67 research outputs found
์์ฒด์ ํฉ์ฑ ๋๋ ธ๋ฌผ์ง์ ํ์ฉํ ํญ๋ฐ์ด๋ฌ์ค ์์ฝํ ๋ฐ๊ตด ๋ฐ ์ธํฌ ๋ถํ ์ฐ๊ตฌ
ํ์๋
ผ๋ฌธ (๋ฐ์ฌ) -- ์์ธ๋ํ๊ต ๋ํ์ : ์์ฐ๊ณผํ๋ํ ํํ๋ถ, 2021. 2. ๋ฏผ๋ฌํฌ.Since the arousal of the massive development and production of chemical medicine in 1980s, explosive scientific achievements of the traditional pharmaceuticals based on chemical products were accomplished. Nevertheless, numerous infectious diseases and neurological incurable disorders has been yet to be conquered, due to the integrated issues involving the complexity of the disease mechanism studies, difficulty in the critical factor control and so on. Therapeutic research on the RNA virus-associated diseases, for example, had suffered the drastic challenges such as the high rate of genetic mutation and increase in chance of drug evasion. As a result, seldom success has been accomplished in the development of antiviral drugs or vaccines to cope with such. Recent outbreak of several epidemics has been aggressive and severe, which has evoked the urgent need for the antiviral drugs and led to the massive competition of research and development among numerous pharmaceuticals.
In the meantime, it has not been long since the potential of nanotechnology has risen on debate for its interdisciplinary application. Nanotechnology includes all research area where various materials in nano (10-9) scale are involved. Nano-sized materials have drawn much attention for their specific features (such as electrical, optical properties) distinguished from those of the bulk sources. Despite its short history compared to other research area, nanotechnology is now drawing much attention for their unique properties advantageous for diverse biological applications. Such attempts include the development of biofunctional nanodevices such as biosensor, intracellular delivery carrier.
Here, we introduce three representative multidisciplinary studies utilizing the nanotechnology: 1) rapid drug discovery incorporating a fluorescence-based nanobiosensor, 2) the efficient strategy for neural differentiation of the stem cell with porous particles, and 3) the non-viral direct reprogramming strategy to generate neural stem cell with carbon dot nanoreagent. In each chapter, we introduce the specific characteristics of the involved nanomaterials and describe how these features contributed to achieve the individual goals.
In the first research, we propose our achievement on the development and utilization of the fluorescence nanobiosensor to the rapid discovery of the antiviral drug against the pathogenic RNA virus. We have developed a facile, and efficient viral enzyme activity analyzing platform incorporating modified RNA and graphene oxide, named as RANGO. We utilized it to the multi-well based, high-throughput chemical screening to identify novel direct-acting antiviral agents against a specific pathogenic RNA virus named as dengue virus from the FDA-approved small molecule library. Throughout the series of validation process carried out both in vitro and in vivo, we suggest the very compound as the potent direct-acting antiviral drug candidate.
In the second research, we suggest the efficient method to mimic the neural differentiation process of mouse embryonic stem cell in vitro incorporating the porous silica nanoparticle as a drug delivery carrier. We selected the functionalized nanoparticle showing the maximum drug loading capacity and investigated its high capability of intracellular delivery by penetrating in the cell cluster. We confirm that the selected nanoaparticle could effectively support the stable, sustained delivery of the retinoic acid into the mouse embryonic stem cell, which led to the efficient induction of the retinoic acid-mediated neural differentiation.
In the third research, we introduce the non-viral, direct reprogramming strategy to generate neural stem cell from somatic cell incorporating carbon dot nanocarrier. We observed that the carbon nanodot carrier with the optimized surface charge showed the higher biocompatibility and gene delivery efficiency against the human fibroblast. With sequential evaluation from the non-viral gene delivery to the induction of the neural differentiation, we suggest that the carbon nanodot could be utilized as the non-viral gene delivery carrier to facilitate the direct reprogramming of human fibroblast into neural stem cell-like cell.
We suggest that our research accomplishments could provide the fundamental ideas to overcome the limitations of classical approaches in the field of drug discovery and cell engineering.1980๋
๋ ํํ ์์ฝํ์ ๋๋ ์์ฐ ๋ฐ ๊ฐ๋ฐ์ ํ์
์ด, ํฉ์ฑ ์์ฝํ์ผ๋ก ๋ํ๋๋ ์ ํต์ ์ธ ์์ฝํ์ ๋น์ฝ์ ์ธ ๋ฐ์ ์ ์ด๋ฃฐ ์ ์์๋ค. ๊ทธ๋ฌํ ์ฑ์ฅ์๋ ๋ถ๊ตฌํ๊ณ ๋ฐ์ด๋ฌ์ค์ ๊ธฐ๋ฐํ ๊ฐ์ผ์ฑ ์งํ์ด๋ ์ ๊ฒฝ๊ณํต ๊ด๋ จ ๋์น์ฑ ์งํ๋ค์ ๋ฐ์ ๊ธฐ์ ์ ๋ณต์ก์ฑ ๋ฐ ๊ด์ฌ ์ธ์ ์ ์ด์ ์ด๋ ค์ ๋ฑ ๋ณตํฉ์ ์ธ ์ด์ ๋ก ์ ๋ณต๋์ง ๋ชปํ๊ณ ์๋ ์ค์ ์ด๋ค. ๊ฐ๋ น RNA ๋ฐ์ด๋ฌ์ค์ฑ ์งํ์ ๊ฒฝ์ฐ, RNA ๋ฐ์ด๋ฌ์ค์ ๋์ ์ ์ ์ ๋ณ์ด์จ๊ณผ ์ฝ๋ฌผ ํํผ ๊ฐ๋ฅ์ฑ ๋ฑ์ผ๋ก ์ธํด ์น๋ฃ๋ฒ ๊ฐ๋ฐ ์ฐ๊ตฌ์์ ๋ํญ์ ๊ฒช๊ณ ์์ผ๋ฉฐ, ์ด๋ ํ์ฌ ํญ๋ฐ์ด๋ฌ์ค์ ์ฌ๋ ๋ฐฑ์ ๊ฐ๋ฐ ๋ถ์ผ๊ฐ ํฌ์ ๋๋น ํจ์จ์ด ๋์ง ์์ ์ฃผ๋ ์ด์ ๋ก ๊ผฝํ๋ค. ์ต๊ทผ ๋ช๋ช ๋ฐ์ด๋ฌ์ค์ฑ ์ ์ผ๋ณ๋ค์ ์ฌ๊ฐํ ์ฐฝ๊ถ๋ก ์ธํ์ฌ ํญ๋ฐ์ด๋ฌ์ค ์ ์ฌ์ ์์๊ฐ ๊ธ์ฆํ์๊ณ , ์ด์ ๋ฐ๋ผ ์๋ง์ ์ ์ฝ ํ์ฌ๋ค ์ฌ์ด์์ ์น์ดํ ์ฐ๊ตฌ ๊ฐ๋ฐ ๊ฒฝ์์ด ์ด๋ฃจ์ด์ง๊ณ ์๋ค.
ํํธ, ์ด๋ค ๋ฌผ์ง์ด ๋๋
ธ ์์ค (10-9)์ ํฌ๊ธฐ๊ฐ ๋์์ ๋ ์๋ฌผ์ง๊ณผ ๋ค๋ฅธ ๊ณ ์ ์ ํน์ฑ์ ๋จ ์ ์๋ค๋ ์ ์ด ๋ฐ๊ฒฌ๋๋ฉด์ ๋๋
ธ๋ฌผ์ง์ ํน์ฑ์ ์ฐ๊ตฌํ๋ ํ๋ฌธ์ธ ๋๋
ธ๊ธฐ์ ์ด ๋ง์ ๊ด์ฌ์ ๋ฐ๊ธฐ ์์ํ๋ค. ์ด ํ๋ฌธ๋ถ์ผ์ ๋คํ์ ์ ์ฐ๊ตฌ ํ์ฉ ๊ฐ๋ฅ์ฑ์ด ๋๋๋ ๊ฒ์ ๋น๊ต์ ์ต๊ทผ์ผ๋ก, ๋ค์ํ ๋๋
ธ๋ฌผ์ง์ ๊ณ ์ ํ ํน์ฑ์ ํ์ฉํ์ฌ ์ ๊ธฐ์ ํธ ๋ฐ ๊ดํ ์ ํธ๋ฅผ ๋น๋กฏํ ๋ค์ํ ์๋ ๋ฐฉ์์ ๊ตฌํํ ์ ์๋ ํ์ง ์ฅ๋น ๋ฐ ์์ฒด ์ ์ฉ ๊ฐ๋ฅํ ๋๋
ธ์์ฝ๋ค์ ๊ฐ๋ฐ ์ฐ๊ตฌ๊ฐ ํ๋ฐํ๊ฒ ์ด๋ฃจ์ด์ง๊ณ ์๋ค.
