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Abstract 

Fault Diagnosis of an Industrial Plant 

Using Maintenance Record and 

Multivariate Analysis 

 

 Saejin Park 

School of Chemical & Biological Engineering 

The Graduate School 

Seoul National University 

 

Many algorithms have been introduced are for fault detection and 

diagnosis(FDD) over the years as FDD has been important in the chemical 

engineering industry. Recent improvements of computation power and 

advances in statistical techniques, data-driven method have been more popular 

and well-received approach for FDD. Actual operating process data sets are 

optimal for FDD algorithm validation but they are hard to acquire and most of 

FDD algorithm is tested on controlled simulation data for convenience. 

Preprocess is a crucial part to FDD result, but due to the scarcity of operating 

process data usage, there are no known specific steps to handle and preprocess 

actual operating process data.  
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Preprocess of actual operating data includes 2 parts: maintenance record and 

sensor raw data. Maintenance record entries are classified into 4 categories by 

analyzing the content of the entry and trait of maintenance.: corrective, 

preventive, predictive, periodic maintenance. Only 6 corrective maintenance 

record is used for FDD as they are the only type that will show fault attributes. 

Variables of sensor raw data have been reduced from 236 to 28 by analyzing 

the schematics and analyzing the data tendencies.  

 

Dynamic principal component analysis (DPCA) and 1 class support vector 

machine (SVM) is used as a FDD algorithm for actual operating plant data. 

DPCA is used to reduce dimension of data and 1-class SVM is a useful tool to 

classify actual operating plant data as it only needs a single type of data class 

to construct a SVM structure. The conventional threshold of SVM classification 

score is zero, and a negative value is considered as a fault. Proposed new 

threshold in this study is difference of consecutive score that exceeds 130. If a 

difference score and following score is more than 130 than it can be classified 

as a fault. The result of proposed FDD with a new proposed threshold of 6 

corrective maintenance record showed great detection accuracy by early 

detecting 5 fault scenarios. 

 

With the proposed specific steps to preprocess operating process plant data 

sets and new SVM classification score threshold, accurate and early process 

detection/diagnosis is possible. Therefore, the proposed methods can help 
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optimal plant management by detecting a fault early to perform a predictive 

maintenance. 
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CHAPTER 1. Introduction 

 

1.1. Research motivation 

There has been an increasing demand for early and accurate fault detection 

and diagnosis (FDD) for modern large-scale, highly complex manufacturing 

facilities. Timely and optimal FDD is very valuable to fault management, 

whose objective is to increase the safety of plant operation, reduce 

manufacturing costs and minimize shut-down time. Due to its importance in 

industrial systems, many academic and industrial effort has been made over the 

years. Many fields such as pharmaceutical, environmental science have jumped 

in the FDD studies but process and manufacturing industries have been the field 

of FDD longer as the result of FDD immediately can influence the product 

quality, reduction of product rejection and satisfaction of safety and 

environmental regulations. Especially for chemical plants, which handles toxic, 

hazardous, flammable raw materials, the safety of the process is of an utmost 

importance[1].  

A fault is defined as a state of one or more unexpected deviation from 

acceptable, normal operating condition.[2]. A fault may cause loss of required 

performance, possibly initiating a permanent interruption of a system’s ability 

to perform, failure. It is a role of FDD to detect the fault before it aggravates 

into failure or malfunction[3]. 

Fault detection is determining if a fault has occurred and early detection of a 

fault may be able to give a warning on emerging problems to prevent serious 
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events with appropriate actions. Fault diagnosis is determining the cause of the 

fault. Some process faults may easily be detected and diagnosed with Shewhart 

charts, a control chart with upper and lower control limits that are typically at 

3 standard deviations from mean. Shewhart chart is effective with univariate 

fault but most of the modern industrial systems consist of many complex units. 

Therefore, the Shewhart chart has limited detection ability against modern 

multivariable processes. In addition, many faults are not easy to identify as 

sensor values changes are hidden under noise and disturbances. Therefore, 

nowadays instead of simple control charts such as Shewhart chart, three 

methods are frequently used for FDD: model-based, knowledge-based, data-

driven methods. In this study, data-driven methods will be used as the 

importance of data have emphasized over the past decade along with 

advancement in statistical studies as well as computation power. 

Many FDD algorithms are tested with simulation data sets, which are easy to 

intentionally insert a type of fault of choosing at a designed time, therefore, 

making it a good data to test the FDD algorithms. Despite all the convenient 

usage of simulated data, no matter how much a simulated data set might 

resemble characteristics of actual data, it is still a simulated data not the actual 

data. It would be optimal choice to utilize actual real data from operating 

process plant but detailed operating real data sets are hard to acquire. Also 

unlike controlled simulate data where preprocess is unnecessary, actual 

operating plant data needs to be preprocessed with many considerations. 

Unfortunately, there are no known specific steps to handle and preprocess 

actual operating process data. 
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1.2. Research objectives 

Most commonly used data-driven multivariate analysis method for FDD is 

Principal Component Analysis(PCA). PCA reduces the dimensionality of a 

large set of multivariable data set by transforming to a new set of variable, the 

principal components PCA is a tool that projects the reduced process data to 

latent space and can identify linearly related variables. PCA is used in FDD area 

with a threshold set by Hotelling T-squared or squared prediction error(SPE). 

