyridyl)ruthenium(Il) chloride hexahydrate (Ru(bpy)s, CsoH22Cl2NsRU-6H20,
98 %) was purchased from Tokyo chemical industry Co., LTD. (Tokyo, Japan). Filter
paper was purchased from Advantec (grade 5C, Dublin, CA, USA) and alkyl ketene
dimer (AKD) was purchased from Solenis (Hercon-WI 155, Kimchun, Korea).
Carboxymethyl cellulose (CMC) was purchased from CP Kelco Korea (DS 0.78,
Finnfix 5, CP Kelco Korea). A bleached eucalyptus kraft pulp was purchased from
Moorin P&P (Seoul, Korea). All chemicals and materials were used without further

purification.



1. 2. Preparation of positive charged polymer encapsulated

AgNPs
To change the surface charge of citrated-based AgNP from negative to positive, the
AgNP was encapsulated by PDDA polymer®. To encapsulate the AgNP by PDDA
polymer, the 20 mL of AgNP solution was centrifugation with the condition of 3000
rpm and 15 min for removing excess citrate in AgNP solution. After removing of
excess citrate, the centrifugated AgNP was dispersed in 20 mL of DW, and the AgNP
solution of 20 mL was dispersed in 20 mL of PDDA solution (0.5 vol%, in DW) for
encapsulation PDDA polymer to the AgNP surface. The mixed solution was vigorous
stirred about 3 h. After stirring, the mixed solution was centrifuged with the
condition of 3000 rpm, 15 min, twice. After centrifugation, the PDDA encapulated

AgNP solution was dispersed in 2 mL of DW.

1. 3. Fabrication of SERS-active AgNP and AgNP@PDDA

spots on modified filter paper

To fabricate charge-selective paper-based SERS sensor, the AgNP and PDDA
encapsulated AgNP (AgNP@PDDA) were used to fabricate SERS-active spots on
filter paper surface. The filter paper was used as previously developed filter paper,
which treated by AKD and double CNF coating for increasing hydrophobicity and
uniformity of filter paper. On the CNF coated hydrophobic filter paper, the 3 uL of
AgNP and AgNP@PDDA solutions were dropped and dried to fabricate AgNP and
AgNP@PDDA spots, and then, 2 uL droplets of analyte solution were dropped and

dried on the AgNP and AgNP@PDDA spots for SERS measurement. The FE-SEM
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images and photographs of AgNP and AgNP@PDDA spots on the filter paper were

shown in Figure 3-1 and Figure 3-2.
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Figure 3-1. The AgNP and AgNP@PDDA distributions on CNF coated

hydrophobic filter paper. The low magnified FE-SEM images of (a) AgNP and (b)
AgNP@PDDA spots, and the high magnified FE-SEM images of (c) AgNP and (d)
AgNP@PDDA spots. The scale bars of (a), (b) were 100 um, and those of (c), (d)

were 1 um.
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Figure 3-2. The Photographs of charge-selective paper-based SERS sensor. (a)

AgNP and (b) AgNP@PDDA spots on filter paper.
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1. 4. Samples preparation for SERS measurement
To verify the feasibility of charge-selective SERS detection of charge-selective
paper-based SERS sensor, R6G, Ru(bpy)s, MO, SY, AN, BA, 4-MA, 4-MB were
used as test analytes. R6G, Ru(bpy)s, MO and SY were dissolved in DW. AN and 4-
MA were dissolved in a solution of 10 mM HCI, and BA and 4-MB were dissolved
in a solution of 10 mM NaOH for fully ionization of each analyte. The structures of

analytes were shown in Figure 3-3.