๋ณธ ์ฐ๊ตฌ์์๋ ๋๋
ธ๊ธฐ์ ์ ๋ค์ํ ๋คํ์ ์ ํ์ฉ ๋ถ์ผ ์ค ๋ํ์ฑ์ ๋ ๋ ์ธ ๊ฐ์ง ์ฃผ์ ๋ก 1) ํ๊ด ๊ธฐ๋ฐ ๋๋
ธ์ผ์๋ฅผ ํ์ฉํ ๊ณ ํจ์จ ์์ฝํ ๋ฐ๊ตด ๋ฐ 2) ๋ค๊ณต์ฑ ์
์๋ฅผ ํ์ฉํ ์ค๊ธฐ์ธํฌ์ ์ ๊ฒฝ ๋ถํ ์ฐ๊ตฌ, ๊ทธ๋ฆฌ๊ณ 3) ์นด๋ณธ๋ท ๋๋
ธ์ ๋ฌ์ฒด๋ฅผ ํ์ฉํ ๋น๋ฐ์ด๋ฌ์ค์ฑ ์ฒด์ธํฌ ์ง๋ถํ ์ฐ๊ตฌ๋ฅผ ๋ณ๋ ฌ์ ์ผ๋ก ์ํํ์๋ค. ๊ฐ ์ฐ๊ตฌ์ ํ์ฉ๋ ๋๋
ธ๋ฌผ์ง๋ค์ ์ ๋ง๋ค ๋ค๋ฅธ ํน์ฑ์ ๊ฐ๊ณ ์ ์์คํ
๊ตฌํ์ ๊ธฐ์ฌํ์๋ค. ํด๋น ํน์ฑ๋ค์ด ์ด๋ค ๋ฐฉ์์ผ๋ก ํ์ฉ๋์๋์ง, ์ด๋ฅผ ๊ธฐ๋ฐ์ผ๋ก ์ด๋ป๊ฒ ๊ฐ ์์คํ
์ ๋์์ธํ๊ณ ๊ฐ๋ฐํ์๋์ง์ ๋ํ์ฌ ๊ฐ ์ฅ์์ ์์ธํ ๋ค๋ฃจ์๋ค.
์ฒซ๋ฒ์งธ ์ฐ๊ตฌ์์๋ ์ฐํ๊ทธ๋ํ์ ํน์ฑ์ ํ์ฉํ์ฌ ๊ฐ๋ฐํ ํ๊ด ๋๋
ธ๋ฐ์ด์ค์ผ์๋ฅผ ํ์ฉํด ์ง์ ์์ฉ ํญ๋ฐ์ด๋ฌ์ค ํ๋ณด๊ตฐ์ ์ ๋ณํ๋ ์ ์ฒด ๊ณผ์ ์ ์๊ฐํ์๋ค. ๊ตฌ์ฒด์ ์ผ๋ก, ํ๊ด ํ์งํ RNA์ ์ฐํ๊ทธ๋ํ์ ์ฌ์ฉํ์ฌ ์ํ๊ด ์์ค์์ ์ ์ํ๊ฒ RNA ๋ฐ์ด๋ฌ์ค ํน์ด์ ํจ์์ ํ์ฑ์ ์ ๋ ๋ถ์ํ ์ ์๋ ํ๋ซํผ์ ๊ฐ๋ฐํ์๋ค. ๋ค์ค ์ฐํ๋ ์ดํธ๋ฅผ ๊ธฐ๋ฐ์ผ๋ก ํ๊ด ์ ํธ์ ์
๊ฐํ ๊ณ ํจ์จ ์คํฌ๋ฆฌ๋์ด ๊ฐ๋ฅํ๋๋ก ์ต์ ํ์ํจ ์ด ํ๋ซํผ์ ์ด์ฉํด, FDA ์น์ธ๋ ์์ฝํ ๋ผ์ด๋ธ๋ฌ๋ฆฌ๋ก๋ถํฐ ๋ํ์ ์ธ RNA ๋ฐ์ด๋ฌ์ค ํน์ด์ ํจ์์ธ RNA-์์กด์ฑ RNA ์คํฉํจ์ (RdRp) ํ์ฑ ์ ํด์ ํ๋ณด๊ตฐ์ ์ ๋ณํ๋ ๋ฐ ์ฑ๊ณตํ๋ค. ๋ค์์ผ๋ก ์ธํฌ ๋ฐ ๋๋ฌผ ๊ฐ์ผ ๋ชจ๋ธ์ ๊ธฐ๋ฐํ ์ฝํจ ๋ถ์ ์ฐ๊ตฌ ๊ฒฐ๊ณผ, ์ ๋ณ๋ ์ฝ๋ฌผ ํ๋ณด๊ตฐ ์ค ๋ชฌํ
๋ฃจ์นด์คํธ๊ฐ ๋ฐ์ด๋ฌ์ค ๊ฐ์ ํจ๊ณผ๋ฟ๋ง ์๋๋ผ ์์กด์จ ์ฆ๊ฐ, ํ์ก ๋ด ๋ฐ์ด๋ฌ์ค ์ ๊ฐ ํจ๊ณผ ๋ฐ ๊ฐ์ผ์ ์ํ ์ ์ ์ฆ์ ์ํ ๋ฑ ์ค์ง์ ์ธ ํจ๋ฅ์ ๊ฐ๋ ์ง์ ์์ฉ ํญ๋ฐ์ด๋ฌ์ค ์ฝ๋ฌผ ํ๋ณด๊ตฐ์์ ์
์ฆํ์๋ค.
๋๋ฒ์งธ ์ฐ๊ตฌ๋ ์ ๋ถ์ ํํฉ๋ฌผ์ ์ ์ฌ ๋ฐ ์ธํฌ ๋ด ๋์
์ด ๊ฐ๋ฅํ ๋ค๊ณต์ฑ ์ค๋ฆฌ์นด ๋๋
ธ์ ๋ฌ์ฒด๋ฅผ ํ์ฉํ์ฌ, ์คํ์ค ์์ค์์ ๋ฐฐ์์ค๊ธฐ์ธํฌ๋ก๋ถํฐ ์ ๊ฒฝ ๋ฐ์๋จ๊ณ๋ฅผ ์ฌํํ๋ ํจ์จ์ ๋์ด๋ ์ ๋ต์ ๋ํ ์ฐ๊ตฌ์ด๋ค. ๋ค์ํ ํ๋ฉด ๊ณ์ง์ ํตํด ์ ๋ถ์ ํํฉ๋ฌผ์ ์ ์ฌ ํจ์จ์ ์ต๋ํํ ๋ค๊ณต์ฑ ๋๋
ธ์ ๋ฌ์ฒด๋ฅผ ์ ๋ณํ๊ณ , ํด๋น ๋๋
ธ์ ๋ฌ์ฒด๊ฐ ๊ตฐ์ง ํํ๋ก ์๋ผ๋ ์ฅ ๋ฐฐ์์ค๊ธฐ์ธํฌ ๋ด๋ถ์ ํจ๊ณผ์ ์ผ๋ก ์ ๋ฌ๋จ์ ํ์ธํ์๋ค. ์ด ์ ๋ฌ์ฒด๋ฅผ ํ์ฉํด ๋ค๋์ ๋ ํฐ๋์ฐ์ ๋ฐฐ์์ค๊ธฐ์ธํฌ ๊ตฐ์ง์ ์์ ์ ์ผ๋ก ๊ณต๊ธํ์ฌ, ๋ ํฐ๋์ฐ ๊ด์ฌ ๊ธฐ์ ์ ๋ฐ๋ฅธ ์ ๊ฒฝ์ธํฌ ๋ถํ ๊ณผ์ ์ ์ด์งํ ์ ์์์ ์
์ฆํ์๋ค.