PCA is a very effective tool for analyzing linear and static data but has 

limitation to describe dynamic and non-linear data. For dynamic and non-linear 

data, dynamic principal component (DPCA) is developed to capture the time-

dependent correlation of data.  

Support Vector Machine(SVM) is a statistical supervised learning technique 

that is used for classification and regression. SVM is widely used for its 

superior classification ability and with a proper kernel function, SVM is a 

powerful tool to classify non-linear data by constructing n-1 dimensional 

hyperplanes that can classify n-dimensional data with two different classes. The 

binary classifier is used for FDD by constructing SVM structure after first a 

characteristic of a faulty state is categorized. SVM structure will find the 

difference between the normal and faulty state in the new input data by 

analyzing the classifier scores of SVM model.  
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1.3. Description of the equipment used in this thesis 

Fluid Catalytic Cracking (FCC), since the first industrial start-up in 1942, is 

still one of the most important conversion processes used in petroleum 

refineries. There are about 400 FCC unit in operation worldwide and continues 

and will play a major role as FCC process will be used for biofuels and for 

reduction of CO2 emissions[4]. The main objective of FCC unit is to convert 

high-boiling petroleum fraction gas oil and various heavy hydrocarbons to 

lighter and high-valued transportation fuels i.e. gasoline, jet fuel, and diesel. 

Main air blower (MAB) takes atmospheric air and delivers it to the regenerator 

for quick burn-off. 

According to recent studies on the health of FCCU, major rotating equipment 

accounts for over 35% of all FCCU shutdown and air blower failures account 

for just under 50% of major rotating equipment failures. Considering the fact 

that scheduled shutdowns make up less than 10% of FCCU shut downs, it is 

safe to assume that MAB is one of the main cause of FCCU failures. That is 

why MAB data is used in this study for fault detection.  
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Figure 1.1 Schematic diagram of a typical FCCU process. 
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Figure 1.2 Cause of FCC unit outrage. Air blower, wet gas 

compressor and expander make up 33% of total outrage. 

Figure 1.3 Breakdown of major rotating equipment failures.   

Air blower failures account for almost 50% of total failure 
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1.4. Outline of the thesis 

Various methods have been developed for the purpose of accurate and early 

fault detection/diagnosis and most commonly used methods are (D)PCA and 

SVM. Those methods have proven to be very accurate with controlled 

simulated data. However, unlike controlled simulated data, actual operating 

plant data have to account for much more unpredictable variables such as 

climate and personnel mistakes and real data does not have categorized normal 

training data and abnormal test data sets for algorithm validation. It is a duty of 

a data analyst to classify the useable training and test data with meticulous 

preprocess procedure. To apply SVM for fault detection, 2 different class of 

data, normal and fault, is required as training data to classify the test data set. 

Since only maintenance records and raw data with tag list is provided without 

any classification labels, 1-class SVM is more suitable for the actual operating 

plant because it only requires normal data set for training. Also for FCC, which 

is a continuous process, a method that takes into account the serial correlations 

in the data, DPCA, is more suitable than PCA that takes only one time instant 

that is statistically independent to previous observations. DPCA has been 

proven to show higher accuracy for a process with long sampling times, i.e., 2 

to 12 hours and in this study is used to reduce data dimension for SVM 

classification. 

Most of developed FDD algorithms are tested with controlled simulation data 

that a researcher can easily control and manipulate. Advantages of simulation 

data are that many different types of fault can be injected at a designed time by 

an analyst. No matter how the accurate the simulation model may be, it is still 
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‘simulated’ data, which may not show the same accurate result when applied to 

a ‘real’ data. Conversely, ‘real’ data needs more polishing work than simulated 

data as unpredictable variables, noises may be hidden, and it’s a very hard task 

to acquire a data set with various types of faults to use for diagnostic 

classification. 
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1.5. Outline of the thesis 

In this study, a detailed procedure of preprocessing industrial plant raw data, 

which consist of maintenance record and sensor data, and a FDD algorithm is 

introduced for early fault detection that will help determine the need for 

predictive maintenance. Unlike conventional preprocess procedure, that is 

usually scaling, eliminating missing data and etc., preprocessing raw industrial 

plant data requires two parts, maintenance record and raw sensor data. The steps 

to classify maintenance and find the relevant data from vast mass of raw data 

records to find adequate fault example is suggested. For FDD algorithm, 1-class 

SVM via DPCA with new threshold is used as FCC is a dynamic process and 

only unlabeled/unclassified data set is available. 
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CHAPTER 2. Methodology 

 

2.1.  Multivariate analysis methods 

2.1.1. Principal component analysis 

PCA is a useful dimensionality reduction technique method used to transform 

a set of correlated variables into a smaller set of new variables that are 

uncorrelated and express the data in such a way as to highlight their similarities 

and differences[5]. It determines a set of orthogonal vectors called loading 

vectors, ordered by the amount of variance explained in the loading vectors 

direction. Given a training set of n observations and m process variables, with 

mean zero and unit variance, stacked into a matrix X, where the matrices 𝐗̂ 

and E represent the modeled and un-modeled variations of X. l represents the 

number of principal components and T and P are the score and loading matrices. 

