228 research outputs found

    ์ˆ˜์ง์ถ• ํ’๋ ฅ๋ฐœ์ „๊ธฐ ์ฃผ์œ„ ์œ ๋™์— ๋Œ€ํ•œ ์‹คํ—˜์  ์—ฐ๊ตฌ ๋ฐ ๋Œ๊ธฐ๋ฅผ ์ด์šฉํ•œ ์œ ๋™ ์ œ์–ด

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€(๋ฉ€ํ‹ฐ์Šค์ผ€์ผ ๊ธฐ๊ณ„์„ค๊ณ„์ „๊ณต), 2019. 2. ์ตœํ•ด์ฒœ.In the present study, an experimental study was conducted to investigate the unsteady flow characteristics of the flow around the vertical axis wind turbine and to improve the aerodynamic performance of the vertical axis wind turbine by using tubercles. The experiments were conducted at operating condition where Re = 120,000 based on rotor diameter and rotating speed was 300 โ€“ 1,100 rpm. The performance factor, the power coefficient which indicates a measure of the relative kinetic energy extracted from the flow, was measured by a rotary torque transducer and the velocity field was obtained by using a phase-averaged particle image velocimetry. As the rotor rotates, the dynamic stall occurs at the blade leading edge of the suction surface. We suggested the tubercles to control dynamic stall. By using tubercles to leading edge of the suction surface, the stall delayed, which improve the aerodynamic performance of the rotor.๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ˆ˜์ง์ถ• ํ’๋ ฅ๋ฐœ์ „๊ธฐ ์ฃผ์œ„ ์œ ๋™์˜ ๋น„์ •์ƒ ์œ ๋™ ํŠน์„ฑ์„ ์•Œ์•„๋ณด๊ณ , ์ด๋ฅผ ์ œ์–ดํ•จ์œผ๋กœ์จ ์ˆ˜์ง์ถ• ํ’๋ ฅ๋ฐœ์ „๊ธฐ์˜ ๊ณต๋ ฅ์„ฑ๋Šฅ์„ ๋†’์ด๊ณ ์ž ์‹คํ—˜์  ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์‹คํ—˜์€ ์ฃผ ์œ ๋™ ์†๋„์™€ ํšŒ์ „ ์ง๊ฒฝ์— ๊ธฐ์ดˆํ•œ ๋ ˆ์ด๋†€์ฆˆ ์ˆ˜ 120,000์—์„œ ์ˆ˜ํ–‰ํ•˜์˜€์œผ๋ฉฐ, ์šด์ „ ์กฐ๊ฑด์ธ 300 โ€“ 1100 rpm์—์„œ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ˆ˜์ง์ถ• ํ’๋ ฅ๋ฐœ์ „๊ธฐ์˜ ์„ฑ๋Šฅ ๊ณ„์ˆ˜๋Š” ํšŒ์ „์‹ ํ† ํฌ ๋ณ€ํ™˜๊ธฐ๋ฅผ ํ†ตํ•ด ์ธก์ •ํ•˜์—ฌ ์ฃผ์†๋น„์— ๋”ฐ๋ฅธ ์ˆ˜์ง์ถ• ํ’๋ ฅ๋ฐœ์ „๊ธฐ์˜ ์„ฑ๋Šฅ๊ณ„์ˆ˜ ๋ณ€ํ™”๋ฅผ ๊ฒ€์ฆํ•˜์˜€์œผ๋ฉฐ, ์œ„์ƒํ‰๊ท  ์˜์ƒ์ž…์ž์œ ์†๊ณ„ (Phase-averaged PIV)๋ฅผ ์ด์šฉํ•˜์—ฌ ์†๋„์žฅ์„ ์ธก์ •ํ•˜์˜€๋‹ค. ๋ฐœ์ „๊ธฐ๊ฐ€ ํšŒ์ „ํ•จ์— ๋”ฐ๋ผ ๋‚ ๊ฐœ์˜ ๋ฐ›์Œ๊ฐ์ด ์ฆ๊ฐ€ํ•˜์—ฌ ๋‚ ๊ฐœ ์ฃผ๋ณ€์—์„œ ์œ ๋™๋ฐ•๋ฆฌ์™€ ์™€๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ•˜๊ณ , ๋‚ ๊ฐœ ์ „๋‹จ ํก์ž…๋ฉด์—์„œ ๋™์  ์‹ค์†์ด ๋ฐœ์ƒํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋™์  ์‹ค์†์„ ์ œ์–ดํ•จ์œผ๋กœ์จ ํšŒ์ „์ต์˜ ๊ณต๋ ฅ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋‚ ๊ฐœ ์ „๋‹จ ํก์ž…๋ฉด์— ๋Œ๊ธฐ ํ˜•์ƒ์˜ ์œ ๋™์ œ์–ด์žฅ์น˜๋ฅผ ์ ์šฉํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ๋Œ๊ธฐ ํ˜•์ƒ์˜ ์œ ๋™์ œ์–ด์žฅ์น˜๊ฐ€ ์œ ์† ๋ฐฉํ–ฅ ์™€๋ฅ˜๊ฐ€ ํ•˜๊ฐ•์šด๋™์„ ์œ ๋„ํ•˜์—ฌ ๋™์  ์‹ค์† ๋ฐœ์ƒ์„ ์ง€์—ฐ์‹œํ‚ด์œผ๋กœ์จ, ํšŒ์ „์ต์˜ ๊ณต๋ ฅ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค.Abstract