์ธ ๋ฒ์งธ ์ฐ๊ตฌ๋ ์ฌ์กฐํฉ ์ ์ ์์ ์ ์ฌ ๋ฐ ์ธํฌ ๋ด ๋์
์ด ๊ฐ๋ฅํ ํ์์ ๋๋
ธ์ ๋ฌ์ฒด๋ฅผ ํ์ฉํ์ฌ, ๋น๋ฐ์ด๋ฌ์ค์ฑ ์ ์ ์ ์ ๋ฌ ๋ฐฉ์์ผ๋ก ๊ณ ํจ์จ์ ์ฒด์ธํฌ ์ง๋ถํ๋ฅผ ์คํํ๋ ์ ๋ต์ ๋ํ ์ฐ๊ตฌ์ด๋ค. ํ๋ฉด ์ ํ๋ฅผ ์ต์ ํํ ํ์์ ๋๋
ธ์ ๋ฌ์ฒด๊ฐ ํต์์ ์ผ๋ก ํ์ฉ๋๋ ๊ณ ๋ถ์์ฑ ์ธํฌ์ ๋ฌ์ฒด ๋๋น ์ฌ์กฐํฉ ์ ์ ์์ ์ ์ฌ์จ์ด ๋๊ณ ์ธ๊ฐ ํผ๋ถ์ธํฌ์ ๋ํด ์ฐ์ํ ์์ฒด์ ํฉ๋๋ฅผ ๋ณด์์ ํ์ธํ์๋ค. ์ธํฌ ์ ํ ์ธ์์ธ SOX2๋ฅผ ๋๋์ผ๋ก ์ ์ฌํ ํ์์ ๋๋
ธ์ ๋ฌ์ฒด๋ฅผ ์ธ๊ฐ ํผ๋ถ์ธํฌ์ ์ฒ๋ฆฌํ์ฌ ์ ๊ฒฝ์ค๊ธฐ์ธํฌ ์ ์ฌ ์ธํฌ๋ก์ ์ง๋ถํ์ ์ฑ๊ณตํ์๊ณ , ์ง๋ถํ๋ ์ธํฌ์ ๋ฐฐ์ ์กฐ๊ฑด์ ์กฐ์ ํ์ฌ ์ ๊ฒฝ ์ ์ฌ ์ธํฌ๋ก์ ๋ถํ ์ ๋๊ฐ ๊ฐ๋ฅํจ์ ํจ๊ป ์
์ฆํ์๋ค.
์์ ํ ์ฐ๊ตฌ ์ฑ๊ณผ๋ค์ ๊ธฐ์กด ์ ์ฝ ๋ฐ๊ตด ๋ฐ ์ธํฌ ๊ณตํ ๋ถ์ผ์์ ์ ํต์ ์ธ ์ ๊ทผ ๋ฐฉ์์ผ๋ก ํด๊ฒฐํ๊ธฐ ์ด๋ ค์ ๋ ์ฐ๊ตฌ์ ํ๊ณ์ ๋ค์ ๊ทน๋ณตํ๋ ๊ธฐ์ด ์ฐ๊ตฌ์ ํ์ฉ๋ ์ ์์ ๊ฒ์ผ๋ก ๊ธฐ๋ํ๋ค.Abstract 1
Table of Contents 4
List of Figures 6
Chapter 1. Introduction 20
1.1 Nanotechnology for antiviral drug discovery 20
1.2 Nanotechnology for cell engineering 23
1.3 Description of Research 26
1.3.1 Discovery of direct-acting antiviral agents with a graphene-based fluorescent nanosensor 26
1.3.2 Highly efficient and rapid neural differentiation of mouse embryonic stem cells based on retinoic acid encapsulated porous nanoparticle 28
1.3.3 Non-viral, direct neuronal reprogramming from human fibroblast using a polymer-functionalized nanodot 29
1.4 Reference 31
Chapter 2. Discovery of direct-acting antiviral agents with a graphene-based fluorescent nanosensor 36
2.1 Introduction 36
2.2 Result 40
2.3 Discussion 59
2.4 Material and Methods 64
2.5 Reference 74
Chapter 3. Highly efficient and rapid neural differentiation of mouse embryonic stem cells based on retinoic acid encapsulated porous nanoparticle 78
3.1 Introduction 78
3.2 Result 82
3.3 Discussion 95
3.4 Materials and Methods 96
3.6 Reference 103
Chapter 4. Non-viral, direct neuronal reprogramming from human fibroblast using a polymer-functionalized nanodot 105
4.1 Introduction 105
4.2 Result 108
4.3 Discussion 129
4.4 Materials and Methods 131
4.5 Conclusion 138
4.6 Reference 139
Conclusion 142
Summary in Korean (๊ตญ๋ฌธ์์ฝ) 143
Acknowledgments 146
[Curriculum vitae] 147Docto
์ด์์ ๋ฐฉ์ง ๋ฐ ์ ์ ํจ๊ณผ ๊ทน๋ํ๋ฅผ ์ํ ๊ณ ์ฃผํ ์ ์ ์ฉ ๋ค๋ชฉ์ ์ ๊ทน ๊ฐ๋ฐ
ํ์๋
ผ๋ฌธ(๋ฐ์ฌ) -- ์์ธ๋ํ๊ต๋ํ์ : ์๊ณผ๋ํ ์ํ๊ณผ, 2023. 8. ์ด์ ๋ฏผ.๋ชฉํ: ์์ฒด ๋ด ๋ผ์ง ๊ฐ์์ ์์ผ์ ์ ์ ๋ฐ ์ง์ ์กฐ์ง ์จ๋ ์ธก์ ์ด ๊ฐ๋ฅํ Octopus ๋ค๋ชฉ์ (MP) ์ ๊ทน๊ณผ ๊ณ ์ฃผํ ์ ์ (RFA)์ฉ ๊ธฐ์กด ์ ๊ทน์ ๋น๊ตํฉ๋๋ค.
์ฌ๋ฃ ๋ฐ ๋ฐฉ๋ฒ: ์์ฒด ์ธ ์ฐ๊ตฌ์์ ์ด 4๊ฐ์ ์คํ์ด ์ํ๋์์ต๋๋ค. ์คํ A์ B๋ ๊ธฐ์กด ์ ๊ทน๊ณผ์ ์ ์ ์ฑ๋ฅ์ ๋น๊ตํ์์ผ๋ฉฐ, ๋
ธ์ถ ๊ธธ์ด ๋ณํ(20mm, 25mm, 30mm)์ ๋ฐ๋ฅธ ์ฑ๋ฅ์ ๋น๊ตํ์๋ค. ์คํ C์์๋ ์จ๋๊ฐ์ง์ ๊ทน์ ํจ๊ณผ๋ฅผ ๊ฒ์ฆํ์๋ค. ์ ์ ์ค ์จ๋๊ฐ 60๋์ ๋๋ฌํ๋ฉด ์ถ๋ ฅ์ ์ข
๋ฃํ๊ณ , ๋์ ์ ๊ทน ์ฃผ๋ณ 10mm ๊ฑฐ๋ฆฌ์ ์ด์์์ ์ฃผ๋ฉด ์ ๋๋ ์ฅ๊ธฐ๊ฐ ์๋ค๊ณ ๊ฐ์ ํ๋ค. ์คํ D๋ ์์ผ์ ์ฃผ์
์ ๋ฐ๋ฅธ ์ฑ๋ฅ ์ฐจ์ด๋ฅผ ์คํํ์๋ค. ๋ ๊ฐ์ ์ ๊ทน ์ค์์ ๋ค๋ชฉ์ ์ ๊ทน์ ์ฝ์
ํ๊ณ ์ ์ ํ 3๋ถ๋ถํฐ 3๋ถ๊ฐ ์์ผ์๋ฅผ ์ฃผ์
ํ์ฌ ์ฑ๋ฅ์ ๋น๊ตํ์๋ค. ์์ฒด ๋ด ์ฐ๊ตฌ์์๋ 16๋ง๋ฆฌ์ ๋ผ์ง๋ฅผ ์ฌ์ฉํ์๋ค. ์ฒซ ๋ฒ์งธ ์คํ์์๋ Octopus MP ์ ๊ทน(n = 15 ์ ์ ์์ญ)๊ณผ ๊ธฐ์กด ์ ๊ทน(n = 12 ์ ์ ์์ญ)์ ์ฌ์ฉํ์ฌ ๊ฐ์์ 6๋ถ ๋์ RFA๋ฅผ ์ํํ์ฌ ์์ผ์ ์ฃผ์
์ ํจ๊ณผ๋ฅผ ์กฐ์ฌํ์ต๋๋ค. ๋ ์ ๊ทน์ ์ ์ ์๋์ง, ์ ๊ธฐ ์ํผ๋์ค ๋ฐ ์ ์ ๋ถํผ๋ฅผ ๋น๊ตํ์ต๋๋ค. ๋ ๋ฒ์งธ ์คํ์์๋ ์ง์ ์กฐ์ง ์จ๋ ๋ชจ๋ํฐ๋ง ๋ฐ ๊ธฐ์กด ์ ๊ทน(๊ฐ๊ฐ์ ๋ํด n = 11๊ฐ ์ ์ ์์ญ)์ด ์๋ Octopus MP ์ ๊ทน(๊ฐ๊ฐ์ ๋ํด n = 12๊ฐ ์ ์ ์์ญ)์ ์ฌ์ฉํ์ฌ ๋ด๋ญ(GB) ๋ฐ ๊ฒฐ์ฅ ๊ทผ์ฒ์์ RFA๋ฅผ ์ํํ์ต๋๋ค. Octopus MP ์ ๊ทน๊ตฐ์์๋ ์จ๋๊ฐ 60ยฐC ์ด์์ผ๋ก ์์นํ๋ฉด RFA๋ฅผ ์ค๋จํ ๋ฐ๋ฉด, ๊ธฐ์กด ์ ๊ทน๊ตฐ์์๋ ์ด 6๋ถ ๋์ RFA๋ฅผ ์ํํ์๋ค. ์ด ์์์ ๋ณ๋ฆฌํ์ ๊ฒ์ฌ์ ์ํด ๋ ๊ทธ๋ฃน ์ฌ์ด์์ ํ๊ฐ ๋ฐ ๋น๊ต๋์์ต๋๋ค.