Loading vectors P, are calculated by solving stationary point of the optimization 

problem using singular value decomposition (SVD) of the covariance matrix S. 

The loading vectors are the orthonormal column vectors in the matrix Y, and 

the variance of the training set projected along the ith column of Y is equal to 

σ2. Solving (0.0) is equivalent to solving an eigenvalue decomposition of the 

sample covariance matrix S.  

 X =  𝐗̂  +  E  (2.1) 

 

, 
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 T = XP (2.2) 

 X̂ = TPT =  ∑ 𝑡𝑖𝑃𝑖
𝑇

𝑡

𝑖=1

 (2.3) 

 E =  TePe
T =  ∑ 𝑡𝑖𝑃𝑖

𝑇

𝑡

𝑖=𝑙+1

 (2.4) 

 X =  TPT + 𝐸 =  ∑ 𝑡𝑖𝑃𝑖
𝑇 + 𝐸

𝑎

𝑖=1

=  X̂ + 𝐸 (2.5) 

 S =
1

n − 1
XTX = VΛVT (2.6) 

   

It is very important to choose the optimal number of principal components, 

a, because TPT represents the principal sources of variability in the process, 

and E represents the variability corresponding to process noise. 

 For the FDD algorithm for this study, PCA scores of 1st and 2nd component 

were used in this study to construct SVM structure and as input for a classifier.  
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2.1.2. Hotelling’s T-squared and squared prediction 

error 

Hotelling’s T-Squared and Q statistics, squared prediction error(SPE), is the 

multivariate analysis used to detect outlier in projected coordination of PCA[6]. 

The Hotelling’s T-Squared statistics measure the variation within the PCA 

model for the lower-dimensional space for each new observation and can be 

calculated as below : 

 𝑇2 =  𝑥𝑇𝑃(Σa)−2𝑃𝑇𝑥 (2.7) 

Where 𝑥  is new observation and Σa  contains the non-negative real 

eigenvalues corresponding to the number of principal components, a, and P 

contains the loading matrix of X. The graphical definition of Hotelling’s T-

squared value is Euclidean distance from the origin of PCs to the data point. 

 𝑇2 =  𝑥𝑇𝑃𝛬𝛼
−1𝑃𝑇𝑥 (2.8) 

The upper confidence limit of 𝑇2 is calculated using the F-distribution : 

 T𝑎,n,α
2 =  

𝑎(n − 1)

n − 𝑎
Ｆ

(𝑎,n−𝑎,α)
 (2.9) 

where n is the number of samples in the data and α  is the level of 

significance of F-distribution. A violation of the upper confidence limit is 

considered an outlier or a fault. 
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SPE’s graphical definition could be explained as Euclidean distance from the 

PC’s hyperplane to the data point. The magnitude of value of SPE expresses 

how far the data point is from the normal tendency of the other data. SPE can 

be calculated as below : 

 SPE = 𝑥T(I − PPT)
T

(I − PPT)𝑥 (2.10) 

where P contains loading vectors(orthogonal) of X and I is identity matrix. 

Upper limit of SPE is also calculated using approximate distribution.  

 
SPE𝛼 =  θ1 (

h0Cα√2θ2

θ1
+ 1 +  

θ2h0(n0 − 1)

θ1
2 )

1
h0

 
(2.11) 

Where 

 

θ1 = ∑ λj
i

m

j=a+1

 (2.12) 

 h0 = 1 −  
2θ1θ3

3θ2
2  (2.13) 

Cα  is the normal distribution value with the level of significance of F-

distribution, α,  and λj  is the j-th largest eigenvalue of X. Any values that 

violate the threshold is considered as a fault. 
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Contribution plot is bar plot of the sum of the residuals that describes how 

much each variable contribute to the T-squared and SPE values at a specific 

observation. 

  

Figure 2.1 T- squared and SPE value described in three dimensional space. 

The distance between original observation to the PC plane is value of SPE 

and the distance from the origin of the PC plane to the projected observation 

point is the value of Hotelling T-squared. 
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2.1.3. DPCA 

X is a set of data composed of nt observations from p variables where nt 

≥ p.  

 X = [X1 X2  ⋯  XP](nt×p) (2.14) 

PCA can be used to take into account the serial correlations by augmenting 

each observation with the previous w observations and stacking the data matrix. 

 

 

(2.15) 

 
 

(2.16) 

 n =  𝑛𝑡 − 𝑤 + 1, 𝑚 = 𝑝𝑤 (2.17) 

w is the ‘time lag shift’, a trajectory matrix applied to stack up the data set 

for dynamic process[7]. Since variables in a multivariable analysis approach 

may have different range of values, it is convenient to perform a standardization 

of data with mean and standard deviation to obtain data matrix, Xsw, with zero 

mean and unit variance. DPCA is applying PCA on Xsw.  
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 𝑥sij
ω =

xij
ω − μj̇

σj
  for  i = 1, … , n, j =  1, … , m   (2.18) 

For fault detection, the measures for each observation variable can be 

calculated by adding all the values of measures corresponding to previous w 

time lags. 
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2.2. Support Vector Machine 

2.2.1. SVM 

Support vector machines (SVM) is a supervised learning technique that was 

originally developed for classifying data from two different classes. The basic 

principle is illustrated in fig. that shows the classification of a series of points 

for two different classes of data, yellow triangles, blue squares. 

