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Abstract

Fault Diagnosis of an Industrial Plant
Using Maintenance Record and
Multivariate Analysis

Saejin Park
School of Chemical & Biological Engineering
The Graduate School

Seoul National University

Many algorithms have been introduced are for fault detection and
diagnosis(FDD) over the years as FDD has been important in the chemical
engineering industry. Recent improvements of computation power and
advances in statistical techniques, data-driven method have been more popular
and well-received approach for FDD. Actual operating process data sets are
optimal for FDD algorithm validation but they are hard to acquire and most of
FDD algorithm is tested on controlled simulation data for convenience.
Preprocess is a crucial part to FDD result, but due to the scarcity of operating
process data usage, there are no known specific steps to handle and preprocess

actual operating process data.



Preprocess of actual operating data includes 2 parts: maintenance record and
sensor raw data. Maintenance record entries are classified into 4 categories by
analyzing the content of the entry and trait of maintenance.: corrective,
preventive, predictive, periodic maintenance. Only 6 corrective maintenance
record is used for FDD as they are the only type that will show fault attributes.
Variables of sensor raw data have been reduced from 236 to 28 by analyzing

the schematics and analyzing the data tendencies.

Dynamic principal component analysis (DPCA) and 1 class support vector
machine (SVM) is used as a FDD algorithm for actual operating plant data.
DPCA is used to reduce dimension of data and 1-class SVM is a useful tool to
classify actual operating plant data as it only needs a single type of data class
to construct a SVM structure. The conventional threshold of SVM classification
score is zero, and a negative value is considered as a fault. Proposed new
threshold in this study is difference of consecutive score that exceeds 130. If a
difference score and following score is more than 130 than it can be classified
as a fault. The result of proposed FDD with a new proposed threshold of 6
corrective maintenance record showed great detection accuracy by early

detecting 5 fault scenarios.

With the proposed specific steps to preprocess operating process plant data
sets and new SVM classification score threshold, accurate and early process
detection/diagnosis is possible. Therefore, the proposed methods can help



optimal plant management by detecting a fault early to perform a predictive

maintenance.

Keywords: Fault detection, Fault diagnosis, Machine learning, Multivariate

analysis, Data-driven approach, Preprocess, 1 class-SVM
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CHAPTER 1. Introduction

1.1. Research motivation

There has been an increasing demand for early and accurate fault detection
and diagnosis (FDD) for modern large-scale, highly complex manufacturing
facilities. Timely and optimal FDD is very valuable to fault management,
whose objective is to increase the safety of plant operation, reduce
manufacturing costs and minimize shut-down time. Due to its importance in
industrial systems, many academic and industrial effort has been made over the
years. Many fields such as pharmaceutical, environmental science have jumped
in the FDD studies but process and manufacturing industries have been the field
of FDD longer as the result of FDD immediately can influence the product
quality, reduction of product rejection and satisfaction of safety and
environmental regulations. Especially for chemical plants, which handles toxic,
hazardous, flammable raw materials, the safety of the process is of an utmost

importance[1].

A fault is defined as a state of one or more unexpected deviation from
acceptable, normal operating condition.[2]. A fault may cause loss of required
performance, possibly initiating a permanent interruption of a system’s ability
to perform, failure. It is a role of FDD to detect the fault before it aggravates

into failure or malfunction[3].

Fault detection is determining if a fault has occurred and early detection of a

fault may be able to give a warning on emerging problems to prevent serious

b . 1 1|
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events with appropriate actions. Fault diagnosis is determining the cause of the
fault. Some process faults may easily be detected and diagnosed with Shewhart
charts, a control chart with upper and lower control limits that are typically at
3 standard deviations from mean. Shewhart chart is effective with univariate
fault but most of the modern industrial systems consist of many complex units.
Therefore, the Shewhart chart has limited detection ability against modern
multivariable processes. In addition, many faults are not easy to identify as
sensor values changes are hidden under noise and disturbances. Therefore,
nowadays instead of simple control charts such as Shewhart chart, three
methods are frequently used for FDD: model-based, knowledge-based, data-
driven methods. In this study, data-driven methods will be used as the
importance of data have emphasized over the past decade along with

advancement in statistical studies as well as computation power.