๊ฒฐ๊ณผ: ์์ฒด ์ธ ์ฐ๊ตฌ์์ ๊ธฐ์กด ์ ๊ทน๊ณผ Octopus MP ์ ๊ทน์ ๋น๊ตํ์ ๋, ์คํ A์ B์์ ๋
ธ์ถ ๊ธธ์ด์ ๋ฐ๋ฅธ ๋ณํ์ ์ฑ๋ฅ ์ธก๋ฉด์์ ๋ ์ ๊ทน ์ฌ์ด์ ํต๊ณ์ ์ผ๋ก ์ ์ํ ์ฐจ์ด๋ ์์๋ค. ์จ๋ ์ธก์ ์์ ์ด ์๋์ง์ ์ ์ ๋ถํผ๋ ์จ๋๋ฅผ ์ธก์ ํ์ง ์์ ๊ธฐ์กด ์ ๊ทน ๊ทธ๋ฃน๋ณด๋ค ํต๊ณ์ ์ผ๋ก ์ ์ํ๊ฒ ๋ฎ์๋ค(๊ฐ๊ฐ P<0.001). ์์ผ์๋ฅผ ์ฃผ์
ํ ๊ทธ๋ฃน์ ์ฃผ์
ํ์ง ์์ ๊ทธ๋ฃน๋ณด๋ค ์ํผ๋์ค๊ฐ ํต๊ณ์ ์ผ๋ก ์ ์ํ๊ฒ ๋ฎ์๊ณ ์ด ์๋์ง์ ์ ์ ๋ถํผ๋ ์คํ D์์ ๋ ๋์๋ค(๊ฐ๊ฐ P<0.001). ์์ฒด ์ธ ์คํ์์ ์ฒซ ๋ฒ์งธ ์คํ์์ Octopus MP ์ ๊ทน ๊ทธ๋ฃน์์ ์ ๋ฌ๋ ์ ์ ๋ถํผ์ ์ด ์๋์ง๋ ๊ธฐ์กด ์ ๊ทน ๊ทธ๋ฃน(15.7 ยฑ 4.26 cm3 vs. 12.5 ยฑ 2.14 cm3, p = 0.027; 5.48 ยฑ 0.49 Kcal vs. 5.04 ยฑ 0.49 Kcal, p = 0.029)๋ณด๋ค ํจ์ฌ ์ปธ์ต๋๋ค. ๋ ๋ฒ์งธ ์คํ์์ GB ๋ฐ ๊ฒฐ์ฅ์ ๋ํ ์ด ์์์ ๊ธฐ์กด ์ ๊ทน ๊ทธ๋ฃน๋ณด๋ค Octopus MP ์ ๊ทน ๊ทธ๋ฃน์์ ๋ ์์ฃผ ๋ํ๋ฌ์ต๋๋ค(16.7% [2/12] vs. 90.9% [10/11] GB ๋ฐ 8.3 ๊ฒฐ์ฅ์ ๊ฒฝ์ฐ % [1/12] ๋ 90.9% [10/11], ๋ชจ๋ p <0.001). GB(2.65 ยฑ 1.07 Kcal vs. 5.04 ยฑ 0.66 Kcal) ๋ฐ ๊ฒฐ์ฅ(2.58 ยฑ 0.57 Kcal vs. 5.17 ยฑ 0.90 Kcal) ์ฃผ๋ณ์ ์ ๋ฌ๋ ์ด ์๋์ง๋ Octopus MP ์ ๊ทน ๊ทธ๋ฃน์์ ๊ธฐ์กด ์ ๊ทน ๊ทธ๋ฃน๋ณด๋ค ํ์ ํ ๋ฎ์์ต๋๋ค(๋ชจ๋์ ๋ํด p <0.001).
๊ฒฐ๋ก : Octopus MP ์ ๊ทน์ ์ฌ์ฉํ๋ RFA๋ ๊ธฐ์กด ์ ๊ทน์ ๋นํด ๋ ํฐ ์ ์ ๋ถํผ๋ฅผ ์ ๋ํ๊ณ ์ธ์ ์ฅ๊ธฐ์ ๋ํ ์ด ์์์ด ์ ์์ต๋๋ค.Objective: To evaluate the feasibility, ablative zone, and safety of radiofrequency ablation (RFA) using Octopus multipurpose (MP) electrodes in ex vivo and in vivo porcine liver.
Materials and Methods: A total of 4 experiments were conducted in the ex vivo study. Experiments A and B compared the ablation performance with the conventional electrode and compared the performance according to the exposure length variation (20mm, 25mm, 30mm). In Experiment C, the effect of the temperature sensing electrode was verified. The output was terminated when the temperature reached 60 degrees during ablation, and it was assumed that there was an organ that should not be thermally damaged at a distance of 10 mm around the target electrode. Experiment D tested the difference in performance according to saline injection. A multipurpose electrode was inserted into the center of the two electrodes, and saline was injected for 3 minutes from 3 minutes after ablation, and the performance was compared.
In in vivo study, total 16 pigs were used. RFA was performed in the liver for 6 min using the Octopus MP electrodes and the conventional electrodes to investigate the effect of saline instillation in the first experiment. Ablation energy, electrical impedance, and ablation volume were compared between the two groups. RFA was performed near the gallbladder (GB) and colon using the Octopus MP electrodes with direct tissue temperature monitoring and the conventional electrodes in the second experiment. RFA was discontinued when the temperature was increased to > 60ยฐC in the Octopus MP electrode group, while RFA was performed for a total of 6 min in the conventional electrode group. Thermal injury was assessed and compared between the two groups upon pathological examination.
Results: When comparing the conventional electrode and the Octopus MP electrode in the ex vivo study, there was no statistically significant difference between the two electrodes in terms of change according to exposure length and performance in experiment A and B. In Experiment C, which compared performance according to temperature measurement, the total energy and ablation volume were statistically significantly lower than the conventional electrode group that did not measure temperature (P <0.001, respectively). The group injected with saline had a statistically significantly lower impedance than the non-injected group, and the total energy and ablation volume were higher (P<0.001, respectively) in experiment D.
In the first experiment of in vivo study, the ablation volume and total energy delivered in the Octopus MP electrode group were significantly larger than that in the conventional electrode group (15.7ยฑ4.26 cm3 vs. 12.5ยฑ2.14 cm3, P=0.027; 5.48ยฑ0.49 Kcal vs. 5.04ยฑ0.49 Kcal, P=0.029). In the second experiment, thermal injury to the GB and colon was less frequently noted in the Octopus MP electrode group than in the conventional electrode group (16.7% (2/12) vs. 90.9% (10/11); 8.3% (1/12) vs. 90.9% (10/11), P<0.001 for all). The total energy delivered around the GB (2.65ยฑ1.07 Kcal vs. 5.04ยฑ0.66 Kcal) and colon (2.58ยฑ0.57 Kcal vs. 5.17ยฑ0.90 Kcal) were significantly lower in the Octopus MP electrode group than in the conventional electrode group (P<0.001 for all).