Contents List of Figures Nomenclature Chapter 1. Introduction 2. Experimental Set-up 2.1. VAWT model geometry 2.2. Parameters of tubercles 2.3. Torque measurements 2.4. Particle image velocimetry 3. Flow Characteristics 3.1. Aerodynamic performance of VAWT 3.2. PIV measurements 4. Flow Control 4.1. Control ideas 4.2. Aerodynamic performance of VAWT with tubercles 4.3. PIV measurements 5. Summary and Conclusions ReferncesMaste

    Kinetic study of upgrading extra heavy oil using supercritical methanol

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2018. 8. ์ด์œค์šฐ.์ด‰๋งค์˜ ์ „๊ตฌ์ฒด๋กœ์„œ ์งˆ์‚ฐ ์•„์—ฐ ์œ ๋ฌด์— ๋”ฐ๋ผ ์ดˆ์ž„๊ณ„ ๋ฉ”ํƒ„์˜ฌ ๋‚ด์—์„œ์˜ ์ดˆ์ค‘์งˆ์œ  ๊ณ ๋„ํ™” ๋ฐ˜์‘์†๋„๋ก ์„ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ๊ณ ๋„ํ™” ๋ฐ˜์‘์€ ํšŒ๋ถ„์‹ ๋ฐ˜์‘๊ธฐ์—์„œ 380์™€ 400, 420 โ„ƒ์—์„œ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๋ฐ˜์‘์†๋„ ์ƒ์ˆ˜๋Š” four-lumped kinetic model์„ ๊ทผ๊ฑฐ๋กœ ํ•˜์—ฌ ๊ณ„์‚ฐํ•˜์˜€๊ณ , ์ด๋ฅผ ์•„๋ ˆ๋‹ˆ์šฐ์Šค ์‹์— ๋Œ€์ž…ํ•˜์—ฌ ๊ฐ ๋ฐ˜์‘ ๊ฒฝ๋กœ์—์„œ์˜ ํ™œ์„ฑํ™” ์—๋„ˆ์ง€์™€ ๋นˆ๋„ ์ธ์ž๋ฅผ ๊ตฌํ•˜์˜€๋‹ค. ์ „๊ตฌ์ฒด๊ฐ€ ์กด์žฌํ•˜๋Š” ์กฐ๊ฑด์—์„œ ์•„์ŠคํŒ”ํ…์œผ๋กœ๋ถ€ํ„ฐ ๊ธฐ์ฒด๊ฐ€ ์ƒ์„ฑ๋˜๋Š” ๋ฐ˜์‘ ๊ฒฝ๋กœ์˜ ํ™œ์„ฑํ™” ์—๋„ˆ์ง€๊ฐ€ ํฌ๊ฒŒ ๊ฐ์†Œํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ตฌํ•œ ๋ฐ˜์‘์†๋„ ์ƒ์ˆ˜๋กœ๋ถ€ํ„ฐ 380์™€ 400, 420 โ„ƒ์—์„œ ์›๋ฃŒ์˜ ์•„์ŠคํŒ”ํ… ํ•จ๋Ÿ‰์ด 1.00%์— ๋„๋‹ฌํ•  ๋•Œ์˜ ๋งํ…๊ณผ ์ฝ”ํฌ, ๊ธฐ์ฒด์˜ ํ•จ๋Ÿ‰๊ณผ ๋ฐ˜์‘ ์‹œ๊ฐ„์„ ๊ตฌํ•˜์˜€๋‹ค. ์ „๊ตฌ์ฒด๊ฐ€ ์กด์žฌํ•˜์ง€ ์•Š๋Š” ์กฐ๊ฑด์—์„œ ์ดˆ์ค‘์งˆ์œ  ๊ณ ๋„ํ™” ๋ฐ˜์‘์„ ์ง„ํ–‰ํ•˜์˜€์„ ๋•Œ ๋†’์€ ๋ฐ˜์‘ ์˜จ๋„์—์„œ ์ฝ”ํฌ์˜ ์ƒ์„ฑ์ด ์–ต์ œ๋˜๊ณ  ๊ธฐ์ฒด์˜ ํ•จ๋Ÿ‰์ด ์ฆ๊ฐ€ํ•˜์˜€์œผ๋‚˜, ์ „๊ตฌ์ฒด๊ฐ€ ์กด์žฌํ•˜๋Š” ์กฐ๊ฑด์—์„œ๋Š” ๊ณ ๋„ํ™” ๋ฐ˜์‘ ์˜จ๋„๊ฐ€ ๋‚ฎ์„ ๋•Œ ์ฝ”ํฌ ์ƒ์„ฑ์ด ์–ต์ œ๋˜๊ณ  ๊ธฐ์ฒด์˜ ํ•จ๋Ÿ‰์ด ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ์ดˆ์ž„๊ณ„ ๋ฉ”ํƒ„์˜ฌ ๋‚ด์—์„œ ๊ณ ๋„ํ™” ๋ฐ˜์‘๊ณผ ๋™์‹œ์— ํ•ฉ์„ฑ๋œ ์•„์—ฐ ์‚ฐํ™”๋ฌผ์˜ ์ผ์ฐจ ์ž…์ž๋Š” ๊ตฌํ˜•์— ๊ฐ€๊นŒ์šด ํ˜•ํƒœ์ด๋ฉฐ ๋ญ‰์ณ์žˆ๋Š” ๊ฒƒ์„ FESEM๊ณผ XRD์— ์˜ํ•ด ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ ์ „๊ตฌ์ฒด์ธ ์งˆ์‚ฐ ์•„์—ฐ ์ž…์ž์™€ ์ดˆ์ค‘์งˆ์œ  ๊ณ ๋„ํ™” ๋ฐ˜์‘ ์ดˆ๊ธฐ์˜ ์•„์—ฐ ์‚ฐํ™”๋ฌผ ์ž…์ž, ๊ณ ๋„ํ™” ๋ฐ˜์‘์ด ์–ด๋Š์ •๋„ ์ง„ํ–‰๋œ ์ž…์ž์˜ ํฌ๊ธฐ๋ฅผ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ ๋ฐ˜์‘์ด ์ง„ํ–‰๋จ์— ๋”ฐ๋ผ 10 ฮผm ์ด์ƒ์˜ ํฌ๊ธฐ๋ฅผ ๊ฐ€์ง€๋Š” ๋น„์œจ์ด ์ฆ๊ฐ€ํ•˜๊ณ  10 ฮผm ์ดํ•˜์˜ ๋น„์œจ์€ ๊ฐ์†Œํ•˜๋Š” ๊ฒƒ์„ laser particle sizer๋ฅผ ํ†ตํ•ด ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.