Many FDD algorithms are tested with simulation data sets, which are easy to
intentionally insert a type of fault of choosing at a designed time, therefore,
making it a good data to test the FDD algorithms. Despite all the convenient
usage of simulated data, no matter how much a simulated data set might
resemble characteristics of actual data, it is still a simulated data not the actual
data. It would be optimal choice to utilize actual real data from operating
process plant but detailed operating real data sets are hard to acquire. Also
unlike controlled simulate data where preprocess is unnecessary, actual
operating plant data needs to be preprocessed with many considerations.
Unfortunately, there are no known specific steps to handle and preprocess

actual operating process data.



1.2. Research objectives

Most commonly used data-driven multivariate analysis method for FDD is
Principal Component Analysis(PCA). PCA reduces the dimensionality of a
large set of multivariable data set by transforming to a new set of variable, the
principal components PCA is a tool that projects the reduced process data to
latent space and can identify linearly related variables. PCA is used in FDD area
with a threshold set by Hotelling T-squared or squared prediction error(SPE).
PCA is a very effective tool for analyzing linear and static data but has
limitation to describe dynamic and non-linear data. For dynamic and non-linear
data, dynamic principal component (DPCA) is developed to capture the time-

dependent correlation of data.

Support Vector Machine(SVM) is a statistical supervised learning technique
that is used for classification and regression. SVM is widely used for its
superior classification ability and with a proper kernel function, SVM is a
powerful tool to classify non-linear data by constructing n-1 dimensional
hyperplanes that can classify n-dimensional data with two different classes. The
binary classifier is used for FDD by constructing SVM structure after first a
characteristic of a faulty state is categorized. SVM structure will find the
difference between the normal and faulty state in the new input data by

analyzing the classifier scores of SVM model.



1.3. Description of the equipment used in this thesis

Fluid Catalytic Cracking (FCC), since the first industrial start-up in 1942, is
still one of the most important conversion processes used in petroleum
refineries. There are about 400 FCC unit in operation worldwide and continues
and will play a major role as FCC process will be used for biofuels and for
reduction of CO2 emissions[4]. The main objective of FCC unit is to convert
high-boiling petroleum fraction gas oil and various heavy hydrocarbons to
lighter and high-valued transportation fuels i.e. gasoline, jet fuel, and diesel.
Main air blower (MAB) takes atmospheric air and delivers it to the regenerator

for quick burn-off.

According to recent studies on the health of FCCU, major rotating equipment
accounts for over 35% of all FCCU shutdown and air blower failures account
for just under 50% of major rotating equipment failures. Considering the fact
that scheduled shutdowns make up less than 10% of FCCU shut downs, it is
safe to assume that MAB is one of the main cause of FCCU failures. That is

why MAB data is used in this study for fault detection.
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Figure 1.3 Breakdown of major rotating equipment failures.
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1.4. Outline of the thesis

Various methods have been developed for the purpose of accurate and early
fault detection/diagnosis and most commonly used methods are (D)PCA and
SVM. Those methods have proven to be very accurate with controlled
simulated data. However, unlike controlled simulated data, actual operating
plant data have to account for much more unpredictable variables such as
climate and personnel mistakes and real data does not have categorized normal
training data and abnormal test data sets for algorithm validation. It is a duty of
a data analyst to classify the useable training and test data with meticulous
preprocess procedure. To apply SVM for fault detection, 2 different class of
data, normal and fault, is required as training data to classify the test data set.
Since only maintenance records and raw data with tag list is provided without
any classification labels, 1-class SVM is more suitable for the actual operating
plant because it only requires normal data set for training. Also for FCC, which
is a continuous process, a method that takes into account the serial correlations
in the data, DPCA, is more suitable than PCA that takes only one time instant
that is statistically independent to previous observations. DPCA has been
proven to show higher accuracy for a process with long sampling times, i.e., 2
to 12 hours and in this study is used to reduce data dimension for SVM

classification.

Most of developed FDD algorithms are tested with controlled simulation data
that a researcher can easily control and manipulate. Advantages of simulation
data are that many different types of fault can be injected at a designed time by

an analyst. No matter how the accurate the simulation model may be, it is still
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7 .-:';-i e ] I o],



‘simulated’ data, which may not show the same accurate result when applied to
a ‘real’ data. Conversely, ‘real’ data needs more polishing work than simulated
data as unpredictable variables, noises may be hidden, and it’s a very hard task
to acquire a data set with various types of faults to use for diagnostic

classification.



