83 research outputs found

    ์ž์„ฑ ์กฐ์ ˆ์ด ๊ฐ€๋Šฅํ•œ ๊ณ ๋ถ„์ž-๋‚˜๋…ธ๋ณตํ•ฉ์ฒด๋ฅผ ์ด์šฉํ•œ ๋ฏธ์„ธ ๊ตฌ์กฐ๋ฌผ์˜ ์ œ์–ด

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2013. 8. ๊ถŒ์„ฑํ›ˆ.In this dissertation, I introduce a new magnetic nanocomposite material system and in situ fabrication process that is not shape limited and allows the programming of heterogeneous magnetic anisotropy at the microscale. The key idea is to combine the self-assembling behavior of superparamagnetic nanoparticles, which have stronger magnetization than that of general paramagnetic materials, with a spatially modulated photopatterning process. By repetitively tuning the nanoparticle assembly and fixing the assembled state using photopolymerization, I fabricate microactuators for which all parts move in different directions under a homogeneous magnetic field. To show the feasibility of this concept, I demonstrate polymeric nanocomposite actuators capable of two dimensional and three-dimensional complex actuations that have rarely been achieved using conventional microactuators. This approach greatly simplifies the manufacturing process and also offers effective rules for designing novel and complex microcomponents using a nanocomposite material with engineered magnetic anisotropy. First, I investigate the self-assembling behavior of both ferromagnetic magnetite nanoparticles and superparamagnetic nanoparticles using Monte Carlo simulation. Magnetic materials used to fabricate magnetic polymer composite include ferrimagnetic magnetite nanoparticles with 50nm of averaged diameter and superparamagnetic magnetite nanoparticles with 280nm of averaged diameter. Magnetic particle interactions, that critically affect to the self-assembling behavior of the magnetic nanoparticles, such as particle-field interaction, particle-particle dipole interaction, magnetic anisotropy and steric layer repulsion are considered. I adopt cluster-moving Monte Carlo simulation method to analyze the magnetic self-assembly of magnetic nanoparticles and investigate the self-assembling behavior of the magnetite nanoparticles varying the intensity of the applied magnetic field during the chain formation and the concentration of the magnetic nanoparticles. The result shows that the well-defined magnetic chains are formed as both the intensity of the applied magnetic field and the magnetic nanoparticle concentration increase. Also, a novel method to fabricate magnetic nanoparticle embedded polymer composite microstructure is introduced. Briefly, the combination of photocurable polymer and magnetic nanoparticles is photopolymerized to immobilize the various states of magnetic nanoparticles. I especially adopt a system called optofluidic maskless lithography system to fabricate various shapes of polymeric microstructures within a second. Also, I develop a model system to describe the actuation of a magnetic polymer composite. The magnetic torque, the derivative of system energy, of the composite microstructure embedding magnetic chains is calculated based on the expanded Monte Carlo simulation result. And, the steady state elastic modulus of the magnetic composite microbeam is induced by utilizing the simulated torque and cantilever bending experiment result. The movement of cantilever type microstructure is investigated at equilibrium state that the magnetic torque equals to the mechanical restoring torque. As an application, I demonstrate multiaxial microactuators. Polymeric microcomponents are widely used in microelectromechanicalsystems (MEMS) and lab-on-a-chip devices, but they suffer from the lack of complex motion, effective addressability and precise shape control. To address these needs, I fabricated polymeric nanocomposite microactuators driven by programmable heterogeneous magnetic anisotropy. Spatially modulated photopatterning was applied in a shape independent manner to microactuator components by successive confinement of self-assembled magnetic nanoparticles in a fixed polymer matrix. By freely programming the rotational axis of each component, I demonstrate that the polymeric microactuators can undergo predesigned, complex two- and three dimensional motion. Finally I also introduce a novel color changing microactuators based on the self-assembling behavior of the magnetic nanoparticles. I propose a color-tunable microactuator utilizing the optical and magnetic behaviors of one-dimensionally assembled superparamagnetic nanoparticles that play the role of a one-dimensional Bragg reflector and establish a magnetic easy axis. By combining these properties with rapid photopolymerization, I developed red, blue, and green micropixels whose colors could be tuned by the application of an external magnetic field. This strategy offers very simple methods for the fabrication and operation of soft color tunable surfaces with high resolution.Abstract i Contents v List of Figures vii List of Tables xxi Chapter 1 Introduction 1 1.1 Polymer Nanocomposite 4 1.2 Magnetic Polymer Composite 7 1.3 Magnetic Self-assembly 11 1.4 Main Concept 15 Chapter 2 Magnetic Nanoparticle Self-assembly 18 2.1 Material Specification 19 2.1.1 Crystalline Structure of Magnetite 19 2.1.2 Synthesis of Superparamagnetic Nanoparticles 22 2.1.3 Magnetic