The SVM classifier structure can be constructed by solving the optimization 

problem that minimizes the distance between hyperplane and data points[8]. In 

the equation 𝑛 is the number of data points, 𝛼 is the Lagrange multiplier, 𝑥 

is the data point and 𝑦𝑖 are either 1 or -1. 

 max 𝐿̃(𝛼) = [∑ αi

n

i=1

− 0.5 ∑ αi

ij

αj𝑦i𝑦jK(𝑥i, 𝑥j)]  (2.19) 

K is a kernel function that is used to handle non-linear issues using linear 

classifier. Following qualities from Karush-Kuhn-Tucker (KKT) condition 

must be satisfied in the objective function. 

 ∑ αiyi

n

i=1

= 0 (2.20) 

LaGrange multiplier of hyperplane can be determined by solving objective 

function Equation 2.21. α parameter for the hyperplane can be calculated with 
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following equations where Nsv  represents the number of all deciding 

boundary points or support vectors.   

 ω =  ∑ αiyi𝑥i

n

i=1

 (2.21) 

 b =  
1

Nsv
∑(𝐾(𝑤, 𝑥𝑖) − 𝑦𝑖)

𝑁𝑆𝑉

𝑖=1

 (2.22) 

In order to construct SVM, optimal kernel function must be determined first. 

Some of the most commonly used kernel functions are linear, polynomial and 

radial basis. Linear kernel function is used if data points can be separated with 

linear hyperplanes. However, data from Process plant are non-linear data and 

radial basis function, or also called Gaussian kernel function is widely used as 

the nonlinear kernel function to construct SVM[9, 10]. Radial basis function is 

commonly used for non-linear data as it can separate data of different class in 

the form of hyper-sphere with nonlinear hyperplanes. 

Linear K(𝑥j, 𝑥k) =  𝑥j
𝑇𝑥k (2.23) 

Polynomial K(𝑥j, 𝑥k) =  (𝑥j
𝑇𝑥k + C)𝑏 (2.24) 

Radial basis function K(𝑥j, 𝑥k) =  
𝑒𝑥𝑝(−‖𝑥𝑗 − 𝑥k‖)2

𝛿2
 (2.25) 
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Sigmoid K(𝑥j, 𝑥k) = tanh (𝑘(𝑥j, 𝑥k) + 𝜐) (2.26) 
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Figure 2.2 Example of deciding optimal support vector 
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2.2.2. 1-class support vector machine 

1-class SVM is extended variant algorithm of SVM proposed by 

Scholkopf[11]. This divides possible faulty outlier data from normal data. 

Unlike traditional SVM, 1-class SVM only needs normal data to construct SVM 

structure. 1-class SVM computes the surface of a minimal hypersphere or 

margin support that includes sample normal training data. It also uses the kernel 

function similar to traditional SVM to map the non-linear data to a feature 

space[12]. Also, radial basis function is used as the data being tested is non-

linear data and radial basis function is the optimal kernel function for non-linear 

data. 1-class SVM maximize the perpendicular distance from the origin, a test 

data from fault class. In summary, if a test data is outside the ‘boundary’ made 

up with single characterized data of a single class, it is classified under fault 

category. The modified optimization problem is as follows. 

 

Score which expresses the distance from ‘boundary’ of normal samples, can 

be calculated using ‘predict’ function in MATLAB. If the value of score is 

greater than zero, it is inside the boundary which indicates it’s normal and if the 

value is below zero, it indicates that it is outside the boundary thus classifying 

the test data as fault.  
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Figure 2.3 Graphical illustration of 1-class SVM 

PC Plane 



 

23 

 

CHAPTER 3. Simulation 

 

3.1. Process of pattern recognition 

 

In accordance with the process of pattern recognition, which is shown in 

Figure 3.1, after acquiring the raw industrial plant data, preprocessing the raw 

data by eliminating irrelevant data and choosing the adequate case study to 

verify the algorithm[13]. Adequate case study can be determined by analyzing 

the maintenance record. After the preprocess, a dimension of chosen data will 

be reduced via PCA or Dynamic PCA. Utilizing the first and second score of 

PCA/DPCA, designated normal data set will construct SVM structure by 1-

class SVM algorithm. Corresponding test data set will be PCA/DPCA score of 

chosen test data time span. SVM classification score can be calculated with 

given SVM structure and test data set. 

SVM classification score is the signed distance from x to the decision 

boundary ranging from -∞ to +∞. A positive score class indicates that x is 

predicted to be in that class and a negative score indicates otherwise. In other 

words, if the score is a positive number, then it’s normal and if the score is a 

negative number, then it’s classified as a fault. 
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Figure 3.1 Process of pattern recognition
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3.2. Preprocessing 

Statistical analysis and machine learning algorithms learn from data. 

Therefore, the more disciplined the data is the more consistent and better result 

will be. Data preprocessing is a data mining technique that disciplines raw data 

into an understanding format. Data preprocessing is a proven method of 

resolving incomplete, inconsistent characteristics of real data[14]. 

