98 research outputs found
Guidelines for Cardiovascular Magnetic Resonance Imaging from the Korean Society of Cardiovascular Imaging-Part 3: Perfusion, Delayed Enhancement, and T1- and T2 Mapping
This document is the third part of the guidelines for the protocol, the interpretation and post-processing of cardiac magnetic resonance (CMR) studies. These consensus recommendations have been developed by the Consensus Committee of the Korean Society of Cardiovascular Imaging to standardize the requirements for image interpretation and post-processing of CMR. This third part of the recommendations describes tissue characterization modules, including perfusion, late gadolinium enhancement, and T1- and T2 mapping. Additionally, this document provides guidance for visual and quantitative assessment consisting of "What-to-See," "How-To," and common pitfalls for the analysis of each module. The Consensus Committee hopes that this document will contribute to the standardization of image interpretation and post-processing of CMR studies.ope
Charge-spin correlation in van der Waals antiferromagenet NiPS3
Strong charge-spin coupling is found in a layered transition-metal
trichalcogenide NiPS3, a van derWaals antiferromagnet, from our study of the
electronic structure using several experimental and theoretical tools:
spectroscopic ellipsometry, x-ray absorption and photoemission spectroscopy,
and density-functional calculations. NiPS3 displays an anomalous shift in the
optical spectral weight at the magnetic ordering temperature, reflecting a
strong coupling between the electronic and magnetic structures. X-ray
absorption, photoemission and optical spectra support a self-doped ground state
in NiPS3. Our work demonstrates that layered transition-metal trichalcogenide
magnets are a useful candidate for the study of correlated-electron physics in
two-dimensional magnetic material.Comment: 6 pages, 3 figur
Correlation between maximal tumor diameter of fresh pathology specimens and computed tomography images in lung adenocarcinoma
The authors compared maximal tumor diameters between fresh lung tissue and axial and multiplanar reformatted chest computed-tomography (CT) images in lung adenocarcinoma and investigated the factors affecting tumor-size discrepancies. This study included 135 surgically resected lung adenocarcinomas. An experienced pulmonary pathologist aimed to cut the largest tumor section and measured pathological tumor size (PTS) in fresh specimens. Radiological maximal tumor sizes (RTS) were retrospectively measured on axial (RTSax) and multiplanar reformatted (RTSre) chest CT images. Mean PTS, RTSax, and RTSre were 19.13 mm, 18.63 mm, and 20.80 mm, respectively. RTSre was significantly larger than PTS (mean difference, 1.68 mm; p<0.001). RTSax was also greater than PTS for 6-10-mm and 11-20-mm tumors. PTS and RTS were strongly positively correlated (RTSax, r2 = 0.719, p<0.001; RTSre, r2 = 0.833, p<0.001). The intraclass correlation coefficient was 0.915 between PTS and RTSax and 0.954 between PTS and RTSre. Postoperative down-staging occurred in 11.0% and 27.4% of tumors on performing radiological staging using RTSax and RTSre, respectively. Postoperative up-staging occurred in 12.3% and 1.4% of tumors on performing radiological staging using RTSax and RTSre, respectively. Multiple linear regression revealed that pleural dimpling (p = 0.024) was an independent factor affecting differences between PTS and RTSax. Specimen type (p = 0.012) and tumor location (p = 0.020) were independent factors affecting differences between PTS and RTSre. In conclusion, RTSre was significantly larger than PTS and caused postoperative down-staging in 27.4% of the tumors. Reliability analysis revealed that RTSre was more strongly correlated with PTS than RTSax. Specimen type and anatomical tumor location influenced the measured size differences between PTS and RTSre.ope
KSR/KSTR Guidelines for the Use of Diagnostic Imaging for COVID-19
The Korean Society of Radiology and the Korean Society of Thoracic Radiology have prepared recommendations for the use of diagnostic imaging for COVID-19 in various clinical scenarios. We have tried to grasp the situation in the real world, aggregated opinions from the chest radiologists, and reviewed available references, in order to suggest the most reasonable recommendations possible at this moment. As circumstances change and new evidences emerge, the recommendations should immediately be modified accordingly.ope
Coronary artery calcium scoring on non-gated, non-contrast chest computed tomography (CT) using wide-detector, high-pitch and fast gantry rotation: comparison with dedicated calcium scoring CT
Background: Our study assessed the reliability of non-gated, non-contrast chest computed tomography (NCCT) (with high pitch, wide coverage, and fast gantry rotation time, reconstructed at various slice thicknesses), compared with the electrocardiography (ECG)-gated calcium scoring cardiac computed tomography (CaCT), for quantifying coronary artery calcification (CAC).