๋ชฉ ์ฐจ ์ œ 1 ์žฅ ์„œ ๋ก  1 ์ œ 1 ์ ˆ ์„์œ  1 ์ œ 2 ์ ˆ ์ดˆ์ž„๊ณ„ ์œ ์ฒด 4 ์ œ 3 ์ ˆ ์—ฐ๊ตฌ์˜ ๋ชฉ์  5 ์ œ 2 ์žฅ ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• 8 ์ œ 1 ์ ˆ ์›๋ฃŒ 8 ์ œ 2 ์ ˆ ์ดˆ์ค‘์งˆ์œ  ๊ณ ๋„ํ™” ๋ฐ˜์‘ 9 ์ œ 3 ์ ˆ lump ๋ถ„์„ 15 ์ œ 4 ์ ˆ ๋ฐ˜์‘์†๋„ ์‹ 16 ์ œ 3 ์žฅ ๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ 19 ์ œ 1 ์ ˆ ์ดˆ์ค‘์งˆ์œ  ๋‚ด์˜ lump ํ•จ๋Ÿ‰ 19 ์ œ 2 ์ ˆ ์ดˆ์ž„๊ณ„ ๋ฉ”ํƒ„์˜ฌ ๋‚ด์—์„œ ์ดˆ์ค‘์งˆ์œ  ๊ณ ๋„ํ™” ๋ฐ˜์‘ 20 ์ œ 3 ์ ˆ ๋ฐ˜์‘์†๋„ 24 ์ œ 4 ์ ˆ ์ดˆ์ค‘์งˆ์œ  ๊ณ ๋„ํ™”์˜ ์ด๋ก ์  ๊ณ„์‚ฐ 28 ์ œ 5 ์ ˆ ์ž…์ž ๋ถ„์„ 32 ์ œ 4 ์žฅ ๊ฒฐ ๋ก  37 ์ฐธ๊ณ ๋ฌธํ—Œ 39 Abstract 41 ํ‘œ ๋ชฉ์ฐจ ํ‘œ 1. ๋ฐ˜์‘ ์‹œ๊ฐ„ 14 ํ‘œ 2. Four-lumped kinetic model์—์„œ์˜ ๋ฐ˜์‘์†๋„ ์ƒ์ˆ˜์™€ ํ™œ์„ฑํ™” ์—๋„ˆ์ง€, ๋นˆ๋„ ์ธ์ž 26 ํ‘œ 3. ์•„์ŠคํŒ”ํ… ํ•จ๋Ÿ‰์ด 1.00%์— ๋„๋‹ฌํ•  ๋•Œ์˜ ์˜จ๋„์— ๋”ฐ๋ฅธ lumps์˜ ํ•จ๋Ÿ‰๊ณผ ์„ ํƒ๋„ ๋ฐ ๋ฐ˜์‘ ์‹œ๊ฐ„ 30 ๊ทธ๋ฆผ ๋ชฉ์ฐจ ๊ทธ๋ฆผ 1. Typical asphaltene molecule 6 ๊ทธ๋ฆผ 2. ์ดˆ์ž„๊ณ„ ์œ ์ฒด์˜ ์ƒํ‰ํ˜•๋„ 7 ๊ทธ๋ฆผ 3. 22-mL SUS 316 ํšŒ๋ถ„์‹ ๋ฐ˜์‘๊ธฐ 12 ๊ทธ๋ฆผ 4. ์šฉ์œต ์—ผ์กฐ 13 ๊ทธ๋ฆผ 5. Four-lumped kinetic model 17 ๊ทธ๋ฆผ 6. ์ „๊ตฌ์ฒด๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š์€ ์กฐ๊ฑด์—์„œ์˜ (a) ๋งํ…๊ณผ (b) ์•„์ŠคํŒ”ํ…, (c) ์ฝ”ํฌ ํ•จ๋Ÿ‰ 22 ๊ทธ๋ฆผ 7. ์ „๊ตฌ์ฒด๋ฅผ ์‚ฌ์šฉํ•œ ์กฐ๊ฑด์—์„œ์˜ (a) ๋งํ…๊ณผ (b) ์•„์ŠคํŒ”ํ…, (c) ์ฝ”ํฌ ํ•จ๋Ÿ‰ 23 ๊ทธ๋ฆผ 8. Parity plot 27 ๊ทธ๋ฆผ 9. ์ „๊ตฌ์ฒด ์œ ๋ฌด์— ๋”ฐ๋ฅธ ์˜จ๋„ ๋ณ„ ์„ ํƒ๋„ 31 ๊ทธ๋ฆผ 10. FESEM images of zinc oxide particles 34 ๊ทธ๋ฆผ 11. XRD patterns of zinc oxide particles synthesized simultaneously using supercritical methanol 35 ๊ทธ๋ฆผ 12. Particle size distributions of (a) zinc nitrate hexahydrate, (b) zinc oxide from the reaction condtion of 380 โ„ƒ for 0 min, (c) zinc oxide from the reaction condition of 420 โ„ƒ for 10 min, and (d) prepared zinc oxide 36Maste

    WIM data๋ฅผ ์ด์šฉํ•œ ์žฅ๊ฒฝ๊ฐ„๊ต๋Ÿ‰ ์ฐจ๋Ÿ‰ํ™œํ•˜์ค‘ ํ™•๋ฅ ๋ชจํ˜• ์ถ”์ •

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ฑด์„คํ™˜๊ฒฝ๊ณตํ•™๋ถ€, 2015. 2. ์ดํ•ด์„ฑ.์ด ์—ฐ๊ตฌ์—์„œ๋Š” ๊ตญ๋‚ด์˜ ๊ตํ†ตํŠน์„ฑ์„ ๋ฐ˜์˜ํ•œ ์žฅ๊ฒฝ๊ฐ„ ์ฐจ๋Ÿ‰ํ™œํ•˜์ค‘์˜ ํ™•๋ฅ ๋ชจํ˜•์„ ์ถ”์ •ํ•˜์˜€๋‹ค. ๊ธฐ์กด์˜ ์žฅ๊ฒฝ๊ฐ„ ์ฐจ๋Ÿ‰ํ™œํ•˜์ค‘ ๋ชจํ˜•์€ ์‹ค์ œ ๊ตํ†ต์ƒํ™ฉ์—์„œ ๋‚ฎ์€ ํ™•๋ฅ ๋กœ ๋ฐœ์ƒํ•˜๋Š” ์ •์ฒดํ˜„์ƒ์„ ์ด๋ฏธ ๋ฐœ์ƒํ•œ ๊ฒƒ์œผ๋กœ ๊ฐ€์ •ํ•˜๊ณ  ์žˆ๋‹ค. ์ด ๊ฐ€์ •์€ ๋ณด์ˆ˜์ ์ธ ์„ค๊ณ„๋ฅผ ์œ ๋ฐœํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์‹ค์ œ์˜ ๊ตํ†ตํŠน์„ฑ์„ ๊ณ ๋ คํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ตœ๊ทผ ๊ณ„์ธกํ•œ ๊ตญ๋‚ด 6๊ฐœ ์ง€์—ญ์˜ ํ†ตํ–‰์ž๋ฃŒ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ฃผํ–‰์ƒํ™ฉ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ์„ค๊ณ„์ˆ˜๋ช…๋™์•ˆ์˜ ์ตœ๋Œ€ํ•˜์ค‘์„ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•ด Cramer์˜ ์ ๊ทผ์  ํ•ด๋ฅผ ์ด์šฉํ•œ ํ†ต๊ณ„์  ์™ธ์‚ฝ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ๊ธฐ์กด ๋ฐฉ๋ฒ•๊ณผ ๋น„๊ตํ•˜์˜€๋‹ค. ๋˜ํ•œ ์žฅ๊ฒฝ๊ฐ„ ํ•˜์ค‘๋ชจํ˜•์— ์ ํ•ฉํ•œ ๋‹ค์ฐจ๋กœ์žฌํ•˜๊ณ„์ˆ˜๋ฅผ ์‚ฐ์ •ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋Œ€ํ‘œ์ฐจ๋กœํ•˜์ค‘์„ ๊ตฌํ•˜๊ณ  ์ด๊ฒƒ์„ ๊ฐ€์ƒ์œผ๋กœ ๋™์‹œ์ฃผํ–‰์‹œ์ผœ ๋‹ค์ฐจ๋กœ์žฌํ•˜๊ณ„์ˆ˜๋ฅผ ์‚ฐ์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ตœ๊ทผ ๊ณ„์ธกํ•œ WIM data์˜ ์ฃผํ–‰์ƒํ™ฉ ๋ถ„์„์„ ํ†ตํ•ด ํ™ฉ์˜์Šน(2012)์ด ์ œ์•ˆํ•œ ์žฅ๊ฒฝ๊ฐ„ ํ™œํ•˜์ค‘ ๋ชจํ˜•์˜ ํ†ต๊ณ„ํŠน์„ฑ์„ ์ถ”์ •ํ•˜์˜€๋‹ค. ๋ถ„์„๊ฒฐ๊ณผ ๊ธธ์ด์— ๋”ฐ๋ฅธ ์ฐจ๋กœํ•˜์ค‘์˜ ๊ฐ์†Œ์œจ์ด ๊ธฐ์กด ํ•˜์ค‘๋ชจํ˜•๋ณด๋‹ค ๊ธ‰๊ฒฉํ•˜๊ฒŒ ํ‰๊ฐ€๋ผ ๊ธธ์ด์— ๋”ฐ๋ฅธ ํŽธ์‹ฌ๊ณ„์ˆ˜๊ฐ€ ๊ท ์ผํ•˜์ง€ ์•Š์•˜๊ณ , ์ง€์—ญ์ ์— ๋”ฐ๋ฅธ ์ฐจ์ด ์—ญ์‹œ ๋‘๋“œ๋Ÿฌ์ง€๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋ฅผ ๋ฐ˜์˜ํ•˜์—ฌ ์ƒˆ๋กœ์šด ์ฐจ๋กœํ•˜์ค‘ ํ™•๋ฅ ๋ชจํ˜•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ํ•˜์ค‘ ํฌ๊ธฐ์— ๋”ฐ๋ผ ์ผ๋ฐ˜ํ†ตํ–‰(Normal traffic)๊ณผ ๊ณผ์ค‘ํ†ตํ–‰์ง€์—ญ(Heavy traffic)์œผ๋กœ ๊ตฌ๋ถ„ํ•˜์˜€๊ณ , ์˜ํ–ฅ์„  ๊ธธ์ด์— ๋”ฐ๋ฅธ ๋ชจํ˜•๊ณผ ๊ฒฝ๊ฐ„ ๊ธธ์ด์— ๋”ฐ๋ฅธ ๋ชจํ˜•์„ ํ•จ๊ป˜ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ํ•˜์ค‘๋ชจํ˜•์˜ ํ†ต๊ณ„ํŠน์„ฑ์„ ํ•จ๊ป˜ ์ œ์‹œํ•˜์˜€๋‹ค.In this paper the statistical model of the vehicular live load on long span bridges reflecting Korean traffic pattern was identified. Traffic jams, which are assumed for live load model on long span bridges, do not always occur in reality. The assumption may lead to excessive conservatism. To reflect actual traffic patterns, driving situations other than traffic jams were investigated using recently measured traffic data from six different sites in Korea. An extrapolation method using Cramers asymptotic solution was proposed to estimate maximum load distribution. A method developing multiple presence factors appropriate for long span bridges was discussed. The statistical characteristics of live the load model (Hwang, 2012) was estimated. Bias factor was not uniform according to influence length due to different decreasing rate of load. Site-to-site variability also needed to be considered. A new live load model for long span bridges incorporating the decreasing rates and site-to-site variability was proposed. The lane load was classified into two groups: normal and heavy traffic sites. Load models for influence line length and span length were proposed respectively. The statistical characteristics of the proposed load model and load effects were identified.Abstract i Contents ii List of Figures v List of Tables vii 1. Introduction 1 1.1 Background 1 1.2 Objectives 4 1.3 Organization of the thesis 4 2. Basic Statistics