(2) (b)

NH, (g) COOH (h) COOH

S0 09

Figure 3-3. The structures of analytes. (a) Rhodamine 6G (R6G), (b) tris(2,2'-
bipyridyl)ruthenium(II) chloride hexahydrate (Ru(bpy)s), (c) methyl orange (MO),
(d) sunset yellow (SY), (e) aniline (AN), (f) 4-methylaniline (4-MA), (g) benzoic

acid (BA) and (h) 4-methylbenzoic acid (4-MB).
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1. 5. SERS measurement
The SERS spectra were obtained by a hand-made large-area scanning system
combined with micro Raman system. The laser line was used 643-nm laser (110-
81040-019, Ondax, US) for excitation source, and the sample power of laser was set
as 1.0 mW. The objective lens was used 20x of magnification (NA=0.40, Olympuse,
Japan), and the scanning area was 600 um x 600 pm. The acquisition time was 40

sec.
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2. Results and Discussion

2. 1. Design of charge-selective paper-based SERS sensor
Generally, the SERS intensity was enhacned when the molecule was closed to the
surface of nanoparticles. However, due to the affinity difference between molecule
and nanoparticle by functional groups in molecule, only a few molecules, (e.g., those
containing thiol (-SH) and isocyanide (-NC) functional groups), were used for SERS
detection®2*, By the reason, to expand the generality of SERS based molecular
detection, a charge-selective paper-based SERS sensor was developed for detecting
the polar molecules by electrostatic attraction force. Two different surface charged
AgNPs were used to detect the polar molecules by electrostatic attraction between
polar molecule and AgNPs in this study. The surface modification of AgNP was
shown in Figure 3-4. The citrated-based AgNP have a negative surface charge
because the AgNP was capped by citrate ions presented in a trivalent anion state in
solution. Using AgNP, positively charged molecules could be detected by
electrostatic attraction between the molecules and nanoparticles, however, the
AgNPs did not provide effective detection of negatively charged molecules because
of electrostatic repulsion between the AgNP and negatively charged molecules. Thus,
the surface charge of the AgNP was changed from negative to positive by
encapsulation of positively charged PDDA polymer on AgNP (AgNP@PDDA) to
detect negatively charged molecules. The overall fabrication scheme of charge-
selective paper-based SERS sensors using AgNP and AgNP@PDDA is shown in

Figure 3-5.



Poly(diallyldimethylammonium
chloride) PDDA
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Figure 3-4. The illustration of surface modification of AgNP by PDDA polymer for

charge-selective paper-based SERS sensor.
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Figure 3-5. The schematic illustration of fabrication of charge-selective paper-based

SERS sensor.
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2. 2. Characterization of surface modification of AQNP and

AgNP@PDDA
To verify the surface modification of AgQNP by PDDA, the zeta-potential, UV/Vis
spectrum, and HR-TEM images of the AgNP and AgQNP@PDDA were measured as
shown in Figure 3-6. The AgNP and AgNP@PDDA showed a plasmonic band at
410 nm and 422 nm, respectively. The encapsulation of AgNP by PDDA resulted in
a red shift of the plasmonic band of AgNP because the refractive index of the AgNP
increased by polymer encapsulationi-192, Furthermore, the zeta-potential of the
AgNP changed from negative to positive after PDDA polymer encapsulation of the
AgNP. The zeta-potentials of AgNP and AgNP@PDDA were -21.5 and 30.5 mV,
respectively. The HR-TEM images directly showed that the AQNP@PDDA were
encapsulated by PDDA. Before modification of the AgNP, no shell was existed on
the AgNP as shown in Figure 3-6¢c. However, after surface modification, a 2-3 nm
shell on the AgNP was seen as shown in Figure 3-6d. These results confirmed that
the polymer successfully encapsulated the AgNP and changed the surface charge of

the AgNP from negative to positive.



(a) (b)
3 40
& 10l —— AgNP
> —— AgNP@PDDA 30 =
z
£ 0.8 S 20+
= E
= E
2 064 s 101
g
S E 0 ¥ T
2 04 S AgNP AgNP@PDDA
'§ g -10 4
i 0.2 N 20
E £3
o
Z o0 . : - -30
400 500 600 700

Wavelength (nm)