1.5. Outline of the thesis

In this study, a detailed procedure of preprocessing industrial plant raw data,
which consist of maintenance record and sensor data, and a FDD algorithm is
introduced for early fault detection that will help determine the need for
predictive maintenance. Unlike conventional preprocess procedure, that is
usually scaling, eliminating missing data and etc., preprocessing raw industrial
plant data requires two parts, maintenance record and raw sensor data. The steps
to classify maintenance and find the relevant data from vast mass of raw data
records to find adequate fault example is suggested. For FDD algorithm, 1-class
SVM via DPCA with new threshold is used as FCC is a dynamic process and

only unlabeled/unclassified data set is available.



CHAPTER 2. Methodology

2.1. Multivariate analysis methods

2.1.1. Principal component analysis

PCA is a useful dimensionality reduction technique method used to transform
a set of correlated variables into a smaller set of new variables that are
uncorrelated and express the data in such a way as to highlight their similarities
and differences[5]. It determines a set of orthogonal vectors called loading
vectors, ordered by the amount of variance explained in the loading vectors
direction. Given a training set of n observations and m process variables, with
mean zero and unit variance, stacked into a matrix X, where the matrices X
and E represent the modeled and un-modeled variations of X. 1 represents the
number of principal components and T and P are the score and loading matrices.
Loading vectors P, are calculated by solving stationary point of the optimization
problem using singular value decomposition (SVD) of the covariance matrix S.
The loading vectors are the orthonormal column vectors in the matrix Y, and
the variance of the training set projected along the ith column of Y is equal to
o2. Solving (0.0) is equivalent to solving an eigenvalue decomposition of the

sample covariance matrix S.

10 ':l-"i . !..;



T =XP (2.2)

R =TPT = Z t,PT (2.3)
i=1
t
E= TPl = Z t,PF (2.4)
i=l+1
a
X=TPT+E=ZtiPiT+E=X+E (2.5)
i=1
1
S=——XTX=VAVT (2.6)
n—1

It is very important to choose the optimal number of principal components,
a, because TPT represents the principal sources of variability in the process,

and E represents the variability corresponding to process noise.

For the FDD algorithm for this study, PCA scores of 1*' and 2™ component

were used in this study to construct SVM structure and as input for a classifier.
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2.1.2. Hotelling’s T-squared and squared prediction
error

Hotelling’s T-Squared and Q statistics, squared prediction error(SPE), is the
multivariate analysis used to detect outlier in projected coordination of PCA[6].
The Hotelling’s T-Squared statistics measure the variation within the PCA
model for the lower-dimensional space for each new observation and can be

calculated as below :

T2 = xTP(Z,)72PTx (2.7)

Where x is new observation and X, contains the non-negative real
eigenvalues corresponding to the number of principal components, a, and P
contains the loading matrix of X. The graphical definition of Hotelling’s T-

squared value is Euclidean distance from the origin of PCs to the data point.

T? = xTPAZ1PTx (2.8)
The upper confidence limit of T? is calculated using the F-distribution :

aln-1 (2.9)

T2no =
ana n—a (a,n—-a,a)

where n is the number of samples in the data and o is the level of
significance of F-distribution. A violation of the upper confidence limit is

considered an outlier or a fault.

12 A I



SPE’s graphical definition could be explained as Euclidean distance from the
PC’s hyperplane to the data point. The magnitude of value of SPE expresses
how far the data point is from the normal tendency of the other data. SPE can

be calculated as below :

SPE = x"(1 - PPT) (1 — PPT)x (2.10)

where P contains loading vectors(orthogonal) of X and I is identity matrix.

Upper limit of SPE is also calculated using approximate distribution.

1
hoCqv/20; T4 0,ho(ng — 1)>h° (2.11)

SPE, = 6
a 1 ( 91 6%

Where
0, = Z X (2.12)
j=a+1
20,0
hy=1- —L3 (2.13)
362

Cq is the normal distribution value with the level of significance of F-
distribution, @, and A; is the j-th largest eigenvalue of X. Any values that

violate the threshold is considered as a fault.

3 o i
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Contribution plot is bar plot of the sum of the residuals that describes how
much each variable contribute to the T-squared and SPE values at a specific

observation.

Hotelling T*

v

X1

Figure 2.1 T- squared and SPE value described in three dimensional space.
The distance between original observation to the PC plane is value of SPE
and the distance from the origin of the PC plane to the projected observation
point is the value of Hotelling T-squared.
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2.1.3. DPCA

X is a set of data composed of n; observations from p variables where n;

= p.

X= [Xl Xy XP](ntxp) (2.14)

PCA can be used to take into account the serial correlations by augmenting

each observation with the previous w observations and stacking the data matrix.

Xi(]‘) Xg‘(z) . X;(w)
x| X0 X6 X(wrl) (2.15)
X,.(n! _ w4+ l) Xl.(nf - w+ 2) o X,.(nz) ()
x'=lx x xS (2.16)
n=mn,—w-+1, m = pw (2.17)

w is the ‘time lag shift’, a trajectory matrix applied to stack up the data set
for dynamic process[7]. Since variables in a multivariable analysis approach
may have different range of values, it is convenient to perform a standardization
of data with mean and standard deviation to obtain data matrix, Xs%, with zero

mean and unit variance. DPCA is applying PCA on XsV.
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X® — 1
xs® = ] fori=1,..,n, j=1,..,m (2.18)

For fault detection, the measures for each observation variable can be
calculated by adding all the values of measures corresponding to previous w

time lags.

16 -2t
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2.2. Support Vector Machine
2.2.1. SVM
Support vector machines (SVM) is a supervised learning technique that was
originally developed for classifying data from two different classes. The basic
principle is illustrated in fig. that shows the classification of a series of points

for two different classes of data, yellow triangles, blue squares.

The SVM classifier structure can be constructed by solving the optimization
problem that minimizes the distance between hyperplane and data points[8]. In
the equation n is the number of data points, « is the Lagrange multiplier, x

is the data point and y; are either 1 or -1.

max L(a) = [Z o; — 0. SZ a; 043y K(xi, %)) (2.19)

K is a kernel function that is used to handle non-linear issues using linear
classifier. Following qualities from Karush-Kuhn-Tucker (KKT) condition

must be satisfied in the objective function.

n

> i =0 (2.20)

i=1

LaGrange multiplier of hyperplane can be determined by solving objective

function Equation 2.21. a parameter for the hyperplane can be calculated with

3 o i
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following equations where Ny, represents the number of all deciding

boundary points or support vectors.

n

0= aym (221)
i=1
1 Nsy
= — Y — v (2.22)
b NSV;(K(W"“) 0

In order to construct SVM, optimal kernel function must be determined first.
Some of the most commonly used kernel functions are linear, polynomial and
radial basis. Linear kernel function is used if data points can be separated with
linear hyperplanes. However, data from Process plant are non-linear data and
radial basis function, or also called Gaussian kernel function is widely used as
the nonlinear kernel function to construct SVM[9, 10]. Radial basis function is
commonly used for non-linear data as it can separate data of different class in

the form of hyper-sphere with nonlinear hyperplanes.

Linear K(x].’xk) = ijxk (223)

Polynomial K(x, %) = (x]-Txk +C)P (2.24)

Radial basis function _ exp(—|lx; — xl)? (2.25)
K% xo) = 52

3 o i
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Sigmoid K(xj, x) = tanh(k(x;, xi) + v) (2.26)

o 2 A2t ek



Figure 2.2 Example of deciding optimal support vector
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2.2.2. 1-class support vector machine

I-class SVM is extended variant algorithm of SVM proposed by
Scholkopf[11]. This divides possible faulty outlier data from normal data.
Unlike traditional SVM, 1-class SVM only needs normal data to construct SVM
structure. 1-class SVM computes the surface of a minimal hypersphere or
margin support that includes sample normal training data. It also uses the kernel
function similar to traditional SVM to map the non-linear data to a feature
space[12]. Also, radial basis function is used as the data being tested is non-
linear data and radial basis function is the optimal kernel function for non-linear
data. 1-class SVM maximize the perpendicular distance from the origin, a test
data from fault class. In summary, if a test data is outside the ‘boundary’ made
up with single characterized data of a single class, it is classified under fault

category. The modified optimization problem is as follows.

. 1, 2 1 &
Miw g p5 W™+ &i+b
[

subject tow-gix))+b+& =0, =0 i=1...m

Score which expresses the distance from ‘boundary’ of normal samples, can
be calculated using ‘predict’ function in MATLAB. If the value of score is
greater than zero, it is inside the boundary which indicates it’s normal and if the
value is below zero, it indicates that it is outside the boundary thus classifying

the test data as fault.
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Figure 2.3 Graphical illustration of 1-class SVM
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CHAPTER 3. Simulation

3.1. Process of pattern recognition

In accordance with the process of pattern recognition, which is shown in
Figure 3.1, after acquiring the raw industrial plant data, preprocessing the raw
data by eliminating irrelevant data and choosing the adequate case study to
verify the algorithm[13]. Adequate case study can be determined by analyzing
the maintenance record. After the preprocess, a dimension of chosen data will
be reduced via PCA or Dynamic PCA. Utilizing the first and second score of
PCA/DPCA, designated normal data set will construct SVM structure by 1-
class SVM algorithm. Corresponding test data set will be PCA/DPCA score of
chosen test data time span. SVM classification score can be calculated with
given SVM structure and test data set.