for Statistical Model Identification 6 2.1 Basic Theory of Statistics 6 2.1.1 Random Variables 6 2.2 Probability Distribution of Extremes 8 2.2.1 Exact Distribution 9 2.2.2 Asymptotic Distribution 11 2.2.3 The Three Asymptotic Forms 14 2.3 Probability Paper 17 2.3.1 Empircal CDF 18 2.3.2 Normal Probability Paper 18 2.3.3 Gumbel Probability Paper 20 3. International Design Live Load Model 22 3.1 KBDC โ€“ LSD(2012) 23 3.2 DGCSB (2006) 25 3.3 AASHTO LRFD (2012) 27 3.4 ASCE Loading (1981) 28 4. Drive Analysis 30 4.1 Introduction 30 4.2 Weight-In-Motion data 33 4.2.1 WIM locations 33 4.2.2 Data Scrubbing 34 4.2.3 Data generation 35 4.2.4 Statistics of collected data 37 4.3 Drive Analysis 40 4.3.1 Method 40 4.3.2 Results 41 4.4 Multiple Presence Factor 43 4.4.1 Method 43 4.4.2 Proposal of multiple presence factor for bridges with long spans 44 5. Statistical Model of Live Load for Long span Bridges 46 5.1 Estimation of the Maximum Load 47 5.1.1 Estimation by return period load 47 5.1.2 Estimation by maximum load distribution 51 5.1.3 Estimation using Cramers asymptotic solution 54 5.2 Statistical Characteristics of Vehicular Live Load 59 5.2.1 Design live load model 59 5.2.2 Bias factor of the design lane load model 60 5.3 Proposal of New Lane Load Model 65 5.3.1 Lane load model 65 5.3.2 Statistical characteristics of live load for long spans 70 5.4 Summary 73 6. Conclusions 75 References 77 ์ดˆ ๋ก 81Maste

    A Study on the Activation of Ship Financing to Reinforce the Competitiveness of the Shipping Companies in Korea

    Get PDF
    Korean domestic shipping companies are slowly recovering from the worst crisis in history. In addition to the adverse effects from the global financial crisis and sharp drop in cargo volume/freight level, shipping companies have struggled in 2009. But business is expected to turnaround this year. As the global economy gradually stabilized, it provides a window of opportunity which gives our companies the chance to regain global competitiveness. However, it is concerned that the domestic companies, unlike foreign companies, will miss out on a great opportunity. While foreign shipping companies have been actively expanding fleet with the help of government-backed rescue packages, domestic companies are lack of government support measures and are being held back by regulatory constraints such as 200% debt-ratio restriction, in particular. Despite signs of recovery in the shipping industry, domestic shipping companies are unable to take aggressive steps since governments put more weight on