Data Preprocessing is a technique that is used to convert the raw data into a 

clean data set. In other words, whenever the data is gathered from different 

sources it is collected in raw format which is not feasible for the analysis 

Machine learning algorithms learn from data. It is critical that you select the 

right optimal data for the problem. Even if a good data is acquired, data needs 

to be on a useful scale, format and include all the meaningful features. 

Data preprocessing is a data mining technique that involves transforming raw 

data into an understandable format. Real-world data is often incomplete, 

inconsistent, and/or lacking in certain behaviors or trends, and is likely to 

contain many errors. Data preprocessing is a proven method of resolving such 

issues. 
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3.2.1. Maintenance record 

The first step of Pre-processing of maintenance record is categorizing the 

entries by type of maintenance. Typically, maintenance can be categorized into 

4 categories, predictive maintenance, preventive maintenance, corrective 

maintenance, periodic maintenance.  

Most of maintenance being performed are periodic maintenance and 

preventive maintenance. Periodic maintenance is the basic maintenance of 

equipment consists of elementary tasks. The maintenance interval is usually 

provided by the manufacturer to carry out. Preventive maintenance is 

maintenance that is regularly performed on a piece of equipment to reduce the 

risk of failures such as oil change, lubrication, and minor adjustments. Periodic 

maintenance and preventive is similar in a way that maintenance is done on the 

equipment while it’s still on an operation and done to avert sudden failing. The 

main difference between periodic and preventive maintenance is that while 

periodic maintenance is based on time intervals, preventive maintenance is 

based on experience of past failures and weather changes. 

Corrective Maintenance is any maintenance performed to restore the failed 

equipment to an operational condition. Unlike periodic and preventive 

maintenance, corrective maintenance is performed after a fault or failure has 

occurred to the equipment. Therefore, it is the type of maintenance an operator 

would want to avoid the most, as the damage has already been done in one way 

or another. That is why periodic and preventive maintenance is performed more 
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frequently despite the labor and part cost. Compared to even short process shut-

down, opportunity cost of periodic and preventive maintenance is much cheaper. 

The goal of predictive maintenance is to correctly predict failure of 

equipment and to prevent the failure by performing maintenance with necessary 

information and analysis. Fault detection is the key to a successful predictive 

maintenance. 

At times depending on the format of the maintenance record, maintainer is 

required to classify the type of maintenance on the record. In this study case, 

there was no given classification by the maintainer. Therefore, intuition and 

knowledge of the process is needed to categorize the maintenance records. For 

example, charging of nitrogen is classified as periodic maintenance, as it is 

required by the operating manual on regular basis. On the hand, repair of air 

tube leak is classified as corrective maintenance, as it is actual correction of a 

failure of an equipment.  

Time and Preventive maintenance was the majority of the maintenance 

record entries. Out of total of 63 maintenance record, 58 entries were periodic 

and preventive maintenance which made up for 90% and corrective 

maintenance record was only 5 entries. In an operating plant, time and 

preventive maintenance make up over 90% of the maintenance as shut-down 

due to a fault is critical to plant operation. Also there is a 24-hour crew on stand-

by at an operating Plant to monitor any abnormalities before it escalates into a 

serious disastrous situation. Therefore, it only makes sense that there is a very 

few actual “serious” distinctive fault that requires corrective maintenance. 
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Although corrective maintenance is best suited data to test fault detection 

algorithm, number of data was too small. In addition to 5 corrective 

maintenance cases, 12 preventive maintenance cases selected for verification. 

Added 12 Preventive maintenance was chosen as they may now show 

distinctive fault characteristics as corrective maintenance but still may show 

more than periodic maintenance.  

 

3.2.2. Raw data 

The acquired raw data consists of total 2 years of observation in interval of 

minutes, 1440 data per day, with 238 sensor variables. Since processing 238 

variable data with algorithm takes up too much time, it is necessary to reduce 

the number of variables into relevant variables. To reduce the number of 

variables, analysis of P&ID of the process is needed. Tag numbers and symbols 

on the P&ID schematics provide with the information of location, type of the 

instrument. By studying the P&ID, instruments that are part of a distributed 

control system(DCS) can be eliminated since they are display panels like a 

terminal screen that most likely has same values as actual sensors. Piping and 

connection symbols are also used to identify how the instruments in the process 

connect to each other and applied that information to eliminate data link and 

electrical panel related tag lists. After the process of eliminating irrelevant 

variables, 210 variables were deleted from the data and left with 28 variables. 
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3.3. Selecting optimal data set for validation 

It is important to recognize that maintenance entry dates are inputted after 

maintenance action is completed, not when the maintenance action order has 

been issued. Also maintenance is performed by 24-hour crew, therefore the fault 

could have occurred during the night before the entry. That is the reason when 

determining dates for abnormal test data, day prior to the date of the entry must 

be included as well as day after to show change in the test data set.  

Unlike controlled simulation data sets that have specified normal data set and 

abnormal data set, operating plant data does not have named normal and 

abnormal data sets. It is very important to choose the optimal set of normal and 

abnormal data for validating fault detection algorithm for even if the algorithm 

is flawless, data set decision could critically influence the result. During the 

analysis, a gradual increase in temperature in some variables was noticed. 

Although there was some gradual temperature increase over a span of several 

months, they were not caused by fault but part of normal pattern. That also 

means that the pattern of normal data changed as time passed. With change of 

the normal data patterns over time, 5,000 observations (about 3days of data) 

prior to day prior to entry was chosen to train.  