Figure 3-6. Characterization of AgNP and AgNP@PDDA. (a) The UV/Vis
spectrum, (b) the zeta-potentials of AgNP and AGQNP@PDDA, the HR-TEM image

of (c) AgNP and (d) AgNP@PDDA. Inset scale bar was represented 20 nm.
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To confirm the activation of the charge-selective paper-based SERS sensor with
different pH values, the zeta-potentials of AGNP and AGQNP@PDDA were measured
in deionized water, 10 mM HCI, and NaOH solutions, which were the same
conditions with analyte preparation for the SERS measurements. As shown in Figure
3-7, the zeta-potentials of the AgNP and AgNP@PDDA did not significantly
changes with the different pH solution. Regardless of the pH of the solutions, the
zeta-potentials of AgNP remained between -40 and -20 mV, and those of
AgNP@PDDA remained between 20 and 30 mV. These results confirm that the pH
value of solution did not significantly affect the surface charges of the AgNP and

AgNP@PDDA.
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Figure 3-7. The zeta-potentials of AgNP and AgNP@PDDA with different pH value

of solutions.
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2. 3. Evaluation of charge-selective paper-based SERS
sensor using charged Raman dyes

To evaluate the feasibility of the charge-selective paper-based SERS sensor, charged
Raman dyes were applied to the developed charge-selective paper-based SERS
sensor. R6G and Ru(bpy)s were used as the positively charged Raman dyes, and MO
and SY were used as the negatively charged Raman dyes. The concentrations of R6G,
Ru(bpy)s, MO, and SY were 0.1, 1, 10, and 10 uM, respectively. The SERS spectra
of the AgNP and AgNP@PDDA spots treated with each analyte were shown in
Figure 3-8. The SERS signals of the positively charged molecules were significantly
enhanced at the AgNP spots, however, the SERS signals of the negatively charged
molecules were almost absent. The SERS signal of each analyte at the
AgNP@PDDA spots show an opposite tendency. The SERS signals of the negatively
charged molecules were significantly enhanced at the AGQNP@PDDA spots. The
different phenomena originate from the different capping agents of AgNP and
AgNP@PDDA. The surface charge of the AgNP was negative because of the
negative charge of citrate ion, which causes an electrostatic attraction with positively
charged molecules, such as R6G and Ru(bpy)s. However, the AgNP electrostatically
repulsed with the negatively charged Raman dyes, such as MO and SY. As a result,
the negatively charged molecules moved away from the surface of the AgNP, and
the SERS signals were reduced on the AgNP spots. However, the opposite results
were obtained for AQNP@PDDA, which exhibited positive surface charge. The

SERS signals of MO and SY, which was negative charged Raman dyes, were
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enhanced, however, the SERS signals of R6G and Ru(bpy)s were reduced. These
results indicate that the paper-based SERS sensors by using AgNP and
AgNP@PDDA were suitable for charge-selective SERS detection by electrostatic

attraction and repulsion force between polar molecule and nanoparticle.
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Figure 3-8. The feasibility test of charge-selective paper-based SERS sensor by

charged Raman dyes. (a) The SERS spectra of charged Raman dyes on AgNP spots

and (b) the SERS spectra of charged Raman dyes on AgNP@PDDA spots.
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2. 4. Effect of ionization of aniline and benzoic acid on SERS

intensity
To apply the charge-selective paper-based SERS sensor to detect polar organic
pollutants, AN and BA derivatives were treated on the charge-selective paper-based
SERS sensor. The AN derivatives were ionized and show a positive charge in DW
because of the amine functional group in the AN derivatives. Likewise, the BA
derivatives were ionized and show a negative charge in DW because of the
carboxylic acid functional group in the BA derivatives. However, the most of the AN
and BA was existed in an un-ionized state in DW because of the low dissociation
constant of AN and BA derivatives. Thus, it is hard to detect AN and BA derivatives
using charge-selective SERS detection. To identify the effect of ionization of polar
organic pollutants about the SERS intensity on charge-selective paper-based SERS
sensor, AN and BA were treated on paper-based SERS sensors with different sample
preparations. For SERS measurements, a 10 mM AN solution was prepared in DW
and 10 mM HCI, and a 10 mM BA solution was prepared in DW and 10 mM NaOH.
The AN solutions were treated on the AgNP spots, and the BA solutions were treated
on the AQNP@PDDA spots. The SERS spectrum of each analyte was shown in
Figure 3-9. The SERS intensities of AN and BA dissolved in DW showed low SERS
signals, however, AN dissolved in HCI and BA dissolved in NaOH showed more
enhanced SERS intensities than those of AN and BA dissolved in DW. These
phenomena implied that ionization of polar organic pollutants affected the SERS