Anisotropy of Magnetite Nanoparticles 23 2.2 Interacting Magnetic Nanoparticle with MC Simulation 27 2.2.1 Interaction Energy of Magnetic Nanoparticles 27 2.2.2 2D Cluster-moving Monte Carlo Simulation 31 2.3 Self-assembly of Magnetic Nanoparticles 34 2.3.1 Self-assembly of Ferrimagnetic Nanoparticles 36 2.3.2 Self-assembly of Superparamagnetic Nanoparticles 41 2.4 Conclusion 46 Chapter 3 Magnetic Nanoparticle Embedded Polymer Composite 47 3.1 Optofluidic Maskless Lithography 48 3.2 In-situ Fabrication Process 50 3.3 Torque on Magnetic Composite Structure 54 3.3.1 Magnetic Torque from Self-assembled Nanoparticles 54 3.3.2 Magnetic Torque on Arbitrary Structure 59 3.3.3 Elastic Modulus of Magnetic Composite Beam 61 3.4 Deisgn Principles 65 3.4.1 Simple Cantilever 66 3.5 Conclusion 70 Chapter 4 Multiaxial Microactuators 71 4.1 Fabrication 72 4.1.1 Various Types of Microfluidic Devices 74 4.1.2 Micropatterning of PDMS Thin Film on Glass Substrate 76 4.1.3 Grey Mask for Flexible Hinge 77 4.2 Microfluidic Components 79 4.3 Various Types of Multiaxial Microactuators 82 4.4 Rotating Microstructures 87 4.5 Microrobot 89 4.6 Conclusion 92 Chapter 5 Magnetochromatic Microactuators 93 5.1 Fabrication 94 5.2 Structural Color Generation 97 5.3 Color Change of Microsurface 100 5.4 Micropatterns 103 5.5 Conclusion 105 Conclusion and Future Work 106 Bibliography 109 ๊ตญ๋ฌธ ์ดˆ๋ก 119Docto

    ํ•œ๊ตญ ์„ฑ์ธ์˜ ํ”Œ๋ผ๋ณด๋…ธ์ด๋“œ ์„ญ์ทจ์™€ ๋น„๋งŒ ๊ฐ„์˜ ์—ฐ๊ด€์„ฑ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋ณด๊ฑด๋Œ€ํ•™์› ๋ณด๊ฑดํ•™๊ณผ, 2017. 8. ์ •ํšจ์ง€.Obesity is one of the major causes of chronic diseases and its prevalence has increased over the last few decades. Flavonoids possess preventive activities against the development of chronic diseases such as cancer, type 2 diabetes mellitus, cardiovascular diseases, and obesity. The purpose of this study was to investigate the association between dietary flavonoid intake and the prevalence of obesity, based on data from the Korean Health and Nutrition Examination Survey 2008โ€“2011. This cross-sectional study included 16,604 Korean adults (6,719 men and 9,885 women) who completed a health interview, a nutrition survey, and a health examination. The general characteristics and dietary intakes of the participants were obtained using a standardized questionnaire and a 24-h recall, respectively. Three anthropometric indices were used to assess obesity: body mass index (BMI), waist circumference (WC), and percent body fat (%BF). After adjusting for covariates, a higher total flavonoid intake was associated with a lower prevalence of obesity, as determined by %BF (highest vs. lowest tertileodds ratio [OR]: 0.81, 95% confidence interval [CI]: 0.68โ€“0.96, P for trend = 0.0105), and abdominal obesity as determined by WC (highest vs. lowest tertileOR 0.67, 95% CI 0.53โ€“0.85, P for trend = 0.0031), in women but not in men. In contrast, there was no association between total dietary flavonoid intake and obesity as determined by BMI in either men or women. Our results suggest that an increased intake of dietary flavonoid may decrease the risk of obesity in Korean adults.CONTENTS โ… . INTRODUCTION ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 1 โ…ก. SUBJECTS AND METHODS ยทยทยทยทยทยทยทยทยทยท 3 โ…ข. RESULTS ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 9 โ…ฃ. DISCUSSION ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 19 โ…ค. REFERENCES ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 23 โ…ฅ. KOREAN ABSTRACT ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 31Maste

    ๋ชจ๋ฐ”์ผ ์ฑ—๋ด‡ ์ธํ„ฐํŽ˜์ด์Šค ๋ถ„์„๊ณผ ๋””์ž์ธ ์ œ์•ˆ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ธ์ง€๊ณผํ•™์ „๊ณต, 2017. 2. ์ด์ค€ํ™˜.์ „ ์„ธ๊ณ„์ ์œผ๋กœ ๋ชจ๋ฐ”์ผ ๋ฉ”์‹ ์ €(mobile instant messenger) ์‚ฌ์šฉ์ด ๋Š˜์–ด๋‚˜๋ฉด์„œ ๋ฉ”์‹ ์ € ์ƒ์—์„œ ์ธ๊ณต์ง€๋Šฅ(artificial intelligence)์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์‚ฌ๋žŒ๊ณผ ์ž๋™์œผ๋กœ ๋Œ€ํ™”๋ฅผ ๋‚˜๋ˆ„๋Š” ์‹œ์Šคํ…œ์ธ ์ฑ—๋ด‡(chatbot)์ด ์ฃผ๋ชฉ ๋ฐ›๊ณ  ์žˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๋ชจ๋ฐ”์ผ ๋ฉ”์‹ ์ € ์ƒ์—์„œ ๋™์ž‘ํ•˜๋Š” ์ฑ—๋ด‡ ์ธํ„ฐํŽ˜์ด์Šค ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ฑ—๋ด‡ ์‚ฌ์šฉ์ž ์ธก๋ฉด์—์„œ ์ค‘์š”ํ•œ ์ธํ„ฐํŽ˜์ด์Šค ์š”์†Œ์— ์ฃผ๋ชฉํ•˜์—ฌ, ์ฑ—๋ด‡ ์ธํ„ฐํŽ˜์ด์Šค์— ๋Œ€ํ•œ ์‚ฌ์šฉ์ž๋“ค์˜ ๊ธฐ๋Œ€์™€ ์š”๊ตฌ์‚ฌํ•ญ์„ ์ •๋ฆฌํ•˜๊ณ  ์ฑ—๋ด‡ ์ธํ„ฐํŽ˜์ด์Šค ๋””์ž์ธ ๋ฐฉํ–ฅ์„ ์ œ์•ˆํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๋จผ์ € ์‚ฌ์šฉ์ž๋“ค์ด ์ฑ—๋ด‡๊ณผ ๋Œ€ํ™”๋ฅผ ์ง„ํ–‰ํ•˜๋ฉฐ ํŠน์ • ๋ชฉ์ ์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ณผ์ •์—์„œ ํ•„์š”ํ•œ ์ธํ„ฐํŽ˜์ด์Šค ์š”์†Œ๊ฐ€ ๋ฌด์—‡์ธ์ง€ ์•Œ์•„๋ณด๊ธฐ ์œ„ํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์ฑ—๋ด‡ ์„œ๋น„์Šค๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์‚ฌ์šฉ์ž ํ–‰๋™์„ ๊ด€์ฐฐํ•˜๊ณ  ๋ถ„์„ํ•˜๋Š” ์ปจํ…์Šค์ถ”์–ผ ์ธ์ฝฐ์ด์–ด๋ฆฌ(contextual inquiry) ์กฐ์‚ฌ๋ฅผ ์‹ค์‹œํ•˜์˜€๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์™€ ์‚ฌ์šฉ์ž ์กฐ์‚ฌ๋ฅผ ํ†ตํ•ด ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ฑ—๋ด‡์—์„œ ์‚ฌ์šฉ์ž๊ฐ€ ํƒœ์Šคํฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š”๋ฐ ํ•„์š”ํ•œ ์ธํ„ฐํŽ˜์ด์Šค ์š”์†Œ์™€ ๊ฐ๊ฐ์— ๋Œ€ํ•œ ์š”๊ตฌ์‚ฌํ•ญ์„ ์ •๋ฆฌํ•˜์˜€๋‹ค. ์ˆ˜์ง‘๋œ ์‚ฌ์šฉ์ž ์กฐ์‚ฌ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์ฑ—๋ด‡ ์ธํ„ฐํŽ˜์ด์Šค์—์„œ ์‚ฌ๋žŒ๋“ค์ด ์ค‘์š”ํ•˜๊ฒŒ ์ƒ๊ฐํ•˜๋Š” ์ง€์ ์„ ์ฐพ๊ธฐ ์œ„ํ•ด, ์›์ž๋ฃŒ๋ฅผ ๋ถ„ํ•ดํ•˜๊ณ  ์—ฌ๋Ÿฌ ๊ฐœ๋…๋“ค์„ ๋„์ถœํ•œ ํ›„, ๊ด€๋ จ ์žˆ๋Š” ๊ฐœ๋…๋“ค์„ ๋ฌถ์–ด ์ƒ์œ„ ์ฃผ์ œ๋ฅผ ๋„์ถœํ•˜๋Š” ๋ฐฉ์‹์˜ ๊ทผ๊ฑฐ ์ด๋ก  ์ ‘๊ทผ ๋ฐฉ๋ฒ•(grounded theory approach)์ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ์šฐ์„ , ์‚ฌ์šฉ์ž๋“ค์€ ์ฑ—๋ด‡์˜ ์ง€๋Šฅ์  ์—ญํ• ์„ ๊ธฐ๋Œ€ํ•˜๊ณ  ์žˆ์—ˆ์œผ๋ฉฐ, ์ฑ—๋ด‡ ์ž‘๋™ ๋ฐฉ์‹์˜ ์˜ˆ์ธก๊ฐ€๋Šฅ์„ฑ, ๋‹จ์ˆœ์„ฑ, ์ง๊ด€์„ฑ, ์นœ์ˆ™์„ฑ, ์ผ๊ด€์„ฑ์„ ์ค‘์š”์‹œํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋˜ํ•œ ์‚ฌ๋žŒ ๊ฐ„์˜ ์˜์‚ฌ์†Œํ†ต ๋ฐฉ์‹์„ ๊ธฐ์ค€์œผ๋กœ ์ฑ—๋ด‡๊ณผ์˜ ์˜์‚ฌ์†Œํ†ต์„ ํ‰๊ฐ€ํ•˜๋ฉฐ, ์ •ํ™•์„ฑ์ด ์ง€์†์ ์ธ ์‚ฌ์šฉ์„ ์œ ๋„ํ•˜๋Š”๋ฐ ์ค‘์š”ํ•œ ๊ฒƒ์œผ๋กœ ๋ฐํ˜€์กŒ๋‹ค. ์ฑ—๋ด‡ ์ธํ„ฐํŽ˜์ด์Šค ๋””์ž์ธ์— ์žˆ์–ด์„œ๋Š” ์šฐ์„  ์ฑ—๋ด‡์˜ ์ง€๋Šฅ์  ์ธก๋ฉด์„ ๋“œ๋Ÿฌ๋‚ด๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•œ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๊ทธ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ์ด๋ชจํ‹ฐ์ฝ˜, ๋ฏธ๋””์–ด ๋“ฑ์˜ ์š”์†Œ๋ฅผ ํ†ตํ•ด ์ฑ—๋ด‡์˜ ์‚ฌํšŒ์  ์ง€๋Šฅ์„ ์ „๋‹ฌํ•˜๋Š” ๊ฒƒ๋„ ์ค‘์š”ํ•œ ๊ฒƒ์œผ๋กœ ๋“œ๋Ÿฌ๋‚ฌ๋‹ค. ์‚ฌ์šฉ์ž์™€์˜ ์›ํ™œํ•œ ๋Œ€ํ™” ์ง„ํ–‰์„ ์œ„ํ•ด ์ฑ—๋ด‡ ํ”„๋กœํ•„, ๋น ๋ฅธ ์‘๋‹ต ๋“ฑ์˜ ์š”์†Œ๋ฅผ ํ†ตํ•ด ์ฑ—๋ด‡์˜ ์—ญ๋Ÿ‰์„ ์ „๋‹ฌํ•  ํ•„์š”์„ฑ๋„ ์‚ดํŽด๋ณผ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์ฑ—๋ด‡์—์„œ ๋ชจ๋ฐ”์ผ ์ธํ„ฐํŽ˜์ด์Šค๊ฐ€ ์ฃผ์š”ํ•  ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค๋Š” ์ ์— ์ดˆ์ ์„ ๋งž์ถ”์–ด ์ฑ—๋ด‡ ์ธํ„ฐํŽ˜์ด์Šค์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ–ˆ๋‹ค๋Š” ์ ์—์„œ ๊ธฐ์กด์˜ ์Œ์„ฑ ์–ธ์–ด ๊ธฐ๋ฐ˜์˜ ๋Œ€ํ™”ํ˜• ์‹œ์Šคํ…œ ์—ฐ๊ตฌ๋“ค๊ณผ ์ฐจ๋ณ„์ ์„ ์ง€๋‹Œ๋‹ค. ๋˜ํ•œ ์ด ์—ฐ๊ตฌ๋Š” ์‚ฌ์šฉ์ž ์ธก๋ฉด์—์„œ ์ฑ—๋ด‡ ์ธํ„ฐํŽ˜์ด์Šค์˜ ์ค‘์š” ์ง€์ ์„ ์ •๋ฆฌํ•˜๊ณ  ํ•„์š”ํ•œ ์ธํ„ฐํŽ˜์ด์Šค ๋””์ž์ธ ๋ฐฉํ–ฅ์„ ์ œ์•ˆํ•˜์—ฌ ์ฑ—๋ด‡ ์ธํ„ฐํŽ˜์ด์Šค์— ๋Œ€ํ•œ ์‹ฌ์ธต์ ์ธ ์ดํ•ด๋ฅผ ๋„๋ชจํ•˜์˜€๋‹ค.โ… . ์—ฐ๊ตฌ๋ฐฐ๊ฒฝ 1 โ…ก. ๊ด€๋ จ ์—ฐ๊ตฌ ๋ฐ ์—ฐ๊ตฌ ๋ฌธ์ œ 4 1. ๋Œ€ํ™”ํ˜• ์—์ด์ „ํŠธ์™€ ์ฑ—๋ด‡ 4 2. ์ธํ„ฐํŽ˜์ด์Šค 7 3. ์—ฐ๊ตฌ๋ฌธ์ œ 9 โ…ข. ์ฑ—๋ด‡ ์‚ฌ์šฉ์ž ์กฐ์‚ฌ 11 1. ์‚ฌ์šฉ์ž ์กฐ์‚ฌ ๋ฐฉ๋ฒ• 11 2. ์‚ฌ์šฉ์ž ์กฐ์‚ฌ ๋‚ด์šฉ 21 โ…ฃ. ์‚ฌ์šฉ์ž ์กฐ์‚ฌ ๊ฒฐ๊ณผ 39 1. ์‚ฌ์šฉ์ž ์กฐ์‚ฌ ๊ฒฐ๊ณผ ๋ถ„์„ ๋ฐฉ๋ฒ• 39 2. ์‚ฌ์šฉ์ž ์กฐ์‚ฌ ๊ฒฐ๊ณผ 39 3. ์ฑ—๋ด‡ ์ธํ„ฐํŽ˜์ด์Šค ๋””์ž์ธ ์ œ์•ˆ 44 โ…ค. ๋…ผ์˜ 48 โ…ฅ. ๊ฒฐ๋ก  50 โ…ฆ. ์ฐธ๊ณ ๋ฌธํ—Œ 52 ABSTRACT 57Maste

    ๋ถ„์—ด์„ฑ ํšจ๋ชจ์—์„œ ์ˆ˜๋ช…๊ณผ ๊ฐ์ˆ˜๋ถ„์—ด์„ ์กฐ์ ˆํ•˜๋Š” Homeobox ์ „์‚ฌ์ธ์ž Phx1์˜ ์—ญํ• 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ƒ๋ช…๊ณผํ•™๋ถ€, 2012. 8. ๋…ธ์ •ํ˜œ.๋ถ„์—ด์„ฑ ํšจ๋ชจ์—์„œ phx1+ ์œ ์ „์ž๋Š” ์„ธํฌ ๋‚ด์— ๊ณผ๋Ÿ‰์œผ๋กœ ์กด์žฌํ•  ๋•ŒCu / Zn-containing superoxide dismutase (CuZn-SOD) ๊ฒฐํ•์— ์˜ํ•ด ์œ ๋ฐœ๋˜๋Š” lysine ์˜์–‘๊ฒฐํ•์ฆ์„ ๊ทน๋ณตํ•˜๋Š” ์ธ์ž๋กœ ์ฒ˜์Œ์— ๋ถ„๋ฆฌ๋˜์—ˆ๋‹ค. Phx1 ๋‹จ๋ฐฑ์งˆ์„ ๊ณผ๋Ÿ‰ ์ƒ์‚ฐํ•˜๋ฉด, lysine ์ƒํ•ฉ์„ฑ ๊ณผ์ •์˜ ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์— ์ž‘์šฉํ•˜๋Š” ํšจ์†Œ์ด๋ฉฐ ๋™์‹œ์— ์‚ฐํ™” ์ŠคํŠธ๋ ˆ์Šค์— ์ทจ์•ฝํ•œ homocitrate synthase์˜ ํ•ฉ์„ฑ์ด ์ฆ๊ฐ€ํ•œ๋‹ค. Phx1 ๋‹จ๋ฐฑ์งˆ์€ ์•„๋ฏธ๋…ธ์‚ฐ ๋ง๋‹จ ๊ทผ๋ฐฉ์— DNA์— ๊ฒฐํ•ฉํ•  ์ˆ˜ ์žˆ๋Š” ์ž˜ ๋ณด์กด๋œ homeodomain์„ ๊ฐ€์ง€๊ณ  ์žˆ์–ด์„œ ์ „์‚ฌ์กฐ์ ˆ ์ธ์ž๋กœ ์—ฌ๊ฒจ์ง„๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ Phx1 ๋‹จ๋ฐฑ์งˆ์˜ ๊ธฐ๋Šฅ์€ ํ˜„์žฌ๊นŒ์ง€ ์ž˜ ์•Œ๋ ค์ง€์ง€ ์•Š์•˜๋‹ค. Phx1 ๋‹จ๋ฐฑ์งˆ์˜ ๊ธฐ๋Šฅ์„ ์—ฐ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด, Phx1 ๋‹จ๋ฐฑ์งˆ์˜ ๋ฐœํ˜„ ํŒจํ„ด๊ณผ ๊ทธ๊ฒƒ์˜ ๊ฒฐ์†๊ท ์ฃผ ํ‘œํ˜„ํ˜•์„ ์‚ดํŽด๋ณด์•˜๋‹ค. phx1+ ์œ ์ „์ž์˜ ์ „์‚ฌ๋Ÿ‰์€ ์„ธํฌ๊ฐ€ ์ •์ฒด ์ƒ์žฅ๊ธฐ์— ๋“ค์–ด๊ฐˆ ๋•Œ ์ƒ๋‹นํžˆ ์ฆ๊ฐ€ํ•˜๊ณ , ์ •์ฒด ์ƒ์žฅ๊ธฐ ๋‚ด๋‚ด ๋†’๊ฒŒ ์œ ์ง€๋˜์—ˆ๋‹ค. ์งˆ์†Œ์™€ ํƒ„์†Œ๋ฅผ ์ œ๊ณตํ•˜๋Š” ์˜์–‘์†Œ์˜ ๊ณต๊ธ‰์„ ๋‚ฎ์ถ”๋ฉด phx1+ ์œ ์ „์ž์˜ ๋ฐœํ˜„๋Ÿ‰์€ ์ง€์ˆ˜ ์ƒ์žฅ๊ธฐ์—๋„ ์ฆ๊ฐ€ํ•˜๋Š”๋ฐ, ์ด๋Š” ์„ธํฌ๊ฐ€ ์˜์–‘ ๊ณ ๊ฐˆ ํ™˜๊ฒฝ ์‹œ์— Phx1 ๋‹จ๋ฐฑ์งˆ์˜ ๊ธฐ๋Šฅ์„ ํ•„์š”๋กœ ํ•จ์„ ์˜๋ฏธํ•œ๋‹ค. Phx1์— ํ˜•๊ด‘ ๋‹จ๋ฐฑ์งˆ์ธ GFP๋ฅผ ๊ฒฐํ•ฉ์‹œ์ผœ ํ˜•๊ด‘์„ ๊ด€์ฐฐํ•œ ๊ฒฐ๊ณผ, Phx1 ๋‹จ๋ฐฑ์งˆ์€ ํ•ต ์•ˆ์— ์กด์žฌํ•˜๊ณ , ์ •์ฒด ์ƒ์žฅ๊ธฐ์™€ ์˜์–‘๊ณ ๊ฐˆ ์‹œ๊ธฐ์— ๊ทธ ๋ฐœํ˜„์ด ๋”์šฑ ๋ช…ํ™•ํ•ด์ง€๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. phx1+ ์œ ์ „์ž๊ฐ€ ๊ฒฐ์†๋œ ๋Œ์—ฐ๋ณ€์ด๋Š” ์žฅ๊ธฐ๊ฐ„์˜ ๋ฐฐ์–‘ ์‹œ์— ์•ผ์ƒํ˜• ๊ท ์ฃผ์— ๋น„ํ•ด ์ƒ์กด๋ฅ ์ด ๊ฐ์†Œํ•œ๋‹ค. ๋ฐ˜๋ฉด์— Phx1 ๋‹จ๋ฐฑ์งˆ์„ ๊ณผ๋Ÿ‰ ๋ฐœํ˜„ํ•ด์ฃผ๋ฉด ์•ผ์ƒํ˜• ๊ท ์ฃผ๋ณด๋‹ค ์žฅ๊ธฐ๊ฐ„ ์ƒ์กด๋ฅ ์ด ์ฆ๊ฐ€ํ•œ๋‹ค. ๋˜ํ•œ phx1+ ์œ ์ „์ž ๊ฒฐ์† ๋Œ์—ฐ๋ณ€์ด๋Š” ์—ฌ๋Ÿฌ ์ข…๋ฅ˜์˜ ์‚ฐํ™” ๋ฌผ์งˆ, ์—ด ์ถฉ๊ฒฉ, ์•Œ์ฝ”์˜ฌ ์ฒ˜๋ฆฌ ๋“ฑ์— ๋ฏผ๊ฐํ•˜์˜€๊ณ , ์ •์ฒด ์ƒ์žฅ๊ธฐ์— ์•ผ์ƒํ˜• ๊ท ์ฃผ๋ณด๋‹ค ํ™œ์„ฑ ์‚ฐ์†Œ๋Ÿ‰์ด ๋” ๋งŽ์ด ์ถ•์ ๋˜์—ˆ๋‹ค. phx1+ ์œ ์ „์ž ๊ฒฐ์† ์ด๋ฐฐ์ฒด์˜ ์ž๋‚ญํฌ์ž ์ƒ์„ฑ๋ฅ ์„ ์ธก์ •ํ•œ ๊ฒฐ๊ณผ, ์•ผ์ƒํ˜• ๊ท ์ฃผ๋ณด๋‹ค ์ƒ๋‹น๋Ÿ‰ ๊ฐ์†Œ๋˜์—ˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ „์‚ฌ์กฐ์ ˆ ์ธ์ž์ธ Phx1์˜ ์กฐ์ ˆ์„ ๋ฐ›๋Š” ์œ ์ „์ž๋“ค์„ ์•Œ์•„๋‚ด๊ธฐ ์œ„ํ•ด microarray ๋ถ„์„์„ ํ•˜์˜€๋‹ค. ์ •์ฒด ์ƒ์žฅ๊ธฐ๊นŒ์ง€ ํ‚ค์šด ์•ผ์ƒํ˜•๊ณผ phx1+ ์œ ์ „์ž ๊ฒฐ์† ๊ท ์ฃผ์˜ ๋ฒ”์œ ์ „์ฒด์ ์ธ ์ „์‚ฌ๋Ÿ‰ ๋ถ„์„์„ ํ†ตํ•ด, phx1๊ฒฐ์† ๊ท ์ฃผ์—์„œ 97๊ฐœ ์œ ์ „์ž์˜ ๋ฐœํ˜„๋Ÿ‰์ด ์ฆ๊ฐ€ํ•˜๊ณ  99๊ฐœ ์œ ์ „์ž์˜ ๋ฐœํ˜„๋Ÿ‰์ด ๊ฐ์†Œํ•จ์„ ์•Œ์•„๋‚ด์—ˆ๋‹ค. ์ด ์œ ์ „์ž๋“ค์€ ํƒ„์ˆ˜ํ™”๋ฌผ ๋Œ€์‚ฌ, ์ƒ์‹ ์„ธํฌ ๋ถ„ํ™”, thiamine ํ•ฉ์„ฑ, ์ŠคํŠธ๋ ˆ์Šค ๋ฐ˜์‘, ๋ฌผ์งˆ ์ˆ˜์†ก ๋“ฑ ๋‹ค์–‘ํ•œ ๊ณผ์ •์— ์ฐธ์—ฌํ•˜์˜€๋‹ค. Phx1์€ ํŠนํžˆ pyruvate decarboxylase (PDC)๋ฅผ ์œ„ํ•œ ์œ ์ „์ž์ธ pdc1+, pdc4+ ์™€ thiamine ํ•ฉ์„ฑ์„ ์œ„ํ•œ ์œ ์ „์ž์ธ nmt1+, nmt2+, bsu1+ ์˜ ๋ฐœํ˜„์„ ์ฆ๊ฐ€์‹œ์ผฐ๋‹ค. ์ด๋Ÿฌํ•œ ์ „์‚ฌ์กฐ์ ˆ ๊ฒฐ๊ณผ์™€ ๊ฐ™์€ ๋ฐฉํ–ฅ์œผ๋กœ, phx1 ๊ฒฐ์† ๊ท ์ฃผ์—์„œ pyruvate decarboxylase์˜ ํšจ์†Œ ํ™œ์„ฑ๋„์™€ ํ•ฉ์„ฑ๋œ thiamine์˜ ์–‘์ด ์•ผ์ƒํ˜• ๊ท ์ฃผ์— ๋น„ํ•ด ์ ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ฒŒ๋‹ค๊ฐ€, pdc1 ๊ณผ pdc4 ๊ฒฐ์† ๊ท ์ฃผ๋Š” ์žฅ๊ธฐ๊ฐ„ ์ƒ์กด๋ฅ ์ด ๋–จ์–ด์ง€๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์˜€๋‹ค. ์ด๊ฒƒ์€ pyruvate decarboxylaseํšจ์†Œ๊ฐ€ Phx1์˜ ์กฐ์ ˆ์„ ๋ฐ›์•„ ์žฅ๊ธฐ๊ฐ„ ์ƒ์กด์„ ์œ ์ง€ํ•˜๋Š” ๋ฐ ํ•„์š”ํ•œ ์ธ์ž์ž„์„ ์˜๋ฏธํ•œ๋‹ค. Phx1 ๋‹จ๋ฐฑ์งˆ์„ ํ™œ์„ฑํ™”์‹œํ‚ค๋Š” ์‹ ํ˜ธ๋ฅผ ์ฐพ๊ธฐ ์œ„ํ•ด, ๋ถ„์—ด์„ฑ ํšจ๋ชจ ๋‚ด์—์„œ ๋…ธํ™”๋ฅผ ๊ฐ€์†ํ™” ์‹œํ‚ค๋Š” Sck2์™€ cAMP/Pka1 ์‹ ํ˜ธ ์ „๋‹ฌ ๊ฒฝ๋กœ์™€ Phx1์˜ ๊ด€๊ณ„๋ฅผ ํƒ๊ตฌํ•˜์˜€๋‹ค. Phx1 ๋‹จ๋ฐฑ์งˆ์€ Sck2๋‚˜ Pka1์— ์˜ํ•ด ์ธ์‚ฐํ™”๋  ์ˆ˜ ์žˆ๋Š” ๋ชจํ‹ฐํ”„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. sck2+ ์™€ phx1+ ์œ ์ „์ž๊ฐ€ ๋™์‹œ์— ๊ฒฐ์†๋œ ๊ท ์ฃผ์™€ pka1+ ๊ณผ phx1+ ์œ ์ „์ž๊ฐ€ ๋™์‹œ์— ๊ฒฐ์†๋œ ๊ท ์ฃผ๋ฅผ ์ œ์ž‘ํ•˜์—ฌ ์žฅ๊ธฐ๊ฐ„ ์ƒ์กด๋ฅ ์„ ์ธก์ •ํ•œ ๊ฒฐ๊ณผ, phx1+ ๊ฒฐ์†์ด sck2+ ๋‚˜ pka1+ ์œ ์ „์ž๊ฐ€ ๋‹จ๋… ๊ฒฐ์†๋˜์—ˆ์„ ๋•Œ ๋‚˜ํƒ€๋‚˜๋Š” ์ˆ˜๋ช… ์—ฐ์žฅ ํšจ๊ณผ๋ฅผ ๋‹จ์ถ•์‹œํ‚ด์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋Š” Sck2์™€ Pka1์ด ์ƒ์œ„๋‹จ๊ณ„์—์„œ Phx1์„ ๋ถ€์ •์ ์œผ๋กœ ์กฐ์ ˆํ•˜๋Š” ์ธ์ž์ž„์„ ์˜๋ฏธํ•œ๋‹ค. ๋ถ„์—ด์„ฑ ํšจ๋ชจ์—์„œ ์ŠคํŠธ๋ ˆ์Šค ๋ฐ˜์‘์„ ๊ด€์žฅํ•˜๋Š” Sty1 MAP kinase ์‹ ํ˜ธ์ ˆ๋‹ฌ ๊ฒฝ๋กœ์˜ ์ˆ˜๋ช… ์กฐ์ ˆ ํšจ๊ณผ ๋ฐ Phx1 ๋‹จ๋ฐฑ์งˆ๊ณผ์˜ ๊ด€๊ณ„ ๋˜ํ•œ ํƒ๊ตฌํ•˜์˜€๋‹ค. ํฅ๋ฏธ๋กญ๊ฒŒ๋„ ์ •์ฒด์ƒ์žฅ๊ธฐ์—์„œ Sty1์ด ๊ฒฐํ•๋˜๋ฉด, phx1+ ์œ ์ „์ž์˜ ๋ฐœํ˜„๋Ÿ‰์ด Sty1์˜ ์ฃผ์š”ํ•œ ํƒ€๊ฒŸ ๋‹จ๋ฐฑ์งˆ์ธAtf1 ์ „์‚ฌ์กฐ์ ˆ ์ธ์ž์™€ ์ƒ๊ด€์—†์ด ๊ฐ์†Œํ•˜์˜€๋‹ค. ๋˜ํ•œ, Bimolecular fluorescence complementation (BiFC) ๋ถ„์„์„ ํ†ตํ•ด Sty1๊ณผ Phx1 ๋‹จ๋ฐฑ์งˆ์ด ๋ฌผ๋ฆฌ์ ์œผ๋กœ ๊ฒฐํ•ฉํ•จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด ๊ฒฐ๊ณผ๋“ค์€ Phx1์ด Sty1์˜ ์ธ์‚ฐํ™” ํƒ€๊ฒŸ์ด ๋  ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ์œ„์˜ ๋‚ด์šฉ๋“ค์„ ์ข…ํ•ฉํ•˜์ž๋ฉด, Phx1์€ ์ •์ฒด ์ƒ์žฅ๊ธฐ์™€ ์˜์–‘ ๊ณ ๊ฐˆ ์‹œ์— ๋ฐœํ˜„์ด ์ฆ๊ฐ€ํ•˜๋Š” ์ „์‚ฌ ์กฐ์ ˆ ์ธ์ž์ด๋‹ค. Phx1์€ ์„ธํฌ๊ฐ€ ์žฅ๊ธฐ๊ฐ„ ์ƒ์กดํ•˜๊ณ , ์‚ฐํ™”, ์—ด, ์•Œ์ฝ”์˜ฌ ๋“ฑ์˜ ์ŠคํŠธ๋ ˆ์Šค์— ์ €ํ•ญํ•  ์ˆ˜ ์žˆ๊ฒŒํ•œ๋‹ค. ๋˜ํ•œ ๊ฐ์ˆ˜๋ถ„์—ด ์‹œ์— ํฌ์ž ํ˜•์„ฑ ๊ณผ์ •์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค. ๋” ๋‚˜์•„๊ฐ€ ์ด๋Ÿฌํ•œ Phx1์˜ ํ™œ๋™์€ Pka1, Sck2, Sty1์ด๋ผ๋Š” ์ƒ์œ„ ์กฐ์ ˆ์ž์— ์˜ํ•ด ์กฐ์œจ์„ ๋ฐ›๋Š”๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์žฅ๊ธฐ๊ฐ„ ์ƒ์กด์„ ์œ„ํ•ด Phx1์€ ์„ธํฌ ๋‚ด์—์„œ ์ตœ์†Œํ•œ ๋‘ ๊ฐœ์˜ pyruvate decarboxylase ํšจ์†Œ์˜ ๋ฐœํ˜„ ๋ฐ ํ™œ์„ฑ์„ ์ฆ๊ฐ€์‹œํ‚จ๋‹ค. Pyruvate decarboxylase ํšจ์†Œ๊ฐ€ ์–ด๋–ป๊ฒŒ ์žฅ๊ธฐ๊ฐ„ ์ƒ์กด์— ๊ธฐ์—ฌํ•˜๋Š” ์ง€๋Š” ์•ž์œผ๋กœ ๋ฐํ˜€์•ผํ•  ๊ณผ์ œ์ด๋‹ค.In the fission yeast Schizosaccharomyces pombe, the phx1+ (pombe homeobox) gene was initially isolated as a multi-copy suppressor of lysine auxotrophy caused by depletion of copper/zinc-containing superoxide dismutase (CuZn-SOD). Overproduction of Phx1 increased the synthesis of homocitrate synthase, the first enzyme in lysine biosynthetic pathway, which is labile to oxidative stress. Phx1 has a well conserved DNA-binding domain called homeodomain at the N-terminal region and is predicted to be a transcription factor in S. pombe. However, its role has not been revealed in further detail. To investigate the functions of Phx1, its expression pattern and the phenotype of its null mutant were examined. The amount of phx1+ transcripts sharply increased as cells entered the stationary phase and was maintained at high level throughout the stationary phase. Nutrient shift down to low nitrogen or carbon sources caused phx1+ induction during the exponential phase, suggesting that cells need Phx1 for the maintenance function during starvation. Fluorescence from the chromosomally encoded Phx1-GFP demonstrated that it is localized primarily in the nucleus, and is distinctly visible during the stationary phase and under nutrient starvation. The phx1 null mutant showed decreased viability in long-term culture, whereas overproduction of Phx1 increased the viability. In addition, the โˆ†phx1 mutant was sensitive to various oxidants, heat shock, and ethanol treatment. It was found that the โˆ†phx1 mutant accumulated more reactive oxygen species (ROS) than the wild type at the stationary phase. When we examined sporulation of the โˆ†phx1 / โˆ†phx1 diploid strain, significant decrease in the formation of meiotic spores was observed. In order to identify target genes regulated by Phx1, microarray analysis was performed. Genome-wide transcriptional profiling of wild-type and โˆ†phx1 cells grown to the stationary phase revealed that โˆ†phx1 mutant increased and decreased the expressions of 97 and 99 genes, respectively. These genes were involved in various biological process including carbohydrate metabolism, sexual reproduction, thiamine synthesis, response to stress, and transport. Phx1 particularly increased the expression of genes for pyruvate decarboxylases (PDC) (pdc1+, pdc4+) and thiamine biosynthesis (nmt1+, nmt2+, and bsu1+). In accordance with transcriptional regulation, the enzyme activity of pyruvate decarboxylase and the amount of thiamine were lower in โˆ†phx1 mutant than in the wild type. Furthermore, both โˆ†pdc1 and โˆ†pdc4 mutants showed defects in long-term survival, suggesting that PDC, being under the control of Phx1, is the primary factor that allow long-term survival. In order to find signals that activate Phx1, we examined the effect of Sck2 and cAMP/Pka1 pathways that are known to have pro-aging