Methods: Patients aged ≥50 years who required clinical NCCT were prospectively enrolled. All CT scans were performed with 256-detector rows; z-axis coverage, 8 cm; pitch, 1.5; and gantry rotation time, 280 ms (table feed, 42.86 cm/s). NCCT was followed by ECG-gated CaCT. The NCCT images were reconstructed at 0.625-, 1.25-, and 2.5-mm slice intervals. The CAC score was calculated on four sets of CT images with a commercially available software using the Agatston method. The CAC scores were divided into four standard Agatston scoring categories (Agatston scores: 0, 1-100, 101-400, and >400). The inter-observer and inter-technique agreements were evaluated for the CAC scores.
Results: Twenty-six patients (M:F, 14:12; mean age, 66.04±6.97 years) were evaluated. Agatston scores showed near-perfect correlation between CaCT and NCCT for each slice thickness. On Bland-Altman analysis, the mean differences of Agatston scores between CaCT and NCCT (slice thicknesses: 0.625, 1.25, and 2.5 mm) were 37.54, 6.67, and -41.04, respectively. Inter-technique concordance was high for the four Agatston scoring categories with linear-weighted kappa values of 0.599, 0.609, and 0.597 for NCCT (slice thicknesses: 0.625, 1.25, and 2.5 mm, respectively). NCCT with 1.25-mm slice thickness showed the strongest correlation with CaCT.
Conclusions: CAC quantification with NCCT using a wide detector, high pitch, and high temporal resolution scanning modes correlates very highly with ECG-gated CaCT, and 1.25-mm slice thickness NCCT images are more reliable than other NCCT images.ope
Clinicopathological parameters for circulating tumor DNA shedding in surgically resected non-small cell lung cancer with EGFR or KRAS mutation
Background: Circulating tumor DNA (ctDNA) is cell-free DNA that is released into peripheral blood by tumor cells. ctDNA harbors somatic mutations and mutant ctDNA obtained from blood can be used as a biomarker in advanced non-small cell lung cancer (NSCLC). In this study, we investigated the clinicopathological properties of tumors that shed ctDNA in surgically resected NSCLC patients.
Methods: Consecutive cases of NSCLC with matching surgically resected tissue specimens and peripheral or specimen blood samples were eligible for this study. EGFR and KRAS mutations in plasma ctDNA and formalin-fixed paraffin-embedded tissue were analyzed using peptide nucleic acid clamping-assisted method. The plasma and tissue results were compared according to clinicopathological features.
Results: Mutation analyses were available for 36 cases. EGFR and KRAS mutations were present in 41.7% (15/36) and 16.7% (6/36) of tissue samples, respectively. Among EGFR and KRAS-mutant tumors, plasma mutation detection sensitivity was 13.3% (2/15) for EGFR and 33.3% (2/6) for KRAS. The presence of ctDNA in plasma was significantly associated with higher pathological tumor stage (p = 0.028), nodal metastasis (p = 0.016), solid adenocarcinoma pattern (p = 0.003), tumor necrosis (p = 0.012), larger primary tumor diameter (p = 0.002) or volume (p = 0.002), and frequent mitosis (p = 0.018) in tissue specimens. All tumors larger than 4 cm in maximal diameter or 25 cm3 in volume shed ctDNA in plasma. In subgroup analysis among EGFR mutated adenocarcinoma, ctDNA was significantly associated with nodal metastasis (p = 0.029), vascular invasion (p = 0.029), solid adenocarcinoma pattern (p = 0.010), and tumor necrosis (p = 0.010), high mitotic rate (p = 0.009), large pathological tumor size (p = 0.027), and large tumor volume on CT (p = 0.027).