SVM classification score is the signed distance from x to the decision
boundary ranging from -oo to +oo. A positive score class indicates that x is
predicted to be in that class and a negative score indicates otherwise. In other
words, if the score is a positive number, then it’s normal and if the score is a

negative number, then it’s classified as a fault.
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3.2. Preprocessing

Statistical analysis and machine learning algorithms learn from data.
Therefore, the more disciplined the data is the more consistent and better result
will be. Data preprocessing is a data mining technique that disciplines raw data
into an understanding format. Data preprocessing is a proven method of
resolving incomplete, inconsistent characteristics of real data[14].

Data Preprocessing is a technique that is used to convert the raw data into a
clean data set. In other words, whenever the data is gathered from different
sources it is collected in raw format which is not feasible for the analysis

Machine learning algorithms learn from data. It is critical that you select the
right optimal data for the problem. Even if a good data is acquired, data needs
to be on a useful scale, format and include all the meaningful features.

Data preprocessing is a data mining technique that involves transforming raw
data into an understandable format. Real-world data is often incomplete,
inconsistent, and/or lacking in certain behaviors or trends, and is likely to
contain many errors. Data preprocessing is a proven method of resolving such

issues.

3 ™ _17 i
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3.2.1. Maintenance record

The first step of Pre-processing of maintenance record is categorizing the
entries by type of maintenance. Typically, maintenance can be categorized into
4 categories, predictive maintenance, preventive maintenance, corrective

maintenance, periodic maintenance.

Most of maintenance being performed are periodic maintenance and
preventive maintenance. Periodic maintenance is the basic maintenance of
equipment consists of elementary tasks. The maintenance interval is usually
provided by the manufacturer to carry out. Preventive maintenance is
maintenance that is regularly performed on a piece of equipment to reduce the
risk of failures such as oil change, lubrication, and minor adjustments. Periodic
maintenance and preventive is similar in a way that maintenance is done on the
equipment while it’s still on an operation and done to avert sudden failing. The
main difference between periodic and preventive maintenance is that while
periodic maintenance is based on time intervals, preventive maintenance is

based on experience of past failures and weather changes.

Corrective Maintenance is any maintenance performed to restore the failed
equipment to an operational condition. Unlike periodic and preventive
maintenance, corrective maintenance is performed after a fault or failure has
occurred to the equipment. Therefore, it is the type of maintenance an operator
would want to avoid the most, as the damage has already been done in one way

or another. That is why periodic and preventive maintenance is performed more

3 ™ _17 i
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frequently despite the labor and part cost. Compared to even short process shut-

down, opportunity cost of periodic and preventive maintenance is much cheaper.

The goal of predictive maintenance is to correctly predict failure of
equipment and to prevent the failure by performing maintenance with necessary
information and analysis. Fault detection is the key to a successful predictive

maintenance.

At times depending on the format of the maintenance record, maintainer is
required to classify the type of maintenance on the record. In this study case,
there was no given classification by the maintainer. Therefore, intuition and
knowledge of the process is needed to categorize the maintenance records. For
example, charging of nitrogen is classified as periodic maintenance, as it is
required by the operating manual on regular basis. On the hand, repair of air
tube leak is classified as corrective maintenance, as it is actual correction of a

failure of an equipment.

Time and Preventive maintenance was the majority of the maintenance
record entries. Out of total of 63 maintenance record, 58 entries were periodic
and preventive maintenance which made up for 90% and corrective
maintenance record was only 5 entries. In an operating plant, time and
preventive maintenance make up over 90% of the maintenance as shut-down
due to a fault is critical to plant operation. Also there is a 24-hour crew on stand-
by at an operating Plant to monitor any abnormalities before it escalates into a
serious disastrous situation. Therefore, it only makes sense that there is a very

few actual “serious” distinctive fault that requires corrective maintenance.
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Although corrective maintenance is best suited data to test fault detection
algorithm, number of data was too small. In addition to 5 corrective
maintenance cases, 12 preventive maintenance cases selected for verification.
Added 12 Preventive maintenance was chosen as they may now show
distinctive fault characteristics as corrective maintenance but still may show

more than periodic maintenance.