the restructuring and regulations. It is pointed out that the government supports as much as companiesโ€™ own efforts are desperately needed in the industry. According to Lloydโ€™s List, a leading daily newspaper for the maritime industry, foreign shipping companies that had been badly hurt by the recession last year, are preparing to embark on aggressive moves with the help of an emergency aid of the government/financial institutions. The worldโ€™s third biggest container shipper company, CMA-CGM, which was driven to the brink of bankruptcy last year, has recently taken delivery of several new buldings that could not be claimed from the shipyard previously. CMA CGM has received a lifeline worth $500 million from its creditors and emergency financial bailout from the government and has been expanding operating fleet. Germanyโ€™s Hapag-Lloyds has joined the recovery as the government agreed on exceptional 2 billion loan guarantee. Chinaโ€™s COSCO, with capacity of approximately 560,000teu in 2009, also plans to increase its fleet by 60% by 2013. Some shipping companies have started ordering new buildings. Taiwanโ€™s Evergreen Line surprised everyone when it launched its mega plan to build 100 ships which include 32 vessels of 8,000 TEU capacity. Greek ship-owners, so called โ€˜Greek Tycoonโ€™, have also been active and recently ordered more than 40 container ships. In contrast, the domestic shipping industry is keeping low-profile because of ongoing restructuring program set by the government and other regulatory constraints such as 200% debt-ratio restriction. Having signed a memorandum of understanding (MOU) with its creditors to improve its financial position in 2009, Hanjin Shipping is expected to record greatly improved 1st Quarter performance but the company has yet to make aggressive move. Despite of an operating profit of 11.6 billion won in the first quarter of the year, Hyundai Merchant Marine is being pressured to accept a debt restructuring program by its creditors because its debt-to-equity ratio went far beyond the cut off point of 200. Should the government and financial institutions support shipping companies who had excessively expanded its fleet in the past market boom is an arguable issue. However, ahead of industry recovery, domestic shipping companies must avoid making some of the most terrible mistakes such as failing to seize a golden opportunity, or losing competitiveness. Domestic shipping companies cannot afford to lose its competitiveness under the restructuring trap. Blind support from the