Conclusion: We suggest that primary or total tumor burden, solid adenocarcinoma morphology, tumor necrosis, and frequent mitosis could predict ctDNA shedding in pulmonary adenocarcinoma.ope
2020 Clinical Practice Guideline for Percutaneous Transthoracic Needle Biopsy of Pulmonary Lesions: A Consensus Statement and Recommendations of the Korean Society of Thoracic Radiology
Percutaneous transthoracic needle biopsy (PTNB) is one of the essential diagnostic procedures for pulmonary lesions. Its role is increasing in the era of CT screening for lung cancer and precision medicine. The Korean Society of Thoracic Radiology developed the first evidence-based clinical guideline for PTNB in Korea by adapting pre-existing guidelines. The guideline provides 39 recommendations for the following four main domains of 12 key questions: the indications for PTNB, pre-procedural evaluation, procedural technique of PTNB and its accuracy, and management of post-biopsy complications. We hope that these recommendations can improve the diagnostic accuracy and safety of PTNB in clinical practice and promote standardization of the procedure nationwide.ope
Feasibility of Coronary Artery Calcium Scoring on Dual-Energy Chest Computed Tomography: A Prospective Comparison with Electrocardiogram-Gated Calcium Score Computed Tomography
Rationale and Objectives: This study aimed to evaluate the feasibility of assessment using the coronary artery calcium score (CACS) in dual-energy chest computed tomography (CT). Materials and Methods: We prospectively enrolled 30 patients (19 male, 11 female; mean age, 63.73 ± 9.40 years) who clinically required contrast-enhanced chest CT. The patients underwent electrocardiogram-gated cardiac calcium-scoring CT with a slice thickness of 2.5 mm followed by a sequentially non-gated contrast-enhanced dual-energy chest CT using 140/80 fast kVp switching technology with slice thicknesses of 1.25 mm and 2.5 mm. Virtual unenhanced (VUE) images were then reconstructed from the dual-energy CT using the material suppressed iodine (MSI) technique. Results: The mean heart rates were 63.33 ± 12.01 beats per minute. The mean CACS on the coronary calcium-scoring CT was 361.1 ± 435.5, and CACSs of the VUE images were 76.8 ± 128.6 (2.5 mm slice) and 108.7 ± 165.1 (1.25 mm slice). The correlation coefficients of CACS between the coronary calcium-scoring CT with the VUE 2.5 mm and 1.25 mm images were 0.888 and 0.904, respectively. The inter-observer agreements for the calcium score measurement between the calcium-scoring CT, VUE 2.5 mm, and VUE 1.25 mm were 1.000, 0.999, and 1.000, respectively. Conclusions: In conclusion, assessment of CACS using dual-energy chest CT might be feasible when using MSI virtual unenhanced dual-energy chest CT images with a slice thickness of 1.25 mm.ope
Semi-Quantitative Scoring of Late Gadolinium Enhancement of the Left Ventricle in Patients with Ischemic Cardiomyopathy: Improving Interobserver Reliability and Agreement Using Consensus Guidance from the Asian Society of Cardiovascular Imaging-Practical Tutorial (ASCI-PT) 2020
Objective: This study aimed to evaluate the effect of implementing the consensus statement from the Asian Society of Cardiovascular Imaging-Practical Tutorial 2020 (ASCI-PT 2020) on the reliability of cardiac MR with late gadolinium enhancement (CMR-LGE) myocardial viability scoring between observers in the context of ischemic cardiomyopathy.
Materials and methods: A total of 17 cardiovascular imaging experts from five different countries evaluated CMR obtained in 26 patients (male:female, 23:3; median age [interquartile range], 55.5 years [50-61.8]) with ischemic cardiomyopathy. For LGE scoring, based on the 17 segments, the extent of LGE in each segment was graded using a five-point scoring system ranging from 0 to 4 before and after exposure according to the consensus statement. All scoring was performed via web-based review. Scores for slices, vascular territories, and total scores were obtained as the sum of the relevant segmental scores. Interobserver reliability for segment scores was assessed using Fleiss' kappa, while the intraclass correlation coefficient (ICC) was used for slice score, vascular territory score, and total score. Inter-observer agreement was assessed using the limits of agreement from the mean (LoA).
Results: Interobserver reliability (Fleiss' kappa) in each segment ranged 0.242-0.662 before the consensus and increased to 0.301-0.774 after the consensus. The interobserver reliability (ICC) for each slice, each vascular territory, and total score increased after the consensus (slice, 0.728-0.805 and 0.849-0.884; vascular territory, 0.756-0.902 and 0.852-0.941; total score, 0.847 and 0.913, before and after implementing the consensus statement, respectively. Interobserver agreement in scoring also improved with the implementation of the consensus for all slices, vascular territories, and total score. The LoA for the total score narrowed from ± 10.36 points to ± 7.12 points.
Conclusion: The interobserver reliability and agreement for CMR-LGE scoring for ischemic cardiomyopathy improved when following guidance from the ASCI-PT 2020 consensus statement.ope
흉막에서 발생한 석회화 섬유성 종양: 증례 보고1
Calcifying fibrous tumors (CFTs) are rare benign mesenchymal tumors consisting of hyalinized collagenous fibrotic tissue with a lymphoplasmacytic infiltrate and dystrophic calcifications. Radiographic features have seldom been described, and there are no reports describing magnetic resonance imaging (MRI) findings. Here, we report a pleural CFT in a 47-year-old woman. The tumor mimicked an intrapulmonary lesion on initial computed tomography scans but migrated inferiorly and presented as an extra-pulmonary lesion on MRI. The tumor showed iso-signal intensity on T1-weighted images (WIs), low signal intensity on T2WIs, and slight rim enhancement on enhanced T1WIs.ope
- …