3.2.2. Raw data

The acquired raw data consists of total 2 years of observation in interval of
minutes, 1440 data per day, with 238 sensor variables. Since processing 238
variable data with algorithm takes up too much time, it is necessary to reduce
the number of variables into relevant variables. To reduce the number of
variables, analysis of P&ID of the process is needed. Tag numbers and symbols
on the P&ID schematics provide with the information of location, type of the
instrument. By studying the P&ID, instruments that are part of a distributed
control system(DCS) can be eliminated since they are display panels like a
terminal screen that most likely has same values as actual sensors. Piping and
connection symbols are also used to identify how the instruments in the process
connect to each other and applied that information to eliminate data link and
electrical panel related tag lists. After the process of eliminating irrelevant

variables, 210 variables were deleted from the data and left with 28 variables.
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3.3. Selecting optimal data set for validation

It is important to recognize that maintenance entry dates are inputted after
maintenance action is completed, not when the maintenance action order has
been issued. Also maintenance is performed by 24-hour crew, therefore the fault
could have occurred during the night before the entry. That is the reason when
determining dates for abnormal test data, day prior to the date of the entry must

be included as well as day after to show change in the test data set.

Unlike controlled simulation data sets that have specified normal data set and
abnormal data set, operating plant data does not have named normal and
abnormal data sets. It is very important to choose the optimal set of normal and
abnormal data for validating fault detection algorithm for even if the algorithm
is flawless, data set decision could critically influence the result. During the
analysis, a gradual increase in temperature in some variables was noticed.
Although there was some gradual temperature increase over a span of several
months, they were not caused by fault but part of normal pattern. That also
means that the pattern of normal data changed as time passed. With change of
the normal data patterns over time, 5,000 observations (about 3days of data)

prior to day prior to entry was chosen to train.

Selected maintenance record will be the standard for data selection for
optimal training and test data sets. PCA/DPCA is applied to reduce their
dimensions and product of PCA and DPCA, first and second principal
component score plot is used to construct SVM structure and calculate the SVM

classification score.
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Table 3.1 Data selection criteria
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3.4. Algorithm Validation

3.4.1. Tennessee Eastman Process

Tennessee Eastman Process(TEP) model that was first introduced by Downs
and Vogel[15] is most widely used data set when validating FDD algorithms.
Its popularity is because of the fact that it is modeled based on a real process
and is very convenient to insert fault of user’s choice at a time of one’s choosing.
Through numerous years of testing with TEP data sets, the minor glitches have
been improved by engineers and are acknowledged by many as one of the an
‘almost actual’ data. Moreover, TEP has designated ‘Normal Data’ for training
data set and ‘Abnormal Data’ for each fault scenarios to input as test data set.
The types of fault provided with TEP data sets are listed in the table 3.2. For
validation of the proposed algorithm, fault scenario 1&7 were chosen as the test
data sets as they are known to have high detection rate than other scenarios. For
this TEP data set, fault was inserted at 975 second which will be the standard

for accuracy of detection time.

The result of FDD algorithm with step fault #1 & 7 data set as input is shown
in figure 3.3 and figure 3.4. The conventional detection time, when a
classification score goes below threshold ‘0’, for fault #1 is 1276 second and
984 second for fault #7. Considering the fault was inserted at 975 second, the
detection time for fault #1 was descent and detection time for fault #7 was very

close to the time of insertion.

It was noticed from analyzing DPCA-SVM classification plot that normal

scores before the classified fault data score are very apart than distance of
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normal scores. Average of differences of normal consecutive classification
scores was 1.03. But the score difference of observation when a fault is
classified, 1276 sec, and 1 observation prior, 1275 sec was 136. Similar
difference characteristics were observed for fault #7. Therefore, a new threshold
of consecutive score value difference larger than 126 was established and the
result of new threshold detection time was at least 5 observations faster than
the conventional detection time. As the goal of fault detection is to detect early
to prevent aggravation of fault, the new threshold is more suitable for FDD than