Selected maintenance record will be the standard for data selection for 

optimal training and test data sets. PCA/DPCA is applied to reduce their 

dimensions and product of PCA and DPCA, first and second principal 

component score plot is used to construct SVM structure and calculate the SVM 

classification score.  
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Table 3.1 Data selection criteria
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3.4. Algorithm Validation 

3.4.1. Tennessee Eastman Process 

Tennessee Eastman Process(TEP) model that was first introduced by Downs 

and Vogel[15] is most widely used data set when validating FDD algorithms. 

Its popularity is because of the fact that it is modeled based on a real process 

and is very convenient to insert fault of user’s choice at a time of one’s choosing. 

Through numerous years of testing with TEP data sets, the minor glitches have 

been improved by engineers and are acknowledged by many as one of the an 

‘almost actual’ data. Moreover, TEP has designated ‘Normal Data’ for training 

data set and ‘Abnormal Data’ for each fault scenarios to input as test data set. 

The types of fault provided with TEP data sets are listed in the table 3.2. For 

validation of the proposed algorithm, fault scenario 1&7 were chosen as the test 

data sets as they are known to have high detection rate than other scenarios. For 

this TEP data set, fault was inserted at 975 second which will be the standard 

for accuracy of detection time.  

The result of FDD algorithm with step fault #1 & 7 data set as input is shown 

in figure 3.3 and figure 3.4. The conventional detection time, when a 

classification score goes below threshold ‘0’, for fault #1 is 1276 second and 

984 second for fault #7. Considering the fault was inserted at 975 second, the 

detection time for fault #1 was descent and detection time for fault #7 was very 

close to the time of insertion.  

It was noticed from analyzing DPCA-SVM classification plot that normal 

scores before the classified fault data score are very apart than distance of 
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normal scores. Average of differences of normal consecutive classification 

scores was 1.03. But the score difference of observation when a fault is 

classified, 1276 sec, and 1 observation prior, 1275 sec was 136. Similar 

difference characteristics were observed for fault #7. Therefore, a new threshold 

of consecutive score value difference larger than 126 was established and the 

result of new threshold detection time was at least 5 observations faster than 

the conventional detection time. As the goal of fault detection is to detect early 

to prevent aggravation of fault, the new threshold is more suitable for FDD than 

the conventional threshold. 
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Scenario Process variable Type 

1 A/C feed ratio, B composition constant (stream 4) Step 

2 B composition. A/C ratio constant (stream 4) Step 

3 D feed temperature (stream 2) Step 

4 Reactor cooling water inlet temperature Step 

5 Condenser c4mting water inlet temperature Step 

6 A feed loss (stream 1) Step 

7 C header pressure loss-reduced availability (stream 4) Step 

8 A, B, C feed composition (stream 4) 

Random 

variation 

9 D feed temperature (stream 2) 

Random 

variation 

10 C feed temperature (stream 4) 

Random 

variation 

11 Reactor cooling water inlet temperature 

Random 

variation 

12 Condenser cooling water inlet temperature 

Random 

variation 

13 Reaction kinetics Slow drift 

14 Reactor cooling water valve Sticking 

15 Condenser cooling water valve Sticking 

16 Unknown Unknown 

17 Unknown Unknown 

18 Unknown Unknown 

19 Unknown Unknown 

20 Unknown Unknown 

Table 3.2 Detailed description of TEP faults. 
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Figure 3.2 Fault detection result of TEP #1 fault with DPCA –SVM 

         (Conventional detection: 1276, New detection: 1174) 
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Figure 3.3 Fault detection result of TEP #1 fault with DPCA –SVM 

         (Conventional detection: 984, New detection: 979) 
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CHAPTER 4. Result 

4.1. Fault detection and diagnosis 

Fault detection and diagnosis using 1-class SVM via DPCA have proven 

accurate on TEP data. The proven algorithm was used to early fault detect MAB 

from FCCU data. To apply the algorithm, it is necessary to extract relevant data 

from a vast amount of data. The relevant data, 6 corrective maintenance entries 

which were classified from maintenance record entries and variable reduced 

data set are obtained by preprocessing procedure. 236 variables from raw data 

are reduced to 31 relevant variables and data of observation from maintenance 

entry is reduced via PCA and DPCA. 7 principal components are chosen as they 

explain 99.5% variance. 1st and 2nd scores from PCA/DPCA of training data 

set is used to construct the SVM classifier. Table 3.1 shows how training and 

data sets are selected based on the date of corrective maintenance entry. The 

standards are set due to completion of maintenance action and gradual increase 

of sensor data. Among the industrial plant data in the span of 2years, 6 

corrective maintenance record was used for FDD as shown in Table 4.1.  
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 Date Maintenance Entry Category 

1 Y1-Feb1 Intake Filter Calibration corrective 

2 Y1-June1 TBN NDE Hunting(TI253B) corrective 

3 Y1-June2 Set Point Error corrective 

4 Y1-Aug1 Repair Air Tube Leak corrective 

5 Y1-Aug2 Repair dryness of the sensor(TE257B) corrective 

6 Y2-Mar1 Inspect Cabinet Alarm RCP4 corrective 

Table 4.1 Classified corrective maintenance record 

 

4.1.1. Fault detection and diagnosis result  

First tested data set is from entry Y1-June1 ‘TBN NDE hunting(T23B)’ 

because it is fairly easy to notice the fault time from normalized data plot and 

also this is one of the 2 cases that specified fault tag list to validity diagnosis 

part as well. Figure 4.1 shows the plot of normalized data, PCA 𝑇2 plot, PCA-

SVM classification score plot and contribution plot. For detection with PCA 

𝑇2 plot, 95% confidence plot is used as the threshold and it showed many false 

alarms. PCA-SVM score plot showed fault scores below 0 with less false alarms. 