effects in S. pombe. It has been noted that Phx1 has motifs that can be phosphorylated by Sck2 or Pka1. Estimation of long-term survival for โˆ†sck2 โˆ†phx1 and โˆ†pka1 โˆ†phx1 mutants indicated that โˆ†phx1 counteracted the lifespan extension phenotypes of โˆ†sck2 and โˆ†pka1. It suggests that Sck2 and Pka1 negatively regulate Phx1 as upstream regulatory factors. Effect of Sty1 MAPK pathway that regulates cellular stress responses has also been examined. Interestingly, phx1+ expression did not increase at the stationary phase in โˆ†sty1 mutant, being independent of Atf1 which is a major target of Sty1. Bimolecular fluorescence complementation (BiFC) analysis indicated that Phx1 interacts with Sty1. These results indicate that Phx1 could be a phosphorylation target of Sty1 as well. In summary, this work revealed that Phx1 is a transcriptional regulator whose synthesis is elevated during stationary phase and by nutrient starvation in S. pombe. It functions in long-term survival and stress tolerance against oxidation, heat and ethanol treatment, and plays a key role in the formation of meiotic spores from diploid zygotes. In addition, the activity of Phx1 is modulated by Pka1, Sck2 and Sty1 kinases as upstream regulatory factors. Its contribution to long-term survival is exerted primarily through enhancing the expression and activity of at least two pyruvate decarboxylases in the cell. How PDC can serve such a function requires further study.ABSTRACT i CONTENTS iv LIST OF FIGURES ix LIST OF TABLES xi ABBREVIATIONS xii CHAPTER I. INTRODUCTION 1 I.1. Homeodomain Proteins 2 I.2. Discovery of Phx1 2 I.3. Aging in Yeast 6 I.3.1. Chronological aging 6 I.3.2. Replicative aging 6 I.3.3. Signaling pathways of aging 7 I.4. Meiotic Gene Expression in S. pombe 12 I.5. Pyruvate Decarboxylase (PDC) in Yeast 15 I.5.1. TPP-dependent enzyme family 15 I.5.2. Pyruvate decarboxylase in yeast 17 I.6. Thiamine Biosynthesis in Yeast 18 I.7. Biology of Fission Yeast Schizosaccharomyces pombe 21 I.7.1. Life cycle of S. pombe 22 I.7.2. Cell cycle of S. pombe 26 I.7.3. Genomic structure of S. pombe 26 I.7.4. Deletion mutants library of S. pombe 27 CHAPTER II. MATERIALS AND METHODS 28 II.1. Strains and Culture Conditions 29 II.1.1. Bacterial and yeast strains, media and culture conditions 29 II.1.2. Stress treatments 29 II.2. Recombinant DNA Techniques 31 II.2.1. Plasmids and construction 31 II.2.2. DNA manipulation 33 II.3. Transformation of Escherichia coli and Yeast 33 II.4. Cell Extract Preparation and Analytical Methods 33 II.4.1. Protein extraction and measurement 33 II.4.2. Pyruvate decarboxylase activity assay 34 II.5. RNA Preparation and Analytical Methods 34 II.5.1. RNA isolation and purification 34 II.5.2. Northern hybridization 35 II.5.3. cDNA preparation 35 II.5.4. Quantitative RT-PCR 36 II.6. Gene Disruption and Phenotype Detection 36 II.6.1. Construction of the prototrophic โˆ†phx1 mutants 36 II.6.2. Construction of multiple disruptants 36 II.7. Measurement of Long-Term Survival 38 II.8. Measurement of Oxygen Consumption 38 II.9. Measurement of Intracellular H2O2 Level 38 II.10. DNA Microarray Analysis 39 II.11. Detection of Mating and Sporulation Efficiency 40 II.11.1. Iodine staining 40 II.11.2. Assay for mating efficiency 40 II.11.3. Assay for sporulation efficiency of diploid 40 II.12. Quantification of Thiamine and Its Derivatives 41 II.12.1. Extraction of thiamine 41 II.12.2. Determination of thiamine and thiamine phosphates by HPLC 41 II.13. Bimolecular Fluorescence Complementation (BiFC) Assay 42 CHAPTER III. RESULTS AND DISCUSSION 43 III.1. Roles of Phx1 in Long-Term Survival 44 III.1.1. Expression of the phx1+ gene increases at the stationary phase and by nutrient starvation 44 III.1.2. Phx1 protein is localized primarily in nucleus at stationary phase and by nutrient starvation 44 III.1.3. The phx1+ gene is required for long-term survival during the stationary phase and under nutrient-starved conditions 47 III.2. Roles of Phx1 in Stress Response 52 III.2.1. โˆ†phx1 mutant is sensitive to oxidative and heat stress 52 III.2.2. โˆ†phx1 mutant cells accumulate reactive oxygen species (ROS) at stationary phase 53 III.2.3. โˆ†phx1 mutant cells show low ethanol tolerance 58 III.3. Roles of Phx1 in Meiosis 60 III.3.1. The โˆ†phx1 / โˆ†phx1 diploids are defective in sporulation 60 III.4. Genome-Wide Transcriptional Profiling Analysis of โˆ†phx1 Mutant 63 III.4.1. The genes that are involved in thiamine biosynthetic and metabolic processes 69 III.4.2. The genes which are related with carbohydrate metabolism & mitochondrial function 72 III.4.3. The genes that are involved in sexual development 73 III.4.4. The genes which are associated with stress response and metabolite transport 74 III.5. Roles of Phx1 in Thiamine Biosynthesis 76 III.5.1. Phx1 regulates transcription of the genes involved in thiamine biosynthesis 76 III.5.2. Intracellular thiamine pools are lower in โˆ†phx1 mutants than in wild-type cells 79 III.6. Roles of Phx1 in Regulating of PDC Genes 84 III.6.1. Phylogeny of the PDC-like enzymes 84 III.6.2. Phx1 regulates transcriptions of pdc genes 89 III.6.3. PDC activity is decreased in โˆ†phx1 mutant 92 III.6.4. pdc mutants show long-term survival defect 97 III.6.5. Overproduction of Pdc4 protein enhances long-term survival 100 III.7. Upstream Signaling Pathways for Phx1 Regulation 102 III.7.1. Regulation of long-term survival by the protein kinase Sck2 is mediated via Phx1 102 III.7.2. cAMP/Pka1 pathway negatively regulates Phx1 105 III.7.3. Sty1 MAP kinase pathway may be the upstream regulator of Phx1 112 III.8. Phenotype of Phx1-Overproducing Cells 115 III.8.1. Elongation of cell size 115 III.9. Conclusion 118 CHAPTER IV. REFERENCES 125 ๊ตญ๋ฌธ์ดˆ๋ก 134 ๊ฐ์‚ฌ์˜ ๊ธ€ 137Docto