Conclusion: RFA using the Octopus MP electrodes is capable of saline instillation and direct tissue temperature measurement, and induces a larger ablation volume and results in lesser thermal injury to the adjacent organs compared with conventional electrodes.Chapter 1. Introduction 4
Chapter 2. Materials and Methods 6
Chapter 3. Results 12
Chapter 4. Discussion 15
Chapter 5. Conclusion 20
Bibliography 41
Abstract in Korean 44๋ฐ
Fault Diagnosis of an Industrial Plant Using Maintenance Record and Multivariate Analysis
ํ์๋
ผ๋ฌธ (์์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ๊ณต๊ณผ๋ํ ํํ์๋ฌผ๊ณตํ๋ถ, 2019. 2. ์ด์ข
๋ฏผ.์ด์ ๊ฐ์ง ๋ฐ ์ง๋จ ๋ถ์ผ๋ ํํ ๊ณต์ ์ฌ์
์์ ๋งค์ฐ ์ค์ํ ์ด์๋ก ๋ถ์๋๋ฉด์ ๊ด๋ จ๋ ์ฌ๋ฌ ์๊ณ ๋ฆฌ์ฆ์ด ๊ฐ๋ฐ๋์๋ค. ์ต๊ทผ ์ปดํจํฐ ๊ณ์ฐ ๋ฅ๋ ฅ ํฅ์ ๋ฐ ์๋ก์ด ํต๊ณ ๊ธฐ๋ฒ๋ค์ ๊ฐ๋ฐ๋ก ์ธํด ๋ฐ์ดํฐ ๊ธฐ๋ฐ ์ ๊ทผ๋ฒ์ด ์ด์ ๊ฐ์ง ๋ฐ ์ง๋จ ๋ถ์ผ์ ๋ง์ด ์ฌ์ฉ๋๊ณ ์๋ค. ์ด์ ๊ฐ์ง ๋ฐ ์ง๋จ์ ์ํด ์ค์ ์ด์ ๊ณต์ ๋ฐ์ดํฐ๋ฅผ ์ฌ์ฉํ๋ ๊ฒ์ด ๊ฐ์ฅ ์ด์์ ์ด์ง๋ง, ์ค์ ์ด์ ๋ฐ์ดํฐ์ ํ๋ณด๊ฐ ์ด๋ ต๊ณ ์์ธํ ๋ฐ์ดํฐ ์ ์ฒ๋ฆฌ ๋ฐฉ๋ฒ์ด ์๋ ค์ง ๋ฐ๊ฐ ์์ด ๋๋ถ๋ถ์ ์ด์ ๊ฐ์ง ์๊ณ ๋ฆฌ์ฆ์ ํต์ ๊ฐ๋ฅํ ์๋ฎฌ๋ ์ด์
๋ฐ์ดํฐ๋ก ๊ฒ์ฆ์ด ์ํ๋์ด ์๋ค. ์ด๋ก ์ธํด ์ด์ ๊ฐ์ง ๋ฐ ์ง๋จ์ ๋งค์ฐ ์ค์ํ ๋ถ๋ถ์ธ ์ค์ ์ด์ ๋ฐ์ดํฐ์ ๋ํ ์ ์ฒ๋ฆฌ์ ๋ํด ์ด๋ฒ ์ฐ๊ตฌ์์ ์ ๋ฆฝํ๋ค.
์ค์ ์ด์ ๋ฐ์ดํฐ์ ๋ํ ์ ์ฒ๋ฆฌ๋ ํฌ๊ฒ 2๋ถ๋ถ(์ ๋น ๊ธฐ๋ก๋ถ, ์ผ์ ๋ฐ์ดํฐ)์ผ๋ก ๊ตฌ๋ถ๋๋ค. ์ ๋น๊ธฐ๋ก๋ถ์ ๋ด์ฉ์ ์ ๋น ํ์ ํน์ฑ์ผ๋ก ์๋ฐฉ์ ๋น, ๊ธฐ๊ฐ๋ณ ์ ๋น, ์์ ์ ๋น, ์์ธก ์ ๋น ๋ฑ ์ด4๊ฐ์ง๋ก ๋ถ๋ฅ๋ ์ ์๋ค. ๊ฒฐํจ ํน์ฑ์ด ๋๋ฌ๋๋ ๋ฐ์ดํฐ์ธ ์์ ์ ๋น๋ก ๋ถ๋ฅ๋ 6๊ฐ์ ๊ธฐ๋ก์ด ์ด๋ฒ ์ฐ๊ตฌ์์ ์ฌ์ฉ๋์๋ค. ์ผ์ ๋ฐ์ดํฐ์ 236๊ฐ์ ๋ณ์๋ ๊ฐ๋ต๋์ ๋ฐ์ดํฐ์ ์ฑํฅ ๋ถ์์ ํตํด 28๊ฐ๋ก ๊ฐ์ํ ์ ์๋ค.
56
์ค์ ์ด์ ๋ฐ์ดํฐ์ ์ด์ ๊ฐ์ง ๋ฐ ์ง๋จ์ ์ํด Dynamic Principal Component Analysis(DPCA)์ 1-class Support Vector Machine(SVM) ๊ธฐ๋ฒ์ ์ฌ์ฉํ๋ค. DPCA๋ ๋ฐ์ดํฐ์ ์ฐจ์ ์ถ์๋ฅผ ์ํด ์ฌ์ฉํ๊ณ 1-class SVM์ SVM ๊ตฌ์ถ์ ์ํด1 ์ข
๋ฅ์ ๋ฐ์ดํฐ๋ง ํ์ํ๊ธฐ ๋๋ฌธ์ ์ด์ ๊ณต์ ๋ฐ์ดํฐ ๋ถ๋ฅ์ ์ ํฉํ์ฌ ์ฌ์ฉํ๋ค. ๊ธฐ์กด์ SVM score๋ถ๋ฅ ์๊ณ ๊ฐ์ 0 ์ด๊ณ score ๊ฐ์ด ์์์ผ ๊ฒฝ์ฐ ๊ฒฐํจ์ผ๋ก ๋ถ๋ฅํ๋ค. ์ด ์ฐ๊ตฌ์์๋ ์ฐ์์ ์ธ SVM score ๊ฐ์ ์ฐจ์ด๊ฐ 130์ผ ๊ฒฝ์ฐ๋ฅผ ๊ฒฐํจ์ผ๋ก ๋ถ๋ฅํ๋ ์๋ก์ด ์๊ณ ๊ฐ์ ์ ์ํ๋ค. ์ ์ฒ๋ฆฌํ ๋ฐ์ดํฐ๋ฅผ ํ์ฉํ์ฌ6๊ฐ์ ์์ ์ ๋น ๊ธฐ๋ก๋ถ ๋ด์ฉ์ ๋ํด ์ด์ ๊ฐ์ง ๋ฐ ์ง๋จ์ ํ ๊ฒฐ๊ณผ, 5๊ฐ์ ์๋๋ฆฌ์ค์์ ์ข์ ๊ฐ์ง ๋ฐ ์ง๋จ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์๋ค.
์ด ์ฐ๊ตฌ์์ ์ ์ํ ์ค์ ์ด์ ํ๋ํธ ๋ฐ์ดํฐ์ ๋ํ ์ ์ฒ๋ฆฌ ์ธ๋ถ ๊ณผ์ ๊ณผ ์๋ก์ด SVM score ์๊ณ ๊ฐ์ผ๋ก ์ธํด ์ด์ ๊ฐ์ง ๋ฐ ์ง๋จ์ ์ ํํ๊ณ ์กฐ๊ธฐ์ ์ํ ๊ฐ๋ฅํ๊ฒ ๋์๋ค. ๋ฐ๋ผ์ ์ ์ํ ๋ฐฉ๋ฒ๋ค์ ์กฐ๊ธฐ ๊ฒฐํจ ํ์ง/์ง๋จ์ผ๋ก ์์ธก ์ ๋น๋ฅผ ์ํ์ ๊ฐ๋ฅ์ผ ํด์ ์ต์ ์ ํ๋ํธ ์ด์์ ์ด๋ฐ์งํ ์ ์์ ๊ฒ์ด๋ค.Many algorithms have been introduced are for fault detection and diagnosis(FDD) over the years as FDD has been important in the chemical engineering industry. Recent improvements of computation power and advances in statistical techniques, data-driven method have been more popular and well-received approach for FDD. Actual operating process data sets are optimal for FDD algorithm validation but they are hard to acquire and most of FDD algorithm is tested on controlled simulation data for convenience. Preprocess is a crucial part to FDD result, but due to the scarcity of operating process data usage, there are no known specific steps to handle and preprocess actual operating process data.
ii
Preprocess of actual operating data includes 2 parts: maintenance record and sensor raw data. Maintenance record entries are classified into 4 categories by analyzing the content of the entry and trait of maintenance.: corrective, preventive, predictive, periodic maintenance. Only 6 corrective maintenance record is used for FDD as they are the only type that will show fault attributes. Variables of sensor raw data have been reduced from 236 to 28 by analyzing the schematics and analyzing the data tendencies.
