11 research outputs found
자아의 목소리: 래드클리프의 『숲 속의 로맨스』속 꿈
본 논문은 당대 이론들에 비추어 앤 래드클리프(Ann Radcliffe)의 소설 『숲 속의 로맨스 The Romance of the Forest (1791)』를 들여다 봄으로써 작가 래드클리프가 본인의 작품에 계몽주의의 이성적 및 영적 기류를 모두 수용하고 있음을 보이고자 한다. 래드클리프는 주인공 애들린(Adeline)의 도덕적 우월성을 확립하는데 있어서 남성 중심의 이론들을 여성주인공에게 적용하여 해당 이론들을 나름의 방식으로 수정 및 재구성한다. 로크의 인간사고 이해와 버크의 숭고이론 그리고 루소의 자연 및 내면의 진실된 목소리에 대한 강조는 애들린이 이성과 감성 그리고 영적 깊이를 가진 인물이라는 점을 밝히는데 도움을 준다.
첫 번째 장에서는 18세기 계몽주의와 이성의 시대에 탄생한 고딕장르에 대해 조망 해 본다. 18세기를 과학성 및 합리성과 연결 짓는 일반적인 시선과 달리 한편으로는 같은 시대에 감성적이고 영적인 가치들을 추구한 이면이 존재 했다. 일례로 월폴(Walpole)의 고딕작품인 『오트란토 성 The Castle of Otranto (1764)』의 출판과 성공은 당대에 팽배한 상상력 및 영감에 대한 관심을 보여준다. 감성과 영성에 대한 관심에 기여한 대표적 인물들로 에드먼드 버크(Edmund Burke), 섀프츠베리(Shaftesbury), 프랜시스 허치슨(Francis Hutcheson), 그리고 장-자크 루소(Jean-Jacques Rousseau)를 꼽을 수 있는데 이들의 미학이론 및 도덕이론과의 밀접한 연관 속에서 래드클리프의 고딕작품은 도외시되곤 하는 계몽주의의 이면 역시 포착한다.
두 번째 장은 애들린의 이성적이고 감성적인 특질을 다룬다. 작품 전반에 걸쳐 애들린은 이성적으로 사고하며 본인의 판단에 따라 내면의 평화를 도출해 내는 모습을 보여준다. 특히 그녀는 깊은 이성적 사고를 함에도 불구하고 로크의 물질적 경험주의에 제한받지 않는데, 이는 그녀가 절제된 감성을 지녔으며 숭고한 주변경관이 제공하는 초월적인 경험에 기쁨을 느낄 줄도 아는 인물이라는 점과 연결된다. 버크의 숭고에 관한 미학 이론은 이러한 주인공을 파악하는데 도움을 주며 도덕감 이론은 정신과 감성 그리고 도덕성사이의 연결고리를 제공해 준다. 이러한 이론들에 비추어 주인공 애들린은 숭고에 대한 이해를 바탕으로 본인의 도덕성을 드러내 보이는 인물이라는 것을 알 수 있다.
세 번째 장에서는 주인공의 꿈에 대해 다루는데 이 꿈들은 곧 루소가 말한 “내면의 소리”의 표출로 파악할 수 있다. 애들린은 다른 래드클리프 소설 속 주인공들과 달리 생생한 꿈을 여러 차례 경험하며 꿈의 장면은 작품 속에 상세하게 기술된다. 루소는 개개인의 내면에 자연적인 “내면의 목소리”가 존재하며 대자연 및 그것을 창조한 신과 교감할 때 이 목소리는 개인의 판단을 이끌며 바른길로 인도하는 역할을 한다고 설명한다. 자연의 숭고미에 예민하고 대자연 속 신의 섭리를 찬양할 줄 아는 애들린은 영적 개방성과 깊은 내면을 지니고 있다. 따라서 그녀는 내면의 진실된 목소리를 들을 수 있으며 숨겨진 진실일 밝히고 참된 정체성을 회복할 수 있도록 이끄는 주인공의 꿈은 이러한 내적 목소리의 표출로 볼 수 있다.