    A Comparison Study on Power Consumption Predicting of the Electric Propulsion Vessel

    Get PDF
    In recent years, concern for the energy efficiency of vessels has increased due to the influence of environmental pollution. Electric propulsion systems have more energy flexibility than mechanical propulsion systems. So, it can improve power efficiency by using batteries. For the utilization of batteries, it is necessary to predict the power consumption of electric propulsion vessels. In addition, researchers are studying multivariate time-series data for prediction. In contrast preceded studies were non applicability to electric propulsion systems for power consumption predicting. Because, limitation of accessible to vessel's data and the previous prediction researches were considerably studied to small ranged electrical data. According to these reasons, The research of models that capable a wide range of vessel load data is essential. In this paper, aims to predict the electricity consumption of a vessel, using real vessel data and convert to electric propulsion vessel data, and select variables that affecting vessel's electricity consumption using heuristic. The converted data includes missing values, this can cause of weakens model's accuracy, therefore multiple imputation algorithm was used for cover it. After data preprocessing, several models are created to predict time-series data. This consists of single models for comparison criteria : LSTM(Long Short-term Memory models), CNN(Convolutional Neural Network), ANN(Artificial Neural Network), DNN(Deep Neural Network), bidirectional LSTM, and conjunction models : CNN-LSTM (direct), CNN-bidirectional LSTM (direct), CNN-LSTM (parallel), CNN- bidirectional LSTM (parallel). After models creation, the experiment method was decided, considered by clear comparison. that was composed of repeat test for the model's performance validation and utilized the widely used accuracy metric : RMSE.1. ์„œ๋ก  1 1.1 ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ 1 1.2 ์—ฐ๊ตฌ ๋™ํ–ฅ 3 1.3 ์—ฐ๊ตฌ ๋‚ด์šฉ ๋ฐ ๊ตฌ์„ฑ 6 2. ์ „๊ธฐ์ถ”์ง„ ์„ ๋ฐ• ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ๊ธฐ๋ฒ• 9 2.1 ์„ ๋ฐ• ์šดํ•ญ ๋ฐ์ดํ„ฐ 9 2.1.1 ์„ ๋ฐ•์ œ์› 9 2.1.2 ์ˆ˜์ง‘ ๋ฐ์ดํ„ฐ ๊ฐœ์š” 10 2.1.3 ๋ฐ์ดํ„ฐ ๋ณ€ํ™˜ 12 2.1.4 ์„ ๋ฐ• ์šดํ•ญ ๋ชจ๋“œ ๋ถ„์„ 14 2.2 ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ 16 2.2.1 ๋ฐ์ดํ„ฐ ๋ถ„์„ 16 2.2.2 ๋ฐ์ดํ„ฐ ์‚ฐ์ถœ ๋ฐ ๋ณด์™„ 22 2.2.3 ๋ฐ์ดํ„ฐ ๋ณ€ํ™˜ 23 3. ์ „๊ธฐ์ถ”์ง„ ์„ ๋ฐ• ๋ถ€ํ•˜ ์˜ˆ์ธก ๋ชจ๋ธ ์„ค๊ณ„ ๋ฐ ๊ตฌํ˜„ 27 3.1 ์ด๋ก ์  ๋ฐฐ๊ฒฝ ๋ฐ ์‹คํ—˜ ์ ˆ์ฐจ 27 3.1.1 ๋ชจ๋ธ์˜ ์ด๋ก ์  ๋ฐฐ๊ฒฝ 27 3.1.2 ์˜ˆ์ธก ๋ชจ๋ธ์˜ ์‹คํ—˜ ์ ˆ์ฐจ 36 3.2 ์˜ˆ์ธก ๋ชจ๋ธ ์„ค๊ณ„ ๋ฐ ๊ตฌํ˜„ 40 3.2.1 LSTM 41 3.2.2 bidirectional LSTM 42 3.2.3 CNN-LSTM (direct) 43 3.2.4 CNN-bidirectional LSTM (direct) 45 3.2.5 CNN-LSTM (parallel) 47 3.2.6 CNN-bidirectional LSTM (parallel) 49 3.2.7 LSTM auto encoder 51 3.2.8 ANN 53 3.2.9 DNN 54 3.2.10 CNN 55 4. ์ œ์•ˆ ๋ชจ๋ธ ํ‰๊ฐ€ 58 4.1 ๋ชจ๋ธ ํ‰๊ฐ€ ๊ธฐ์ค€ 58 4.2 ์‹คํ—˜ ํ™˜๊ฒฝ 59 4.3 ์‹คํ—˜ ๊ฒฐ๊ณผ 60 4.2.1 LSTM 60 4.2.2 bidirectional LSTM 62 4.2.3 CNN-LSTM (direct) 64 4.2.4 CNN-bidirectional LSTM (direct) 66 4.2.5 CNN-LSTM (parallel) 68 4.2.6 CNN-bidirectional LSTM (parallel) 70 4.2.7 LSTM auto encoder 72 4.2.8 ANN 74 4.2.9 DNN 76 4.2.10 CNN 78 5. ๋ชจ๋ธ ๋น„๊ต ๋ถ„์„ ๋ฐ ๊ณ ์ฐฐ 80 5.1 ๋ชจ๋ธ ๋น„๊ต ๋ถ„์„ 80 5.2 ์—ฐ๊ตฌ์˜ ๊ณ ์ฐฐ 86 6. ๊ฒฐ๋ก  87 ๊ฐ์‚ฌ์˜ ๊ธ€ 89 ์ฐธ๊ณ ๋ฌธํ—Œ 90Docto

    The HSP70 co-chaperone DNAJC14 targets misfolded pendrin for unconventional protein secretion.

    Get PDF
    Mutations in SLC26A4, which encodes pendrin, are responsible for hearing loss with an enlarged vestibular aqueduct and Pendred syndrome. The most prevalent mutation in East Asia is p.H723R (His723Arg), which leads to defects in protein folding and cell-surface expression. Here we show that H723R-pendrin can be rescued to the cell surface by an HSP70 co-chaperone DNAJC14-dependent unconventional trafficking pathway. Blockade of ER-to-Golgi transport or activation of ER stress signals induced Golgi-independent cell-surface expression of H723R-pendrin and restored its cell-surface Cl(-)/HCO3(-) exchange activity. Proteomic and short interfering RNA screenings with subsequent molecular analyses showed that Hsc70 and DNAJC14 are required for the unconventional trafficking of H723R-pendrin. Moreover, DNAJC14 upregulation was able to induce the unconventional cell-surface expression of H723R-pendrin. These results indicate that Hsc70 and DNAJC14 play central roles in ER stress-associated unconventional protein secretion and are potential therapeutic targets for diseases such as Pendred syndrome, which arise from transport defects of misfolded proteins.ope

    (The) effects of retinoic acid on cytokines expression in cultured keratinocytes.