Dynamic principal component analysis (DPCA) and 1 class support vector machine (SVM) is used as a FDD algorithm for actual operating plant data. DPCA is used to reduce dimension of data and 1-class SVM is a useful tool to classify actual operating plant data as it only needs a single type of data class to construct a SVM structure. The conventional threshold of SVM classification score is zero, and a negative value is considered as a fault. Proposed new threshold in this study is a difference of consecutive score that exceeds 130. If a difference score and following score is more than 130 than it can be classified as a fault. The result of proposed FDD with a new proposed threshold of 6 corrective maintenance record showed great detection accuracy by early detecting 5 fault scenarios.
With the proposed specific steps to preprocess operating process plant data sets and new SVM classification score threshold, accurate and early process detection/diagnosis is possible. Therefore, the proposed methods can help
iii
optimal plant management by detecting a fault early to perform a predictive maintenance.CHAPTER 1. Introduction . 1
1.1. Research motivation . 1
1.2. Research objectives 3
1.3. Description of the equipment used in this thesis 4
1.4. Outline of the thesis 7
1.5. Outline of the thesis 9
CHAPTER 2. Methodology . 10
2.1. Multivariate analysis methods 10
2.1.1. Principal component analysis . 10
2.1.2. Hotellings T-squared and squared prediction error . 12
2.1.3. DPCA . 15
2.2. Support Vector Machine . 17
2.2.1. SVM . 17
2.2.2. 1-class support vector machine 21
CHAPTER 3. Simulation . 23
3.1. Process of pattern recognition 23
3.2. Preprocessing . 25
3.2.1. Maintenance record 26
3.2.2. Raw data . 28
3.3. Selecting optimal data set for validation 29
3.4. Algorithm Validation 31
3.4.1. Tennessee Eastman Process 31
CHAPTER 4. Result 36
4.1. Fault detection and diagnosis . 36
4.1.1. Fault detection and diagnosis result . 37
CHAPTER 5. Conclusion 53
์ด๋ก 55
References 58Maste
A Study on Activating Factor Analysis Viewed from Process of Creating Community-based Eco-tourism village
ํ์๋
ผ๋ฌธ (์์ฌ)-- ์์ธ๋ํ๊ต ํ๊ฒฝ๋ํ์ : ํ๊ฒฝ์กฐ๊ฒฝํ๊ณผ, 2016. 8. ์์ฉํ.์ต๊ทผ ์ง๋ฐฉ์์น๋จ์ฒด์ ์๋จ์ ๋ง์์์๋ ํ๊ฒฝ์ ๋ณด์ ํ๋ฉด์ ์ง์ญ์๋์ ์ฌ๋ฆด ์ ์๋ ์๋ก์ด ์ง์ญ์ฌ์
์ผ๋ก ์ํ๊ด๊ด๋ง์์ฌ์
์ ๊ฒฝ์์ ์ผ๋ก ์ถ์งํ๊ณ ์๋ค. ๊ทธ๋ฌ๋ ๋๋ถ๋ถ์ ์ฌ์
์ ์ง์ญ์ ํ๊ฒฝ์ ํน์ฑ์ ๊ณ ๋ คํ์ง ์์ ์ฑ ์ ๋ถ์ ์ฃผ๋๋ก ์ด๋ฃจ์ด์ง๊ณ ์๊ณ , ์ง์ญ์ฃผ๋ฏผ ๋ฐ ๋จ์ฒด์ ์ญ๋๋ถ์กฑ๊ณผ ์ฐธ์ฌ์ ์กฐ๋ก ์ธํด ์ฌ์
๊ณผ์ ์์ ๋ง์ ๋ฌธ์ ๊ฐ ์ผ๊ธฐ๋์ด์ง๊ณ ์๋ค. ์ด์ ์ง์ญ ๊ณต๋์ฒด๋ฅผ ๊ธฐ๋ฐ์ผ๋ก ํ ์ฃผ๋ฏผ์ฐธ์ฌํ ์ํ๊ด๊ด๋ง์์ ๋ง๋ค๊ณ , ์ง์๊ฐ๋ฅํ๊ฒ ์ด์ํ๊ธฐ ์ํด์๋ ์ด๋ ํ ์์ธ๋ค์ด ํ์ํ๊ณ , ๊ทธ ์์ธ๋ค์ด ์ด๋ ํ ๋ฐฉํฅ์ผ๋ก ๋ง์์ ์์ฉํ๋์ง์ ํ์
ํ์ฌ์ผ ํ๋ค. ๋ณธ ์ฐ๊ตฌ์์๋ ์ ํ1๋ฆฌ ๋์ฌ๋ฅด์๋ฒ๋ง์์ ํ์ฑํ ์ฌ๋ก ๋ถ์์ ํ ๋๋ก ์ง์ญ์ฃผ๋ฏผ์ ์ฐธ์ฌ๋ฅผ ๋ฐํ์ผ๋ก ํ ์ฃผ๋ฏผ์ฃผ๋ํ ๋ง์๋ง๋ค๊ธฐ ์ฌ์
์ ์งํํ๊ณ ์๋ ์ฌ๋ก์ง์ญ์ ์ฌ์
๊ณผ์ ์ ๋ถ์ํ์ฌ ์ฐ๊ตฌ๋ฅผ ์งํํ์๋ค.
๋ณธ ์ฐ๊ตฌ์ ๋์์ง์ธ ์ ํ๋ฆฌ ๋๋ฐฑ๋์ฐ ๋์ฌ๋ฅด์๋ฒ๋ง์์ ์ ํ๊ณถ์์ ์์ชฝ์ ์์นํ๊ณ ์์ผ๋ฉฐ, ์ ํ๊ณถ์ ์ผ๋ถ์ธ ๋๋ฐฑ๋์ฐ์ ์ํ์ ๊ฐ์น๊ฐ ๋๋ฆฌ ์๋ ค์ง๋ฉด์ ๋ณดํธ์ง์ญ์ผ๋ก ์ง์ ๋์๋ค. ๋ํ, ๋์ฌ๋ฅด๋ง์ ์๋ฒ์ฌ์
์ง๋ก ์ ์ ๋์ด, ์ด๋ฅผ ํ ๋๋ก ์ฃผ๋ฏผ์ฃผ๋ํ ๋ง์์ฌ์
์ด ์ง์์ ์ผ๋ก ์ด๋ฃจ์ด์ง๋ฉด์ ๋ง์์ ์์์ธ ๋๋ฐฑ๋์ฐ์ ์ค์ฌ์ผ๋ก ์ํ๊ด๊ด์ด ํ๋ฐํ ์ด๋ฃจ์ด์ง๊ณ ์๋ค.