이 모든 것을 종합해 볼 때 이성과 절제된 감성 그리고 영적 감수성을 지닌 애들린은 깊고 심오한 내면을 지닌 주체로 해석될 수 있다. 이러한 애들린의 모습을 통해 래드클리프는 현대적 자아의 출현을 전조하고 있으며 더불어 상상력의 힘을 일찍이 찬양함으로써 후대에 영향을 미치고 곧 도래할 낭만의 시대 역시 예고하고 있다.;This thesis examines Ann Radcliffe’s The Romance of the Forest (1791) in the context of contemporary theories to show how the author combines both the rational and spiritual elements of the enlightenment in her work. Radcliffe employs theories commonly construed as male-centric but adapts and rewrites them in her own way by applying them to her heroine Adeline to establish her moral superiority. Locke’s idea on human understanding, Burke’s theory of the sublime, and Rousseau’s emphasis on nature and the inner voice of truth underlie the construction of Adeline as a character of reason, refined feeling, and spiritual depth.
The first chapter is an overview of the eighteenth century enlightenment movement and the gothic genre which came to being in the age of reason. Contrary to the general belief that the eighteenth century leaned towards the scientific and rational, there was another stream that pursued more sentimental and spiritual values. For instance, Horace Walpole’s publication of The Castle of Otranto (1764) and its popular reception testify to contemporary interest in the power of imagination and inspiration. Edmund Burke, Shaftesbury, Francis Hutcheson and Jean-Jacques Rousseau were among some of the most influential figures who contributed to the heightened interest in feeling and spirituality. Radcliffe’s gothic encapsulates this other side of enlightenment by actively engaging with the aesthetics and moral theory of feeling and sentiment.
The second chapter studies Adeline’s rational and sentimental qualities. Throughout the story, Adeline exerts her reason and derives inner peace from the conclusions of her own judgment. Although she deeply engages in rational reflection, Adeline does not confine herself to the rigid materialistic empiricism of Locke. Rather, she is a heroine of refined feeling who takes delight in the transporting experience that sublime scenery provides. Burke’s aesthetic theory of the sublime offers a helpful context for understanding the heroine’s profound feelings. Furthermore, moral sense philosophy provides a link between the mind, feelings, and morality, thereby demonstrating the compatibility and harmony of reason and feeling within an individual. In short, this chapter traces the source of Adeline’s moral superiority in her capacity to both exercise reason and appreciate the sublime.
The third chapter focuses on the heroine’s dream visions and understands them as articulations of the Rousseauian “inner voice.” Adeline experiences an intriguing series of vivid dream visions displayed in almost lurid detail which differentiates her from other rational Radcliffean heroines. Rousseau explains that within each individual resides an “inner voice” of nature. Attuned to nature and its Creator, this voice guides the individual. As her susceptibility to the natural sublime and her appreciation of Divine Providence found in such sublime nature suggest, Adeline possesses an interior depth and spiritual openness. She is portrayed as a character capable of accessing the natural voice of inner truth, which manifests itself in the form of her dreams. More specifically, Adeline’s dreams which play a critical role in terms of revealing the hidden truth surrounding her identity can be read as the workings of this inner voice of guidance.
In conclusion, equipped with reason, refined feeling, and spiritual receptivity, Adeline is characterized as a subject possessing a deep interiority, and through the character of Adeline, Radcliffe prefigures the model of self-contained modern individual. Moreover, as an early proponent of the power of imagination, she exerts influence over the Romantic period that was to follow.I. Gothic in the Age of Reason 1
II. The Heroine of Reason and Deep Feeling 16
A. The Rational Heroine of Virtue 19
B. The Feeling Heroine and the Sublime 26
III. Dreams and the Inner Voice 39
A. The Interpretation of Dreams in Historical Context 42
B. The Inner Voice: Dreams as Manifestation of Inner Truth 49
IV. The Deep Subject: The Modern Individual 76
References 81
Abstract (Korean) 8
Bcc-Fe 내에서 결정립계가 수소의 거동에 미치는 영향에 대한 분자 동역학 연구
학위논문 (석사)-- 서울대학교 대학원 : 공과대학 에너지시스템공학부, 2018. 8. Takuji Oda.Tritium is one of the main sources for nuclear fusion reactor. However, when tritium penetrates into the structural material and is accumulated, the material becomes brittle. This phenomenon is called hydrogen embrittlement. In this research, we focus on bcc-Fe, because it is a base material of reduced activation ferritic/martensitic (RAFM) steel. In a perfect crystal of bcc-Fe, hydrogen cannot easily dissolve in the material because H atom is more unstable in a perfect bcc-Fe than in a H molecule. However, when defects are involved, H atom becomes stable and trapped near the defects. Regarding diffusivity of H atoms, defects make the energy barrier of diffusion for H atoms increase. Thus, once H atoms are trapped near defects, it is hard to diffuse out. Among several defects, grain boundary (GB) has a significant impact on hydrogen behavior, but its effect has not been clearly understood because of its complexity. Therefore, in this study, we investigate the GB effects on the solubility and diffusivity of hydrogen in bcc-Fe via a molecular dynamics (MD) simulation for the symmetric tilt Σ19b, 46.8˚, {5 -3 -2} GB.