the conventional threshold.
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Scenario Process variable e
1 AJC feed ratio, B composition constant (stream 4) Step
2 B composition. A/C ratio constant (stream 4) Step
3 D feed temperature (stream 2) Step
4 Reactor cooling water inlet temperature Step
5 Condenser c4mting water inlet temperature Step
6 A feed loss (stream 1) Step
7 C header pressure loss-reduced availability (stream 4) Step
Random
8 A, B, C feed composition (stream 4) variation
Random
9 D feed temperature (stream 2) _
variation
Random
10 C feed temperature (stream 4) variation
Random
11 Reactor cooling water inlet temperature variation
Random
12 Condenser cooling water inlet temperature variation
13 Reaction Kinetics Slow drift
14 Reactor cooling water valve Sticking
15 Condenser cooling water valve Sticking
16 Unknown Unknown
17 Unknown Unknown
18 Unknown Unknown
19 Unknown Unknown
20 Unknown Unknown

Table 3.2 Detailed description of TEP faults.
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CHAPTER 4. Result
4.1. Fault detection and diagnosis

Fault detection and diagnosis using 1-class SVM via DPCA have proven
accurate on TEP data. The proven algorithm was used to early fault detect MAB
from FCCU data. To apply the algorithm, it is necessary to extract relevant data
from a vast amount of data. The relevant data, 6 corrective maintenance entries
which were classified from maintenance record entries and variable reduced
data set are obtained by preprocessing procedure. 236 variables from raw data
are reduced to 31 relevant variables and data of observation from maintenance
entry is reduced via PCA and DPCA. 7 principal components are chosen as they
explain 99.5% variance. 1st and 2nd scores from PCA/DPCA of training data
set is used to construct the SVM classifier. Table 3.1 shows how training and
data sets are selected based on the date of corrective maintenance entry. The
standards are set due to completion of maintenance action and gradual increase
of sensor data. Among the industrial plant data in the span of 2years, 6

corrective maintenance record was used for FDD as shown in Table 4.1.
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Date Maintenance Entry Category
1 | Y1-Febl | Intake Filter Calibration corrective
2 | Y1-Junel | TBN NDE Hunting(TI253B) corrective
3 | Y1-June2 | Set Point Error corrective
4 | YI-Augl | Repair Air Tube Leak corrective
5| Y1-Aug2 | Repair dryness of the sensor(TE257B) | corrective
6 | Y2-Marl | Inspect Cabinet Alarm RCP4 corrective

Table 4.1 Classified corrective maintenance record

4.1.1. Fault detection and diagnosis result

First tested data set is from entry Y1-Junel ‘TBN NDE hunting(T23B)’
because it is fairly easy to notice the fault time from normalized data plot and
also this is one of the 2 cases that specified fault tag list to validity diagnosis
part as well. Figure 4.1 shows the plot of normalized data, PCA T? plot, PCA-
SVM classification score plot and contribution plot. For detection with PCA
T? plot, 95% confidence plot is used as the threshold and it showed many false
alarms. PCA-SVM score plot showed fault scores below 0 with less false alarms.
However, contribution plot with the time detected by PCA-SVM had inaccurate
result. On the other hand, DPCA T? and DPCA-SVM showed much more
accurate results compared to PCA T? and PCA-SVM score detection.
Detection time of PCA SVM was 2237 min, and DPCA-SVM 2224 with

threshold 0 and 2221 with new threshold of 100 consecutive score difference.
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DPCA-SVM detection with new threshold was able to detect 16 min earlier
than PCA-SVM and 3 min earlier than general DPCA-SVM threshold as shown
in figure 4.2. 16 min and 3 min difference might not seem a big difference on
paper, but to a 24 hour operating continuous process plant, it could save
millions of dollars by preventing a critical stoppage of operation. Besides the
early detection time, most distinct difference between PCA and DPCA is the
accuracy of diagnosis via contribution plot. Precision of diagnosis via
contribution plot heavily relies on the accuracy of detection time. Since FCC
process is a dynamic process and DPCA is keen on dynamic process, the
diagnosis via DPCA was in accordance with fault tag list specified on the

maintenance record, T23B.

Second test data set, Y1-Aug?2, is similar to first test data set with a specified
fault tag list. Also as shown in the figure 4.3 and figure 4.4, the result accuracy
was similar to first test data set, Y1-Junel. PCA T2 and DPCA T? plots
showed great peak difference but it also showed numerous false alarms against
95% threshold. Fault detection time with PCA-SVM is 2319 min and 95
minutes earlier with DPCA 2224 with conventional threshold and 100 min
earlier with new proposed threshold, 2219 min. Diagnosis result with PCA
contribution was incorrect, but DPCA-SVM contribution plot result was

consistent with the fault tag list identified on the maintenance record.