government is hardly expected, but minimum and timely support within the framework of law/regulations is required, and companies also need to put intensive rescue efforts. An shipping analyst said shipping companies operate on a business model unique to any other business that is debt-financed so applying the typical below-200 percent debt to equity ratio is inappropriate. As an increase in debt to equity ratio is unavoidable when securing vessels, and as such increase does not affect operations or cash flows, special consideration should be given to the industry, he said. A senior official of the shipping industry said, โ€œIn order to ensure that Korea becomes one of the worldโ€™ top five marine powers, the government should provide environment to compete with foreign shipping companies, benefiting from the government support measures.โ€ โ€œIn these circumstances, it seems that the global competitiveness of domestic shipping companies has no choice but to retreatโ€ Considering above circumstances, it is time for domestic shipping companies to secure vessels competitively through active international/domestic ship finance practices.์ œ1์žฅ ์„œ ๋ก  1 ์ œ1์ ˆ ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ๊ณผ ์—ฐ๊ตฌ๋ชฉ์  1 ์ œ2์ ˆ ์—ฐ๊ตฌ๋ฐฉ๋ฒ•๊ณผ ๊ตฌ์„ฑ 3 ์ œ2์žฅ ์—ฐ๊ตฌ์˜ ์ด๋ก ์  ๋ฐฐ๊ฒฝ 5 ์ œ1์ ˆ ํ•ด์šด๊ธฐ์—…์˜ ์„ ๋ฐ•ํ™•๋ณด ํ•„์š”์„ฑ 5 1. ์„ ๋ฐ•๋„์ž…์˜ ์ค‘์š”์„ฑ 5 2. ์„ ๋ฐ• ๋„์ž…(์ปจํ…Œ์ด๋„ˆ์„  ๊ณต๊ธ‰) ์ „๋ง 7 ์ œ2์ ˆ ์„ ๋ฐ•๋„์ž…์— ๋”ฐ๋ฅธ ์„ ๋ฐ•๊ธˆ์œต์˜ ํ•„์š”์„ฑ 14 ์ œ3์ ˆ ์„ ๋ฐ•๊ธˆ์œต์˜ ํŠน์„ฑ๊ณผ ์œ ํ˜• 15 1. ์„ ๋ฐ•๊ธˆ์œต์˜ ํŠน์„ฑ 15 2. ์„ ๋ฐ•๊ธˆ์œต์˜ ์œ ํ˜• 17 ์ œ4์ ˆ ์„ ๋ฐ•๊ธˆ์œต์˜ ์ ˆ์ฐจ์™€ ๊ณ ๋ ค ์‚ฌํ•ญ 19 1. ์„ ๋ฐ•๊ธˆ์œต์˜ ์ ˆ์ฐจ 19 2. ์„ ๋ฐ•๊ธˆ์œต ์‹œ ๊ณ ๋ ค ์‚ฌํ•ญ 23 ์ œ5์ ˆ ์„ ๋ฐ•๊ธˆ์œต์— ๋Œ€ํ•œ ์„ ํ–‰์—ฐ๊ตฌ 27 ์ œ3์žฅ ์„ ๋ฐ•๊ธˆ์œต์‹œ์žฅ์˜ ํ˜„ํ™ฉ 30 ์ œ1์ ˆ ๊ธ€๋กœ๋ฒŒ ์„ ๋ฐ•๊ธˆ์œต์‹œ์žฅ ๋™ํ–ฅ 30 ์ œ2์ ˆ ํ•œ๊ตญ ์„ ๋ฐ•๊ธˆ์œต์‹œ์žฅ ํ˜„ํ™ฉ 33 1. ๊ตญ๋‚ด ์„ ๋ฐ•๊ธˆ์œต์‹œ์žฅ์˜ ๋™ํ–ฅ 34 2. ์šฐ๋ฆฌ๋‚˜๋ผ ์„ ๋ฐ•ํˆฌ์žํšŒ์‚ฌ ์ œ๋„์˜ ์‹คํƒœ 36 ์ œ3์ ˆ ํ•œ๊ตญ ์„ ๋ฐ•๊ธˆ์œต๊ณผ ์™ธ๊ตญ์„ ๋ฐ• ๊ธˆ์œต์˜ ๋น„๊ต 41 1. ์ „์ฒด ์„ ๋ฐ•ํŽ€๋“œ์˜ ๋น„๊ต 41 2. ์„ธ์ œํ˜œํƒ, ๊ตฌ์กฐ์˜ ์œ ์—ฐ์„ฑ, ๊ธˆ์œตํ™˜๊ฒฝ ๋น„๊ต 42 3. ์ „์ฒด ์„ ๋ฐ•ํŽ€๋“œ์˜ ์žฅ๋‹จ์  44 ์ œ4์žฅ ์„ ๋ฐ•๊ธˆ์œต์˜ ๋ฌธ์ œ์ ๊ณผ ํ™œ์„ฑํ™” ๋ฐฉ์•ˆ 46 ์ œ1์ ˆ ์„ ๋ฐ•๊ธˆ์œต์˜ ๋ฌธ์ œ์  46 ์ œ2์ ˆ ์„ ๋ฐ•๊ธˆ์œต์˜ ํ™œ์„ฑํ™” ๋ฐฉ์•ˆ 48 ์ œ5์žฅ ๊ฒฐ ๋ก  52 ์ œ1์ ˆ ์—ฐ๊ตฌ์˜ ์š”์•ฝ 52 ์ œ2์ ˆ ์—ฐ๊ตฌ์˜ ์‹œ์‚ฌ์  55 โ–ก์ฐธ๊ณ ๋ฌธํ—Œ 5

    Diabetic mastopathy: imaging features and the role of image-guided biopsy in its diagnosis

    Get PDF