    No full text
    ์˜๊ณผํ•™์‚ฌ์—…๋‹จ/์„์‚ฌ[ํ•œ๊ธ€] ๊ฐ์งˆํ˜•์„ฑ์„ธํฌ(keratinocyte)๋Š” ์™ธ๋ถ€๋กœ๋ถ€ํ„ฐ์˜ ๊ฐ์—ผ์ด๋‚˜ ์™ธ์ƒ์œผ๋กœ๋ถ€ํ„ฐ ์‹ ์ฒด๋ฅผ ๋ฐฉ์–ดํ•˜๋Š” ๋ฌผ๋ฆฌ์  ์žฅ๋ฒฝ์œผ๋กœ์„œ ๊ธฐ๋Šฅํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋‹ค์–‘ํ•œ ์‚ฌ์ดํ† ์นด์ธ(cytoki-/nes)์„ ์ƒ์‚ฐํ•˜๋Š” ๋“ฑ ํ”ผ๋ถ€ ๋ฉด์—ญ ๊ธฐ๋Šฅ์— ๋Šฅ๋™์ ์ธ ์—ญํ• ์„ ํ•œ๋‹ค. ๋ ˆํ‹ฐ๋…ธ์ด๋“œ(retinoids)๋Š” ๋น„ํƒ€๋ฏผ A์™€ ๊ทธ ์œ ๋„์ฒด๋กœ์„œ, ๊ฐ์งˆํ˜•์„ฑ์„ธํฌ์˜ ์ฆ์‹๊ณผ ๋ถ„ํ™” ์กฐ์ ˆ, ํ”ผ์ง€์„ ์˜ ํฌ๊ธฐ ๊ฐ์†Œ, ๋ฉด์—ญ ์กฐ์ ˆ ๋ฐ ํ•ญ์—ผ์ฆ ๊ธฐ๋Šฅ ๋“ฑ์ด ์žˆ์œผ๋‚˜, ์ข…์ข… ๋ ˆํ‹ฐ๋…ธ์ด๋“œ์˜ ๊ตญ์†Œ ๋„ํฌ๋กœ ์ธํ•ด ํ™๋ฐ˜์ด๋‚˜ ๊ฐ์งˆ์ธต ๋ฐ•๋ฆฌ ๋“ฑ์˜ ์—ผ์ฆ๋ฐ˜์‘์ด ์œ ๋ฐœ๋˜๊ธฐ๋„ ํ•œ๋‹ค. ํŠนํžˆ ์—ฌ๋“œ๋ฆ„์ด๋‚˜ ๊ด‘๋…ธํ™” ๋“ฑ์˜ ํ”ผ๋ถ€์งˆํ™˜ ์น˜๋ฃŒ์— ์‚ฌ์šฉ๋˜๋Š” ๋ ˆํ‹ฐ๋…ธ์ธ์‚ฐ(retinoic acid)์€ ๊ตญ์†Œ ๋„ํฌ์‹œ ์ž๊ทน์„ฑ ํ”ผ๋ถ€์—ผ์„ ์œ ๋ฐœํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๊ทธ ์‚ฌ์šฉ์— ์ œํ•œ์„ ๋ฐ›๊ณ  ์žˆ๋‹ค. ๋ณธ ์‹คํ—˜์—์„œ๋Š” ๋ ˆํ‹ฐ๋…ธ์ธ์‚ฐ ํˆฌ์—ฌ๋กœ ์ธํ•œ ์ž๊ทน์„ฑ ํ”ผ๋ถ€์—ผ ์œ ๋ฐœ์—๋„ ์‚ฌ์ดํ† ์นด์ธ ๋ฐœํ˜„์ด ์˜ํ–ฅ์„ ๋ฏธ์น  ๊ฒƒ์ด๋ผ๋Š” ๊ฐ€์„คํ•˜์—, ํ˜•์งˆ์ „ํ™˜๋œ ๊ฐ์งˆํ˜•์„ฑ์„ธํฌ์ฃผ์ธ HaCaT ์„ธํฌ์— 10-6M ๋ฐ 10-7M ๋ ˆํ‹ฐ๋…ธ์ธ์‚ฐ์„ ํˆฌ์—ฌํ•˜๊ณ  6, 12, 24์‹œ๊ฐ„๋™์•ˆ ๋ฐฐ์–‘ํ•œ ๋‹ค์Œ IL-1ฮฑ, TNF-ฮฑ, IL-8, MCP-1, IL-10 ๋“ฑ์˜ ์‚ฌ์ดํ† ์นด์ธ mRNA์˜ ๋ฐœํ˜„์„ ์‹ค์‹œ๊ฐ„ ์ •๋Ÿ‰ ์ค‘ํ•ฉํšจ์†Œ์—ฐ์‡„๋ฐ˜์‘(real time quantitative polymerase chain reaction)์„ ์ด์šฉํ•˜์—ฌ ์ธก์ •, ๋น„๊ตํ•˜์˜€๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ 10-6M ๋ ˆํ‹ฐ๋…ธ์ธ์‚ฐ์˜ ๊ฒฝ์šฐ ํˆฌ์—ฌ 6์‹œ๊ฐ„ ์ดํ›„ IL-8 mRNA์˜ ์ฆ๊ฐ€๋ฅผ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ, 12์‹œ๊ฐ„ ๊ฒฝ๊ณผ ํ›„์—๋Š” IL-1ฮฑ, TNF-ฮฑ, IL-8, MCP-1, IL-10 mRNA์˜ ๋ฐœํ˜„์ด ๋ชจ๋‘ ์ฆ๊ฐ€ํ•˜์˜€๋Š”๋ฐ, ํŠนํžˆ IL-8 mRNA ๋ฐœํ˜„์ด ํ˜„์ €ํžˆ ์ฆ๊ฐ€ํ•œ ๊ฒƒ์„ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. 24์‹œ๊ฐ„์ด ๊ฒฝ๊ณผํ–ˆ์„ ๋•Œ์—๋Š” IL-10 mRNA์˜ ๋ฐœํ˜„์€ ๋”์šฑ ์ฆ๊ฐ€ํ•œ ๋ฐ˜๋ฉด ๋‚˜๋จธ์ง€ ์‚ฌ์ดํ† ์นด์ธ mRNA์˜ ๋ฐœํ˜„์€ 12์‹œ๊ฐ„ ๊ฒฝ๊ณผ ํ›„์˜ ๋ฐœํ˜„์— ๋น„ํ•ด ๊ฐ์†Œํ•˜์˜€๋‹ค. 10-7M ๋ ˆํ‹ฐ๋…ธ์ธ์‚ฐ์˜ ๊ฒฝ์šฐ์—๋Š” ํˆฌ์—ฌ 12์‹œ๊ฐ„ ์ดํ›„๊นŒ์ง€๋Š” ๋ณ„๋‹ค๋ฅธ ๋ณ€ํ™”๋ฅผ ๋ณด์ด์ง€ ์•Š๋‹ค๊ฐ€ 24์‹œ๊ฐ„์ด ๊ฒฝ๊ณผํ–ˆ์„ ๋•Œ IL-1ฮฑ, TNF-ฮฑ, IL-8, MCP-1, IL-10 mRNA์˜ ๋ฐœํ˜„์ด ๋ชจ๋‘ ์ฆ๊ฐ€ํ•˜์˜€์œผ๋ฉฐ ๊ทธ ์ค‘์—์„œ๋„ ํŠนํžˆ TNF-ฮฑ์™€ IL-10 mRNA์˜ ๋ฐœํ˜„์ด ํ˜„์ €ํžˆ ์ฆ๊ฐ€ํ•˜์˜€์Œ์„ ๊ด€์ฐฐํ•˜์˜€๋‹ค. ๋ณธ ์‹คํ—˜์„ ํ†ตํ•ด์„œ, ๊ฐ์งˆํ˜•์„ฑ์„ธํฌ์ฃผ์ธ HaCaT ์„ธํฌ์— ๋ ˆํ‹ฐ๋…ธ์ธ์‚ฐ์„ ํˆฌ์—ฌํ•จ์œผ๋กœ์จ IL-1ฮฑ, TNF-ฮฑ, IL-8, MCP-1, IL-10 mRNA์˜ ๋ฐœํ˜„์ด ๋ชจ๋‘ ์ฆ๊ฐ€ํ•˜์˜€์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ๋ ˆํ‹ฐ๋…ธ์ธ์‚ฐ์— ์˜ํ•œ ์ž๊ทน์„ฑ ํ”ผ๋ถ€์—ผ ์œ ๋ฐœ์— ๊ฐ์งˆํ˜•์„ฑ์„ธํฌ๋กœ๋ถ€ํ„ฐ ์ƒ์„ฑ๋œ ์‚ฌ์ดํ† ์นด์ธ์ด ๊ด€์—ฌํ•˜๋ฆฌ๋ผ ์ƒ๊ฐ๋œ๋‹ค. [์˜๋ฌธ] Keratinocytes not only play a role in maintaining physical barrier function against infection and injury but also are actively involved in skin immune responses through production of various cytokines. Retinoids, vitamin A and its natural and synthetic derivatives, regulate the proliferation and differentiation of keratinocytes and have immuno-/modulatory properties. In addition, topical retinoic acid(RA) also has inhibitory effect on collagenase production from fibroblasts induced by ultraviolet lights. RA are used commonly for the treatment of skin diseases such as acne and photoaging, but the usage is restricted because RA frequently has induced irritant contact dermatitis./In this study, we hypothesized that irritant contact dermatitis induced by RA is closely related to production of cytokines from keratinocytes. We performed real time quantitative polymerase chain reaction to measure mRNA expression pattern of cytokines, IL-1ฮฑ, TNF-ฮฑ, IL-8, MCP-1, IL-10, after 6, 12, and 24 hours incubation of RA with concentration of 10-6M and 10-7M to transformed keratinocyte cell (HaCaT cell)./As a result, after 6 hours incubation of 10-6M RA, mRNA expression of IL-8 increased. After 12 hours incubation, all of tested cytokines, IL-1ฮฑ, TNF-ฮฑ, IL-8, MCP-1, IL-10, increased. Especially increase of IL-8 mRNA was remarkable. After 24 hours incubation, we observed that expression of IL-1ฮฑ, TNF-ฮฑ, IL-8, MCP-1 mRNA decreased than the expression of cytokines after 12 hours incubation, but the expression of IL-10 mRNA was continuously in high level. In the case of 10-7M RA, there was no particular change up to after 12 hours incubation. After 24 hours incubation, however, mRNA expression of cytokines, IL-1ฮฑ, TNF-ฮฑ, IL-8, MCP-1, IL-10 increased. Particularly, mRNA expression of TNF-ฮฑ and IL-10 remarkably increased after 24 hours incubation of RA. In conclusion, RA induced mRNA expression of IL-1ฮฑ, TNF-ฮฑ, IL-8, MCP-1, IL-10 in HaCaT cells. Therefore cytokines induced by RA from keratinocytes may play a role in induction of irritant contact dermatitis.ope