Third test data set, Y1-June2, only has maintenance entry without fault tag

list mentioned. The normalize data plot shows characteristic of obvious step

p
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fault and PCA T2 plot also showed obvious peak at the time of the step fault.
However high the peak value of PCA and DPCA T? may be, it still had
numerous false alarms that surpassed 95% confidence limit. The normalized
data showed 1 min of fault at 2319 and PCA T2 and PCA-SVM result showed
exactly 1 min of fault at 2319 min. But DPCA showed more accurate, earlier
and longer detection time than other results at 2221 min. Fourth test data, Y1-
Febl, also had similar result but PCA-SVM had earlier detection time by 2 min.

as shown in figure 4.5 and 4.6.

The other 2 test data sets showed different from other data sets that showed
step faults. Fault Y1-Augl did not have a clear cut fault results but the algorithm
was able to accurately detect the fault as accuracy is determined by if the score
recovers after the date of maintenance record. Even if the classification score
of DPCA-SVM did not go below conventional threshold, the new threshold of
score difference with 130 indicates fault which coincides with possible fault
time window. However, all of fault Y2-Mach1 FDD result indicated that it had
deviated after the intended time of fault occurrence, within 1440min. Due to
the false alarm, this will be the only case of failed detection. However, newly
proposed threshold showed only one other false alarm which is much less than

other methods, proving that it’s most reliable method of all.
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PCA DPCA
Fault scenario Remark
Conventional | Conventional | New Threshold
Y1-Feb1 2052 1963 1954 New Threshold
Y1-Junet 2237 2224 2221 New Threshold
Y1-June2 2320 2226 2221 New Threshold
Y1-Aug1 31~150 NA 1939 New Threshold
Y1-Aug2 2319 2224 2219 New Threshold
Y2-Mar1 T oo, 637 / 5695 Detection Fail

Table 4.2 Fault detection time result for corrective maintenance
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Figure 4.8 Fault detection and diagnosis result of Y1-June2 using DPCA-SVM (New detection time : 2221)
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Figure 4.10 Fault detection and diagnosis result of Y1-Augl using DPCA-SVM (New detection : 1939)
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Figure 4.11 Fault detection and diagnosis result of Y2-March1 using PCA-SVM (Detection time : 83, 5200)
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Figure 4.12 Fault detection and diagnosis result of Y2-March1 using DPCA-SVM (New detection time : 637, 5694)

52

7000

6000 7000



CHAPTER 5. Conclusion

This work proposed detailed steps to preprocess operating process plant
data and fault detect/diagnose using DPCA and 1-class SVM. The first step to
a successful early fault detection is preprocessing of raw data. A general data
preprocess is normalizing and eliminating outliers from raw data, but when
handling data sets from an actual operating process plant, knowledge of the
process and intuition is needed to eliminate the irrelevant variables. Selecting
data sets to input FDD algorithm is done by analyzing and classifying provided
maintenance record to single out corrective maintenance entries that shows
characteristics of fault data. With dates of corrective maintenance entries as the
set point, day before and after the fault occurrence are included as part of the
test data set because the date of entry is inputted only after the completion of
corrective action. 5000 data prior to day before the entry is selected as training
data which is used to create the 1-class SVM normal boundary. Anything that
is outside the SVM boundary is classified as fault and SVM classification score

is used as the measurement to determine fault or normal.

Popular detection methods, PCA-T"2, PCA-SVM and DPCA-SVM were
compared as means for FDD. The results of fault detection algorithm for 6
corrective maintenance entries showed that DPCA-SVM method was the most
accurate method and newly proposed threshold, difference of consecutive score
than exceed 130, showed much more early detection and diagnosis result than

any other algorithm or methods in 5 scenarios out of 6. The corrective
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maintenance #6, was considered as a failed detection because threshold was
violated after the window of fault occurrence window but the margin of error
was not a large as false alarm occurred only once. This may be due to a

wrongful preprocessing or data selection of the data set.

This work has significance for providing robust FDD method with a new
threshold does not require additional data fitting and also notably proposing
detailed steps to preprocess actual operating process plant data. With the
proposed FDD algorithm with a new threshold, it introduces more practical
fault detection and diagnosis than other known algorithms with simulated data

enabling to perform predictive maintenance for optimal plant management.
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