However, contribution plot with the time detected by PCA-SVM had inaccurate 

result. On the other hand, DPCA 𝑇2  and DPCA-SVM showed much more 

accurate results compared to PCA 𝑇2 and PCA-SVM score detection. 

Detection time of PCA SVM was 2237 min, and DPCA-SVM 2224 with 

threshold 0 and 2221 with new threshold of 100 consecutive score difference. 
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DPCA-SVM detection with new threshold was able to detect 16 min earlier 

than PCA-SVM and 3 min earlier than general DPCA-SVM threshold as shown 

in figure 4.2. 16 min and 3 min difference might not seem a big difference on 

paper, but to a 24 hour operating continuous process plant, it could save 

millions of dollars by preventing a critical stoppage of operation. Besides the 

early detection time, most distinct difference between PCA and DPCA is the 

accuracy of diagnosis via contribution plot. Precision of diagnosis via 

contribution plot heavily relies on the accuracy of detection time. Since FCC 

process is a dynamic process and DPCA is keen on dynamic process, the 

diagnosis via DPCA was in accordance with fault tag list specified on the 

maintenance record, T23B.   

Second test data set, Y1-Aug2, is similar to first test data set with a specified 

fault tag list. Also as shown in the figure 4.3 and figure 4.4, the result accuracy 

was similar to first test data set, Y1-June1. PCA 𝑇2  and DPCA 𝑇2  plots 

showed great peak difference but it also showed numerous false alarms against 

95% threshold. Fault detection time with PCA-SVM is 2319 min and 95 

minutes earlier with DPCA 2224 with conventional threshold and 100 min 

earlier with new proposed threshold, 2219 min. Diagnosis result with PCA 

contribution was incorrect, but DPCA-SVM contribution plot result was 

consistent with the fault tag list identified on the maintenance record. 

 

Third test data set, Y1-June2, only has maintenance entry without fault tag 

list mentioned. The normalize data plot shows characteristic of obvious step 
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fault and PCA 𝑇2 plot also showed obvious peak at the time of the step fault. 

However high the peak value of PCA and DPCA 𝑇2  may be, it still had 

numerous false alarms that surpassed 95% confidence limit. The normalized 

data showed 1 min of fault at 2319 and PCA T2 and PCA-SVM result showed 

exactly 1 min of fault at 2319 min. But DPCA showed more accurate, earlier 

and longer detection time than other results at 2221 min. Fourth test data, Y1-

Feb1, also had similar result but PCA-SVM had earlier detection time by 2 min. 

as shown in figure 4.5 and 4.6. 

The other 2 test data sets showed different from other data sets that showed 

step faults. Fault Y1-Aug1 did not have a clear cut fault results but the algorithm 

was able to accurately detect the fault as accuracy is determined by if the score 

recovers after the date of maintenance record. Even if the classification score 

of DPCA-SVM did not go below conventional threshold, the new threshold of 

score difference with 130 indicates fault which coincides with possible fault 

time window. However, all of fault Y2-Mach1 FDD result indicated that it had 

deviated after the intended time of fault occurrence, within 1440min. Due to 

the false alarm, this will be the only case of failed detection. However, newly 

proposed threshold showed only one other false alarm which is much less than 

other methods, proving that it’s most reliable method of all. 
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Table 4.2 Fault detection time result for corrective maintenance  
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Figure 4.1 Fault detection and diagnosis result of Y1-June1 using PCA-SVM (Detection Time : 2237) 
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Figure 4.2 Fault detection and diagnosis result of Y1-June1 using DPCA-SVM (New detection time: 2221) 
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Figure 4.3 Fault detection and diagnosis result of Y1-Aug2 PCA-SVM(Detection time : 2319) 
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Figure 4.4 Fault detection and diagnosis result of Y1-Aug2 using DPCA-SVM(New detection time : 2219) 
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Figure 4.5 Fault detection and diagnosis result of Y1-Feb1 using PCA-SVM (Detection Time : 2152) 
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Figure 4.6 Fault detection and diagnosis result of Y1-Feb1 using DPCA-SVM (New detection time : 1955) 
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Figure 4.7 Fault detection and diagnosis result of Y1-June2 using PCA-SVM (Detection time : 2319) 
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Figure 4.8 Fault detection and diagnosis result of Y1-June2 using DPCA-SVM (New detection time : 2221) 
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Figure 4.9 Fault detection and diagnosis result of Y1-Aug1 using PCA-SVM (Detection time : 25, 467) 
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Figure 4.10 Fault detection and diagnosis result of Y1-Aug1 using DPCA-SVM (New detection : 1939) 
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Figure 4.11 Fault detection and diagnosis result of Y2-March1 using PCA-SVM (Detection time : 83, 5200) 
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Figure 4.12 Fault detection and diagnosis result of Y2-March1 using DPCA-SVM (New detection time : 637, 5694) 
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CHAPTER 5. Conclusion 