intensity. AN and BA were non-ionized in deionized water (i.e., most were neutral
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molecules) because of low dissociation constants, the most of AN and BA were not
electrostatically attracted with the AgNPs and AgNP@PDDA, showed low SERS
signals. However, the most of the AN dissolved in the HCI solution was protonated
by HCI, and the protonated AN showed positive charge. Furthermore, the most of
the BA dissolved in the NaOH solution was deprotonated by NaOH, and the
deprotonated BA had negative charge. The ionized AN and BA were electrostatically
attracted with the AgNP and AgNP@PDDA and showed enhanced SERS signals
compared to those of un-ionized AN and BA in DW. Therefore, charge-selective
SERS detection was more effective when the polar organic pollutants were dissolved

in acidic or basic solutions to increase their ionization.
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2. 5. Application to detect polar organic pollutants by

charge-selective paper-based SERS sensor
To apply the charge-selective paper-based SERS sensor, AN, 4-MA, BA and 4-MB
were used as polar organic pollutants to the charge-selective paper-based SERS
sensor. For ionization of polar organic pollutants, AN and 4-MA were dissolved in
10 mM HCI, and BA and 4-MB were dissolved in 10 mM NaOH. The analyte
solutions were treated on the charge-selective paper-based SERS sensor, and the
SERS spectrum of each analyte was shown in Figure 3-10. Figure 3-10a and 3-10b
showed that AN and 4-MA showed more enhanced SERS signals on the AgNP spot
than those on the AQNP@PDDA spot. On the contrary, BA and 4-MB showed more
enhanced SERS signals on the AQNP@PDDA spot than those on the AgNP spot, as
shown in Figure 3-10c and 3-10d. Protonated AN and 4-MA were electrostatically
attracted by the negative charge of the AgNP, and deprotonated BA and 4-MB were
electrostatically attracted by the positive charge of AQNP@PDDA. Therefore, the
charge-selective paper-based SERS sensor was suitable for detecting polar organic

pollutants.
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To evaluate the sensitivity of charge-selective paper-based SERS sensor, AN and BA
were used as polar organic pollutants. Each analyte was treated with sample
conditions in previous test. The concentration of analytes were varied from 0 to
10000 uM. The SERS spectra of analytes with different concentrations were shown
in Figure 3-11. To compare the SERS intensites of AN and BA, the 1010 cm™ band
of AN and BA were averaged from 7 different AgQNP and AgNP@PDDA spot on the
charge-selective paper-based SERS sensors treated with different concentrations of
analyte. The averaged SERS intensities of AN and BA were shown in Figure 3-12.
Both two analytes were detected at the level of tens of micromolar concentration
with less than 10 % of RSDs. From these results, the charge-selective paper-based
SERS sensor were adequate for detecting polar organic pollutants with high
sensitivity and reproducibility. In addition, by applying charge-selective SERS
detection in paper-based SERS sensor, it was shown the possibility of expanding
generality of SERS based molecular detection by electrostatic attraction between

molecules and nanoparticles.
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In summary, we demonstrated a highly sensitive and reproducible filter paper-based
SERS sensor with hydrophobic surface provided by AKD treatment and highly
uniform paper surface from CNF coating. In addition, charge-selective paper-based
SERS sensor was developed by using surface modified AgNPs to detect polar organic
pollutants by electrostatic attraction between polar pollutant and nanoparticle for
expanding generality of SERS based molecular detection.

To increase the sensitivity and reproducibility of filter paper-based SERS sensor, at
first, hydrophobic filter paper-based SERS sensor was fabricated by treatment with
AKD on filter paper. By using the hydrophobic filter paper, the AgNP and analyte
solutions were prevented from absorption into the filter paper and were retained on
the surface of filter paper until drying. Unlike the conventional filter paper-based
SERS sensors, the hydrophobic filter paper-based SERS sensor was found to form
numerous SERS hot-spots composed of AgNP clusters on the surface of filter paper,
without absorption of AgNP into the filter paper. Furthermore, the concentration of
AgNP solution treated on the surface of filter paper to form AgNP spot was
optimized for highly sensitive and reproducible SERS intensity. The hydrophobic
filter paper-based SERS sensor showed highly sensitive and reproducible SERS
detection of pesticides at the sub-nanomolar level with 6 % of RSD.