๋ฐ๋ผ์ ๋ณธ ์ฐ๊ตฌ์์๋ ๊ณต๋์ฒด๋ฅผ ๊ธฐ๋ฐ์ผ๋ก ํ ์ฃผ๋ฏผ์ฃผ๋ํ ๋ง์๋ง๋ค๊ธฐ ์ฌ์
์ ์งํํ๊ณ ์๋ ๋์ฌ๋ฅด์๋ฒ๋ง์์ ์ฌ์
๊ณผ์ ์ ๋ถ์ํ๊ณ , ๋ง์์ ์์๊ณผ ์ฌ์
์ด์์ ๋ํ ์ดํด๋น์ฌ์์ ์์๊ตฌ์กฐ๋ฅผ ํ์
ํ์ฌ ์ง์ญ๊ฒฝ์ ์ ๋ง์ ํ์ฑํ๋ฅผ ์ด๋์ด๋ด๊ณ ์๋ ๋ง์๋ง๋ค๊ธฐ์ ๊ฐ์น์ ํ์ฑํ ์์ธ์ ๋์ถํด ๋ด๊ณ ์ ํ์๋ค. ๋ถ์์ ํตํด ๋์ถ ๋ ๋์ฌ๋ฅด์๋ฒ๋ง์ ํ์ฑํ์ ์ง์ ์ ์ผ๋ก ์ํฅ์ ๋ฏธ์น ์์๋ค์ ๋ฆฌ๋์ ์ฃผ๋ฏผํ์์ฒด์ ์ญํ , ์ฃผ๋ฏผ์กฐ์ง์ ๊ณต๋์ฒด๊ธฐ๋ฐ ํ๋, ์์์ ๊ด๋ฆฌ์ ๋ณด์ , ๋์ฌ๋ฅด๋ง์ ์ํ๊ด๊ดํ๋ก๊ทธ๋จ, ๋ถ๋ฐฐ์ ํํ์ฑ ์ด๋ค. ์ด๋ฅผ ํ ๋๋ก ๋ํ๋ ๋์ฌ๋ฅด์๋ฒ๋ง์์ ์ํ๊ด๊ด๋ง์๋ง๋ค๊ธฐ ์ฌ์
๊ณผ์ ์ ํน์ง ๋ฐ ๊ฒฐ๊ณผ๋ ๋ค์๊ณผ ๊ฐ๋ค.
์ฒซ์งธ, ๋ง์๋ง๋ค๊ธฐ ์ฌ์
์ถ์ง ์ ๋ง์์ ๋ฆฌ๋์ ๋ง์ ์ฌ์
์ ํ์์ ๋ํด ์กฐ์ธ์ ๋ฐ๊ธฐ์ํด ๋ค์ํ ์ธ์ ๊ตฌ์ฑ์ผ๋ก ์ด๋ฃจ์ด์ง ์ด์์กฐ์ง์ด ํ์ํ๋ฉฐ, ์ดํด๋น์ฌ์๋ค ๊ฐ์ ์๊ฒฌํฉ์๊ฐ ์ด๋ฃจ์ด ์ ธ์ผ ํ๋ค.
๋์งธ, ๋ง์์ด ํ์ฑํ๋๊ธฐ ์ํด์๋ ์ฃผ๋ฏผ์ ์ ๊ทน์ ์ธ ์ฐธ์ฌ๋ฅผ ์ด๋์ด ๋ด๊ธฐ์ํ ๋
ธ๋ ฅ๊ณผ ์ฃผ๋ฏผ์ญ๋์ ๋์ผ ์ ์๋ ๊ต์ก์ด ํ์ํ๋ค. ๋ํ, ๋ํ๋ฅผ ํตํด ๊ณต๋์ ๋ชฉํ๋ฅผ ๋ง๋ค์ด ๋๊ฐ ์ ์๋ ๋ฏผ์ฃผ์ ์ธ ์์ฌ๊ฒฐ์ ๊ตฌ์กฐ๊ฐ ํ์ํ๋ค.
์
์งธ, ๋ง์์ด ์ง์๊ฐ๋ฅํ ๋ฐ์ ์ ์ด๋ฃจ๊ธฐ ์ํด์๋ ์ง์ญ์ฃผ๋ฏผ ์ค์ค๋ก ์ง์ญ์ ๊ฐ์น๋ฅผ ๊นจ๋ซ๊ณ ์ด๋ฅผ ๊ณต์ ํ๋ฉฐ, ๋ณด์กดํ๊ณ ๊ด๋ฆฌ ํ ์ ์๋ ๋ฐฉ์์ ์๋ฆฝํ๋ ๊ฒ์ด ์ค์ํ๋ค.
๋ท์งธ, ์ง์ญ์ฃผ๋ฏผ ๋ฟ๋ง ์๋๋ผ ์ธ๋ถ์์ ๋ง์์ ๊ฐ์น๋ฅผ ์์๋ณด๊ณ ์ฐพ์์ค๊ฒ ๋ง๋๋ ๊ฒ ๋ํ ์ค์ํ๋ค. ๊ทธ ์ง์ญ๋ง์ด ๊ฐ์ง๋ ํน์์ฑ์ ํ์ฉํ์ฌ ํ๋ก๊ทธ๋จ์ ๊ณํํ๊ณ ์ด์ํ๋ ๊ฒ์ ๋ง์ํ์ฑํ์ ์ํฅ์ ๋ฏธ์น๋ค.
๋ค์ฏ์งธ, ๋ง์์ ์ง์๊ฐ๋ฅํ๊ฒ ์ด์ํ๊ธฐ ์ํด์๋ ์ง์ญ์ฃผ๋ฏผ์ ์ผ์๋ฆฌ๊ฐ ์ฐฝ์ถ๋๋ฉฐ, ์ง์ญ ๋ด๋ก ํ์๋๋ ์์ต์ด ์กด์ฌํด์ผ ํ๋ค. ๋ํ, ํํ์ฑ ์๊ฒ ์ด์ต์ ๋ถ๋ฐฐํ๊ณ ๋ง์์ ํ์ํ๋ ๊ฒฝ์ ๊ตฌ์กฐ๊ฐ ์ฑ๋ฆฝ๋์ด์ผ ํ๋ค.
๋ณธ ์ฐ๊ตฌ์์๋ ์ํ๊ด๊ด๋ง์๋ง๋ค๊ธฐ ๊ณผ์ ์์ ๋ํ๋๋ ์ฑ๊ณต์ ์ธ ์ํ๊ด๊ด๋ง์ ํ์ฑํ ์์ธ๋ค์ ๋์ถํ์ฌ ๋ถ์ํ์์ผ๋ฉฐ, ์ด๋ ์ฌํ์ ์ผ๋ก๋ ๋ค๋ฅธ ์ง์ญ์ ์ํ๊ด๊ด๋ง์๋ง๋ค๊ธฐ์ ๊ธ์ ์ ์ํฅ์ ๋ฏธ์น ์ ์๋ค๋ ์ ์์ ์์๊ฐ ์๋ค. ๊ทธ๋ฌ๋ ๋์ฌ๋ฅด์๋ฒ๋ง์์์ ์งํํ์ฌ ๋์ถํ ํ์ฑํ ์์๋ค ์ค ์ํ๊ด๊ดํ๋ก๊ทธ๋จ์ ๋ค์์ฑ ๋ฐ ์ง์๊ฐ๋ฅํ ๊ฒฝ์ ์ ๊ธฐ๋ฐ์ ๋ง๋ จ ๋ฑ์ ์ฑ๊ณต ์์ธ์ผ๋ก ํ๋จํ๊ธฐ์๋ ์ง์ญ์ ์ฐ๊ตฌํ๋ ๊ธฐ๊ฐ์ ๋ถ์กฑํ๋ค๋๋ฐ ๋ณธ์ฐ๊ตฌ์ ํ๊ณ์ ์ด ์๋ค.์ 1์ฅ ์๋ก 8
1์ . ์ฐ๊ตฌ์ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์ 8
1. ์ฐ๊ตฌ์ ๋ฐฐ๊ฒฝ 8
2. ์ฐ๊ตฌ์ ๋ชฉ์ 10
2์ . ์ฐ๊ตฌ์ ๋ด์ฉ ๋ฐ ๋ฐฉ๋ฒ 11
1. ์ฐ๊ตฌ์ ๋ฒ์ 11
2. ์ฐ๊ตฌ์ ๋ฐฉ๋ฒ 12
3์ . ๋์์ง ์ ์ ์ด์ 16
์ 2์ฅ ์ด๋ก ์ ๊ณ ์ฐฐ 18
1์ . ์ํ๊ด๊ด๊ณผ ์ํ๊ด๊ด๋ง์ 18
1. ์ํ๊ด๊ด์ ๋ํฅ๊ณผ ํ๊ณ 18
2. ์ํ๊ด๊ด๋ง์ 19
2์ . ์ํ๊ด๊ด๋ง์์ ๋ํ ์ฌ๋ก ์ฐ๊ตฌ 22
1. ๊ตญ์ธ ์ํ๊ด๊ด๋ง์ ์ฌ๋ก์ฐ๊ตฌ 22
2. ๊ตญ๋ด ์ํ๊ด๊ด๋ง์ ์ฌ๋ก์ฐ๊ตฌ 26
3. ์ํ๊ด๊ด๋ง์ ๋ง๋ค๊ธฐ์ ๋ฌธ์ ๋ฐ ํ๊ณ์ ์ ๋ํ ์ฐ๊ตฌ 30
3์ . ์ํ๊ด๊ด๋ง์ ํ์ฑํ ์์ธ์ ๋ํ ์ด๋ก ์ฐ๊ตฌ 31
1. ์ํ๊ด๊ด์ ํ์ฑํ ์์ธ 31
2. ๊ณต๋์ฒด ๊ธฐ๋ฐ๊ด๊ด์ ํ์ฑํ ์์ธ 32
์ 3์ฅ ๋์์ง์ ์ดํด์ ๋ถ์์ ํ 36
1์ . ์ ํ1๋ฆฌ ๋์ฌ๋ฅด์๋ฒ๋ง์์ ์ดํด 36
1. ์ ํ1๋ฆฌ ๋์ฌ๋ฅด์๋ฒ๋ง์์ ํํฉ 36
2. ์ ํ1๋ฆฌ ๋์ฌ๋ฅด์๋ฒ๋ง์์ ์์ 36
2์ . ์ ํ1๋ฆฌ ๋์ฌ๋ฅด์๋ฒ๋ง์๋ง๋ค๊ธฐ ๊ณผ์ 39
1. ์ ํ1๋ฆฌ ๋์ฌ๋ฅด์๋ฒ๋ง์ ๋ง๋ค๊ธฐ ํ๋ 39
2. ์ ํ1๋ฆฌ ๋์ฌ๋ฅด์๋ฒ๋ง์์ ํ์ฑํ 43
3์ . ๋ถ์์ ํ 44
1. ๋ถ์๋ฐฉํฅ์ ์ค์ 44
2. ๋ถ์์ ํ 45
์ 4์ฅ ์ ํ1๋ฆฌ ๋์ฌ๋ฅด์๋ฒ๋ง์ ๊ณต๋์ฒด๊ธฐ๋ฐ ๋ง์๋ง๋ค๊ธฐ์ ํ์ฑํ ์์ธ ๋ถ์ 48
1์ . ๋์ฌ๋ฅด์๋ฒ๋ง์ ๋ฆฌ๋์ ์ฃผ๋ฏผํ์์ฒด์ ์ญํ 48
1. ๋ง์๋ง๋ค๊ธฐ ์ฌ์
์ ์์ 48
2. ์ถ์งํ์์ฒด ๊ตฌ์ฑ ๋ฐ ์ญํ 51
3. ์ดํด๋น์ฌ์ ์๊ฒฌํฉ์ ๊ณผ์ 53
2์ . ๋์ฌ๋ฅด์๋ฒ๋ง์ ์ฃผ๋ฏผ์กฐ์ง์ ๊ณต๋์ฒด๊ธฐ๋ฐ ํ๋ 55
1. ์ฃผ๋ฏผ์กฐ์ง ํํฉ๊ณผ ์ฐธ์ฌ ๊ณผ์ 55
2. ์ํํ์์ ์ฃผ๋ฏผ์ฐธ์ฌ ํ๋ก๊ทธ๋จ์ ์ด์ 60
3. ์ง์ญ๊ณต๋์ฒด ํ๋์ ์ํ ์ฃผ๋ฏผ์ธ์๋ณํ 64
3์ . ๋์ฌ๋ฅด์๋ฒ๋ง์ ์์์ ๊ด๋ฆฌ์ ๋ณด์ 67
1. ์์์ ๊ฐ์น๊ณต์ ์ ๊ด๋ฆฌ ๋ฐฉ์ 67
2. ๋์ฌ๋ฅด์๋ฒ๋ง์์ ์์ ๋ณด์ ์ ์ํ ํ๋ 72
4์ . ๋์ฌ๋ฅด์๋ฒ๋ง์ ์ํ๊ด๊ดํ๋ก๊ทธ๋จ 74
1. ๊ณถ์์๊ณผ ๋์ฌ๋ฅด์ต์ง๋ฅผ ํ์ฉํ ์ํ๊ด๊ด ํ๋ก๊ทธ๋จ 74
2. ์ํ๊ด๊ดํ๋ก๊ทธ๋จ์ ํ์ฑํ 76
5์ . ๋์ฌ๋ฅด์๋ฒ๋ง์ ์ด์ต๋ถ๋ฐฐ์ ํํ์ฑ 79
1. ์ํ๊ด๊ดํ๋์ ํตํ ๋ง์์ ์ํ 79
2. ํํ์ฑ ์๋ ์ด์ต๋ถ๋ฐฐ๋ฅผ ์ํ ๊ณผ์ 82
์ 5์ฅ ๊ฒฐ๋ก 86
์ฐธ๊ณ ๋ฌธํ 89
๋ถ๋ก 94
Abstract 100Maste
Effects of interleukin-13 and montelukast on the expression of zonula occludens-1 in human podocytes