It is found that H atoms are trapped around the GB and the binding energy of hydrogen at GB is weakly dependent on the hydrogen concentration at the GB. For diffusivity of hydrogen at the GB, there are fast or slow diffusion paths and it is related to the densely packed directions or open space direction at GB. This means that the GB makes diffusion anisotropic due to its atomic configuration, and the GB not only acts as a trap but also provides a fast diffusion path along the GB. In the direction where the GB acts as a trap, the effective diffusion coefficient of hydrogen increases as hydrogen concentration increases. This can be explained by trapping effect by the GB. On the other hand, in the direction of open space where the GB provides a diffusion path, the increase in hydrogen concentration leads to the decrease in the effective diffusion coefficient. This dependence can be explained by blocking effect on the GB. Based on these results, a thermodynamic model for the GB effects on hydrogen behavior can be modelled.
However, for establishing a thermodynamic model on hydrogen diffusivity, more accurate diffusion coefficient is needed to reduce the error of the effective diffusion coefficient predicted by the thermodynamic model. Therefore, we analyzed the cause of an error in diffusion coefficient obtained by Einstein diffusion equation. The diffusion of hydrogen and carbon impurities in a perfect bcc-Fe was investigated as examples. It is known that, even though increasing the sampling number to reduce the statistical error in MD, we cannot obtain fully linear mean square displacement as a function of time (MSD(t)) at the beginning. In this study, it is found that vibration effect and negative correlated jump effect make the non-linearity in MSD(t). The fraction of negative correlated jump which makes the non-linearity in MSD(t) depends on temperature. We suggest an effective method to reduce those effects and make the MSD(t) graph linear, which would make it possible to calculate the diffusion coefficient more accurately.Abstract 1
Chapter 1. Introduction 10
1.1. Study Background 10
1.1.1 Importance of understanding GB effects on hydrogen behavior 10
1.1.2 Importance of error analysis for diffusion coefficient 12
1.2. Objectives of Research 13
Chapter 2. Grain boundary effect on hydrogen behavior in bcc-Fe 15
2.1. Methods 15
2.1.1 MD simulation 15
2.1.2 Binding energy (Eb) 18
2.1.3 Diffusion coefficient 18
2.1.4 Nudged elastic band (NEB) method 19
2.2. Results 20
2.2.1 Effect of GB on hydrogen solubility 20
2.2.2 Effect of GB on hydrogen diffusivity 25
2.2.2.1 Hydrogen concentration dependence of type 1 27
2.2.2.2 Hydrogen concentration dependence of type 2 29
2.2.2.3 Activation energy for hydrogen diffusion on GB 33
Chapter 3. Diffusion coefficient error analysis in MD simulation 35
3.1. Method 35
3.1.1 MD simulation 35
3.1.2 MSD calculation methods in MD 36
3.1.2.1 Normal method 38
3.1.2.2 Wigner-Seitz cell method 38
3.1.2.3 Cutoff method 38
3.2. Results 41
3.2.1 Comparison of D calculated by different methods in MD simulation 41
3.2.2 WS cell method 43
3.2.3 Diffusion coefficient 47
3.2.4 The factor that affects the correlation factor 50
3.2.5 Kinetic Monte Carlo simulation 53
3.2.5.1 Random jump without correlated jump 53
3.2.5.2 Random jump with negative correlated jump (process 2) 54
3.2.5.3 Random jump with negative correlated jump only with waiting time effect (process 3) 56
Chapter 4. Summary and Conclusion 60
Bibliography 63
국문 초록 66Maste