Second, the uniformity of the surface of the hydrophobic filter paper-based SERS

sensor was increased by introducing CNF coatings for highly reproducible SERS
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detection. To increase the sensitivity of SERS sensor, SERS spectra were measured
using a objective lens with high value of NA. However, conventional paper-based
SERS sensors showed low reproducibility of the SERS signal when objective lens
with high value of NA was used to apply SERS measurement because of decreasing
of confocal volume. Conventional paper-based SERS sensors showed non-uniform
surface by high surface roughness and numerous pores on the paper surface which
were originated by variation of size and conformation of the cellulose fibrils in the
paper, resulted in low reproducibiltiy. To overcome disadvantage of paper-based
SERS sensor, the CNF coating was introduced on hydrophobic filter paper. By
introducing CNF coating, the uniformity of the surface of filter paper was increased
because the CNF filled the pores and reduced surface roughness of the filter paper,
resulted in increasing reproducibility of filter paper-based SERS sensor. As a result,
the AgNP coverage of hydrophobic filter paper treated with double CNF coatings
were increased up from 87% to 95%, and the AgNP distribution on the CNF coated
hydrophobic filter paper-based SERS sensor were more uniform than that of the CNF
untreated hydrophobic filter paper. As the number of CNF coatings on the
hydrophobic filter paper increased, the RSDs of the SERS intensities of hydrophobic
filter paper were decreased from 28% to 9%, and the LODs of the paper-based SERS
sensors were decreased from 3.782 to 0.426 nM by introducing CNF coatings on

hydrophobic filter paper.
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Finally, charge-selective paper-based SERS sensor was developed to expand the
generality of SERS based molecular detection. Due to the affinity difference between
the molecule and metal depending on functional group of molecules, only a few
molecules, which have specific functional group such as thiol and isocyanide, could
be detected by conventional SERS sensors, resulted in lack of generality of SERS
based molecular detection. To expand generality of SERS based molecular detection,
charge-selective SERS detection was applied to paper-based SERS sensor. To
acheive charge-selective SERS detection, charge-selective paper-based SERS sensor
was fabricated using negatively charged AgNP and positively charged
AgNP@PDDA to detect counter-charged molecules.AgNP was encapsulated by
PDDA polymer which was positive charged polymer to synthesize positively
charged AgNP@PDDA, and AgNP and AgNP@PDDA was applied to the surface of
CNF coated hydrophobic filter paper. The surface modification of AgNP was
confirmed by changing of UV/Vis spectrum, zeta-potential and HR-TEM images. To
verify the feasibility of the carge-selective paper-based SERS sensor, charged Raman
dyes such as R6G, Ru(bpy)s, MO, and SY were applied to charge-selective paper-
based SERS sensor. The positively charged Raman dyes such as R6G and Ru(bpy):
were detected on AgNP spot, and the negatively charged Raman dyes such as MO
and SY were detected on AGNP@PDDA spot by electrostatic attraction. It was

confirmed that a charge-selective SERS detection was well operated by charge-
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selective paper-based SERS sensor. Finally, the charge-selective paper-based SERS
sensor was applied to detect polar organic pollutants, such as aniline and benzoic
acid derivatives. Aniline and benzoic acid were detected at the level of tens of
micromolar concentration with highly reproducible detection, which was showed
about 10% of RSD.

The presented paper-based SERS sensor indicated that hydrophobic modification
and CNF coating on filter paper increased the sensitivity and reproducibility of
paper-based SERS sensors without using complicated and expensive processes.
Furthermore, the developed paper-based SERS sensor could detect molecules, which
could not detected by using conventional paper-based SERS sensors by applying
charge-selective detection to the paper-based SERS sensor. The charge-selective
detection of paper-based SERS sensor extended the detection generality of SERS.
The presented paper-based SERS sensor could be as a guidance in the field of SERS-

based detection to develop universal paper-based SERS sensors in the future.
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