PURPOSE: The aim of this study was to investigate whether pathologic changes in zonula occludens-1 (ZO-1) are induced by interleukin-13 (IL-13) in the experimental minimal-change nephrotic syndrome (MCNS) model and to determine whether montelukast, a leukotriene receptor antagonist, has an effect on ZO-1 restoration in cultured human podocytes.
MATERIALS AND METHODS: Human podocytes cultured on bovine serum albumin-coated plates were treated with different doses of IL-13 and montelukast and then examined for distribution using confocal microscopy and for ZO-1 protein levels using Western blotting.
RESULTS: ZO-1 was internalized and shown to accumulate in the cytoplasm of human podocytes in an IL-13 dose-dependent manner. High doses (50 and 100 ng/mL) of IL-13 decreased the levels of ZO-1 protein at 12 and 24 h (both p<0.01; n=3), which were significantly reversed by a high dose (0.5 ฮผM) montelukast treatment (p<0.01; n=3).
CONCLUSION: Our results suggest that IL-13 alters the expression of ZO-1, and such alterations in the content and distribution of ZO-1 may be relevant in the pathogenesis of proteinuria in the MCNS model.ope
Ultrasonographic Findings in Children with Vesicoureteral Reflux.
PURPOSE: The aim of this study is to investigate the renal ultrasonographic findings in children with vesicoureteral reflux (VUR). METHODS: We retrospectively reviewed the medical records of 83 patients who were diagnosed with VUR and underwent ultrasonography at Ilsan hospital between January 2000 and December 2010. RESULTS: Among 166 renal units, 108 (65.0%) were found to have vesicoureteral reflux (VUR). Fifty-one (73.9%) had VUR in renal units with abnormal ultrasonography (USG), whereas 57 (58.7%) had VUR in renal units with normal USG. Abnormal USG findings were independent risk factors for VUR (Odds ratio, 1.98; 95% CI, 1.01-3.89; P=0.045). In renal units with VUR, the number of normal USG finding was 52.8%, and the abnormal findings were as follows; increased cortical echogenicity 16.7%, hydronephrosis 17.6%, megaureter or ureter dilatation 8.3%, hydronephrosis and ureter dilatation 1.9%, duplication of ureter 1.9%, and atrophic kidney 0.9%. The prevalence of VUR was relatively higher in renal units with hydronephrosis (23/19, 82.6%), ureter dilatation (9/9, 100%), duplication of ureter (2/3, 66.6%), and atrophic kidney (1/1, 100%). CONCLUSION: Our study indicates that VUR was associated with abnormal USG findings. When there are abnormal USG findings such as hydronephrosis, ureter dilatation, duplication of ureter, and atrophic kidney in children with UTI, VCUG is recommended to detect VUR after controlling UTI.ope
The first case of familial Mediterranean fever associated with renal amyloidosis in Korea
Familial Mediterranean fever (FMF) is an auto-inflammatory disease characterized by periodic episodes of fever and recurrent polyserositis. It is caused by a dysfunction of pyrin (or marenostrin) as a result of a mutation within the MEFV gene. It occurs mostly in individuals of Mediterranean origin; however, it has also been reported in non-Mediterranean populations. In this report, we describe the first case of FMF in a Korean child. As eight-year-old boy presented recurrent febrile attacks from an unknown cause, an acute scrotum and renal amyloidosis. He also showed splenomegaly, lymphadenopathy, pleural effusion, ascites and elevated acute phase reactants. After MEFV gene analysis, he was diagnosed as FMF combined with amyloidosis.ope
- โฆ