 

This work proposed detailed steps to preprocess operating process plant 

data and fault detect/diagnose using DPCA and 1-class SVM. The first step to 

a successful early fault detection is preprocessing of raw data. A general data 

preprocess is normalizing and eliminating outliers from raw data, but when 

handling data sets from an actual operating process plant, knowledge of the 

process and intuition is needed to eliminate the irrelevant variables. Selecting 

data sets to input FDD algorithm is done by analyzing and classifying provided 

maintenance record to single out corrective maintenance entries that shows 

characteristics of fault data. With dates of corrective maintenance entries as the 

set point, day before and after the fault occurrence are included as part of the 

test data set because the date of entry is inputted only after the completion of 

corrective action. 5000 data prior to day before the entry is selected as training 

data which is used to create the 1-class SVM normal boundary. Anything that 

is outside the SVM boundary is classified as fault and SVM classification score 

is used as the measurement to determine fault or normal. 

Popular detection methods, PCA-T^2, PCA-SVM and DPCA-SVM were 

compared as means for FDD. The results of fault detection algorithm for 6 

corrective maintenance entries showed that DPCA-SVM method was the most 

accurate method and newly proposed threshold, difference of consecutive score 

than exceed 130, showed much more early detection and diagnosis result than 

any other algorithm or methods in 5 scenarios out of 6. The corrective 
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maintenance #6, was considered as a failed detection because threshold was 

violated after the window of fault occurrence window but the margin of error 

was not a large as false alarm occurred only once. This may be due to a 

wrongful preprocessing or data selection of the data set. 

This work has significance for providing robust FDD method with a new 

threshold does not require additional data fitting and also notably proposing 

detailed steps to preprocess actual operating process plant data.  With the 

proposed FDD algorithm with a new threshold, it introduces more practical 

fault detection and diagnosis than other known algorithms with simulated data 

enabling to perform predictive maintenance for optimal plant management. 
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초록 

 

이상 감지 및 진단 분야는 화학 공정 사업에서 매우 중요한 

이슈로 부상되면서 관련된 여러 알고리즘이 개발되었다. 최근 

컴퓨터 계산 능력 향상 및 새로운 통계 기법들의 개발로 인해 

데이터 기반 접근법이 이상 감지 및 진단 분야에 많이 사용되고 

있다. 이상 감지 및 진단을 위해 실제 운영 공정 데이터를 사용하는 

것이 가장 이상적이지만, 실제 운영 데이터의 확보가 어렵고 자세한 

데이터 선처리 방법이 알려진 바가 없어 대부분의 이상 감지 

알고리즘은 통제 가능한 시뮬레이션 데이터로 검증이 수행되어 

왔다. 이로 인해 이상 감지 및 진단에 매우 중요한 부분인 실제 

운영 데이터에 대한 선처리에 대해 이번 연구에서 정립했다.  

실제 운영 데이터에 대한 선처리는 크게 2 부분(정비 기록부, 센서 

데이터)으로 구분된다. 정비기록부의 내용은 정비 행위 특성으로 

예방정비, 기간별 정비, 시정 정비, 예측 정비 등 총 4 가지로 분류될 

수 있다. 결함 특성이 드러나는 데이터인 시정 정비로 분류된 6개의 

기록이 이번 연구에서 사용되었다. 센서 데이터의 236 개의 변수는 

개략도와 데이터의 성향 분석을 통해 28 개로 감소할 수 있다. 
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실제 운영 데이터의 이상 감지 및 진단을 위해 Dynamic Principal 

Component Analysis(DPCA)와 1-class Support Vector Machine(SVM) 

기법을 사용했다. DPCA 는 데이터의 차원 축소를 위해 사용했고 1-

class SVM 은 SVM 구축을 위해 1 종류의 데이터만 필요하기 때문에 

운영 공정 데이터 분류에 적합하여 사용했다. 기존의 SVM score분류 

임계 값은 0 이고 score 값이 음수일 경우 결함으로 분류했다. 이 

연구에서는 연속적인 SVM score 값의 차이가 130 일 경우를 

결함으로 분류하는 새로운 임계 값을 제안했다. 선처리한 데이터를 

활용하여 6개의 시정 정비 기록부 내용에 대해 이상 감지 및 진단을 

한 결과, 5개의 시나리오에서 좋은 감지 및 진단 결과를 보였다.  

이 연구에서 제안한 실제 운영 플랜트 데이터에 대한 선처리 

세부 과정과 새로운 SVM score 임계 값으로 인해 이상 감지 및 

진단을 정확하고 조기에 수행 가능하게 되었다. 따라서 제안한 

방법들은 조기 결함 탐지/진단으로 예측 정비를 수행을 가능케 해서 

최적의 플랜트 운영에 이바지할 수 있을 것이다. 

 

주요어: 이상 감지, 이상 탐지, 기계학습, 다변량분석, 데이터  

기반 접근법, 선처리, 1-class SVM 

학 번: 2017-29082 
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