    The Effects of Negative Interpretation of Positive Evaluation and Savoring on Social Anxiety

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‹ฌ๋ฆฌํ•™๊ณผ, 2015. 2. ์ดํ›ˆ์ง„.๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ๊ธ์ • ํ‰๊ฐ€์— ๋Œ€ํ•œ ๋ถ€์ •์  ํ•ด์„์ด ์‚ฌํšŒ๋ถˆ์•ˆ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํ™•์ธํ•˜๊ณ  ๊ธ์ • ํ‰๊ฐ€์— ๋Œ€ํ•œ ๋ถ€์ •์  ํ•ด์„๊ณผ ์‚ฌํšŒ๋ถˆ์•ˆ์˜ ๊ด€๊ณ„์—์„œ ํ–ฅ์œ ํ•˜๊ธฐ์˜ ์—ญํ• ์„ ๋ฐํžˆ๋Š” ๊ฒƒ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ธฐ์กด์— ๊ฐœ๋ณ„์ ์œผ๋กœ ์—ฐ๊ตฌ๋˜์–ด ์˜จ ๊ธ์ • ํ‰๊ฐ€์— ๋Œ€ํ•œ ๋ถ€์ •์  ํ•ด์„์˜ ์„ธ ์ธก๋ฉด(๋†’์•„์ง„ ๊ธฐ๋Œ€๋ฅผ ์ถฉ์กฑ์‹œํ‚ค์ง€ ๋ชปํ•  ๊ฒƒ์ด๋ผ๋Š” ํ•ด์„, ์ƒ๋Œ€๋ฐฉ์ด ํ˜ธ์˜์ ์œผ๋กœ ํ‰๊ฐ€ํ•œ ๊ฒƒ์ด๋ผ๋Š” ํ•ด์„, ์ƒ๋Œ€๋ฐฉ์˜ ์ง„์ •์„ฑ์„ ์˜์‹ฌํ•˜๋Š” ํ•ด์„)์„ ํ†ตํ•ฉํ•˜์—ฌ ๊ทธ ์ฐจ๋ณ„์  ์˜ํ–ฅ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ 1์—์„œ๋Š” ๋Œ€ํ•™์ƒ 190๋ช…์„ ๋Œ€์ƒ์œผ๋กœ ๊ธ์ • ํ‰๊ฐ€์— ๋Œ€ํ•œ ๋ถ€์ •์  ํ•ด์„์˜ ๊ฐ ์ธก๋ฉด์ด ์‚ฌํšŒ๋ถˆ์•ˆ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํ™•์ธํ•˜๊ณ , ์šฐ์šธ ๋ฐ ํŽธ์ง‘ ์„ฑํ–ฅ๊ณผ๋Š” ์–ด๋– ํ•œ ์ฐจ๋ณ„์ ์ธ ์—ฐ๊ด€์„ฑ์„ ๊ฐ–๋Š”์ง€ ํƒ์ƒ‰ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ๊ธ์ • ํ‰๊ฐ€์— ๋Œ€ํ•œ ๋ถ€์ •์  ํ•ด์„ ์ค‘ ๋‘ ์ธก๋ฉด(๋†’์•„์ง„ ๊ธฐ๋Œ€๋ฅผ ์ถฉ์กฑ์‹œํ‚ค์ง€ ๋ชปํ•  ๊ฒƒ์ด๋ผ๋Š” ํ•ด์„, ์ƒ๋Œ€๋ฐฉ์ด ํ˜ธ์˜์ ์œผ๋กœ ํ‰๊ฐ€ํ•œ ๊ฒƒ์ด๋ผ๋Š” ํ•ด์„)์ด ์‚ฌํšŒ๋ถˆ์•ˆ์„ ์œ ์˜๋ฏธํ•˜๊ฒŒ ์„ค๋ช…ํ•˜์˜€๋‹ค. ํ•œํŽธ ์ƒ๋Œ€๋ฐฉ์˜ ์ง„์ •์„ฑ์„ ์˜์‹ฌํ•˜๋Š” ํ•ด์„์€ ํŽธ์ง‘ ์„ฑํ–ฅ๊ณผ ๋” ์—ฐ๊ด€์„ฑ์ด ์žˆ์Œ์ด ํ™•์ธ๋˜์—ˆ๋‹ค. ๋ถ€์ •์  ํ‰๊ฐ€์— ๋Œ€ํ•œ ๋‘๋ ค์›€๊ณผ ์šฐ์šธ์˜ ์˜ํ–ฅ์„ ํ†ต์ œํ•œ ํ›„์—๋Š” ์ƒ๋Œ€๋ฐฉ์ด ํ˜ธ์˜์ ์œผ๋กœ ํ‰๊ฐ€ํ•œ ๊ฒƒ์ด๋ผ๊ณ  ํ•ด์„ํ•˜๋Š” ์ธก๋ฉด์ด ์‚ฌํšŒ๋ถˆ์•ˆ์„ ์œ ์˜๋ฏธํ•˜๊ฒŒ ์„ค๋ช…ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํ–ฅ์œ ํ•˜๊ธฐ์™€ ๊ฐ€๋ผ์•‰ํžˆ๊ธฐ๋Š” ๊ฐ๊ฐ ์‚ฌํšŒ๋ถˆ์•ˆ๊ณผ ๋ถ€์ , ์ •์  ์ƒ๊ด€์„ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ๊ธ์ • ํ‰๊ฐ€์— ๋Œ€ํ•œ ๋ถ€์ •์  ํ•ด์„๊ณผ ์‚ฌํšŒ๋ถˆ์•ˆ์˜ ๊ด€๊ณ„์—์„œ ๊ธ์ • ์ •์„œ์กฐ์ ˆ์˜ ๋งค๊ฐœํšจ๊ณผ๋ฅผ ์•Œ์•„๋ณธ ๊ฒฐ๊ณผ, ๋†’์•„์ง„ ๊ธฐ๋Œ€๋ฅผ ์ถฉ์กฑ์‹œํ‚ค์ง€ ๋ชปํ•  ๊ฒƒ์ด๋ผ๋Š” ํ•ด์„๊ณผ ์‚ฌํšŒ๋ถˆ์•ˆ์˜ ๊ด€๊ณ„์—์„œ ๋ถ€๋ถ„๋งค๊ฐœํšจ๊ณผ ๊ฒฝํ–ฅ์ด ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ์—ฐ๊ตฌ 2์—์„œ๋Š” ํ–ฅ์œ ํ•˜๊ธฐ ์ฒ˜์น˜๊ฐ€ ์‚ฌํšŒ๋ถˆ์•ˆ ๋ฐ ๊ธ์ • ํ‰๊ฐ€์— ๋Œ€ํ•œ ๋ถ€์ •์  ํ•ด์„์— ์–ด๋– ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€ ํ™•์ธํ•˜์˜€๋‹ค. 1์ฃผ์ผ ๊ฐ„์˜ ์—ฐ์Šต์„ ์ˆ˜ํ–‰ํ•œ 30๋ช…์„ ๋Œ€์ƒ์œผ๋กœ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ์ฒ˜์น˜ ์ „๋ณด๋‹ค ํ›„์— ์‚ฌํšŒ๋ถˆ์•ˆ๊ณผ ๊ธ์ • ํ‰๊ฐ€์— ๋Œ€ํ•œ ๋ถ€์ •์  ํ•ด์„์ด ๊ฐ์†Œํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์‚ฌํšŒ๋ถˆ์•ˆ์—์„œ ๊ธ์ • ํ‰๊ฐ€์— ๋Œ€ํ•œ ๋ถ€์ •์  ํ•ด์„๊ณผ ํ–ฅ์œ ํ•˜๊ธฐ์˜ ์—ญํ• ์„ ๊ฒฝํ—˜์ ์œผ๋กœ ๋ฐํ˜”๊ณ , ํ–ฅ์œ ํ•˜๊ธฐ์— ์ดˆ์ ์„ ๋‘” ์น˜๋ฃŒ ๊ฐ€๋Šฅ์„ฑ์„ ์‹œ์‚ฌํ–ˆ๋‹ค๋Š” ์ ์—์„œ ์ž„์ƒ์  ํ•จ์˜๊ฐ€ ์žˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋ณธ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ์˜ ์˜์˜, ํ•œ๊ณ„ ๋ฐ ํ›„์† ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•œ ์ œ์–ธ์„ ๋…ผ์˜ํ•˜์˜€๋‹ค.๋ชฉ ์ฐจ ๊ตญ๋ฌธ์ดˆ๋ก โ…ฐ ์„œ ๋ก  1 ์‚ฌํšŒ๋ถˆ์•ˆ์˜ ์ธ์ง€๋ชจํ˜• 2 ๊ธ์ • ํ‰๊ฐ€์— ๋Œ€ํ•œ ๋ถ€์ •์  ํ•ด์„๊ณผ ์‚ฌํšŒ๋ถˆ์•ˆ 4 ๊ธ์ •์ •์„œ ์กฐ์ ˆ๊ณผ ์‚ฌํšŒ๋ถˆ์•ˆ 8 ๋ฌธ์ œ ์ œ๊ธฐ ๋ฐ ์—ฐ๊ตฌ ๋ชฉ์  15 ์—ฐ๊ตฌ 1. ๊ธ์ • ํ‰๊ฐ€์— ๋Œ€ํ•œ ๋ถ€์ •์  ํ•ด์„๊ณผ ๊ธ์ • ์ •์„œ์กฐ์ ˆ์ด ์‚ฌํšŒ๋ถˆ์•ˆ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ 19 ๋ฐฉ๋ฒ• 21 ๊ฒฐ๊ณผ 26 ๋…ผ์˜ 35 ์—ฐ๊ตฌ 2. ํ–ฅ์œ ํ•˜๊ธฐ ์—ฐ์Šต์ด ์‚ฌํšŒ๋ถˆ์•ˆ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ 39 ๋ฐฉ๋ฒ• 42 ๊ฒฐ๊ณผ 47 ๋…ผ์˜ 52 ์ข…ํ•ฉ๋…ผ์˜ 55 ์ฐธ๊ณ ๋ฌธํ—Œ 60 ๋ถ€ ๋ก 72 ์˜๋ฌธ์ดˆ๋ก 97Maste
    • โ€ฆ
    corecore