    PURPOSE: The goal of this study was to evaluate the imaging features of diabetic mastopathy (DMP) and the role of image-guided biopsy in its diagnosis. METHODS: Two experienced radiologists retrospectively reviewed the mammographic and sonographic images of 19 pathologically confirmed DMP patients. The techniques and results of the biopsies performed in each patient were also reviewed. RESULTS: Mammograms showed negative findings in 78% of the patients. On ultrasonography (US), 13 lesions were seen as masses and six as non-mass lesions. The US features of the mass lesions were as follows: irregular shape (69%), oval shape (31%), indistinct margin (69%), angular margin (15%), microlobulated margin (8%), well-defined margin (8%), heterogeneous echogenicity (62%), hypoechoic echogenicity (38%), posterior shadowing (92%), parallel orientation (100%), the absence of calcifications (100%), and the absence of vascularity (100%). Based on the US findings, 17 lesions (89%) were classified as Breast Imaging Reporting and Data System category 4 and two (11%) as category 3. US-guided core biopsy was performed in 18 patients, and 10 (56%) were diagnosed with DMP on that basis. An additional vacuum-assisted biopsy was performed in seven patients and all were diagnosed with DMP. CONCLUSION: The US features of DMP were generally suspicious for malignancy, whereas the mammographic findings were often negative or showed only focal asymmetry. Core biopsy is an adequate method for initial pathological diagnosis. However, since it yields non-diagnostic results in a considerable number of cases, the evaluation of correlations between imaging and pathology plays an important role in the diagnostic process.ope

    Metastatic Osteosarcoma to the Breast Presenting as a Densely Calcified Mass on Mammography.

    Get PDF
    Osteosarcoma most commonly metastasizes to the lung or the skeleton, and metastatic osteosarcoma to the breast is very rare, with only a few cases reported. Due to its rarity, little has been reported about its imaging features. In this report, we represent a 58-year-old woman with metastatic osteosarcoma to the right breast from a tibial osteosarcoma. The imaging features of the metastatic osteosarcoma to the breast by using dedicated breast imaging modalities are described. Although rare, metastatic osteosarcoma to the breast should be considered when dense calcified masses with suspicious features are seen on breast imaging in patients with a history of osteosarcoma.ope

    ์†Œ์•„ ๊ฐ์—ผ ํ›„ ํ์‡„์„ฑ ์„ธ๊ธฐ๊ด€์ง€์—ผ ํ™˜์ž์—์„œ ์ปดํ“จํ„ฐ ๋‹จ์ธต์ดฌ์˜์˜ ์ •๋Ÿ‰์  ๋ถ„์„๊ณผ ํ ๊ธฐ๋Šฅ๊ณผ์˜ ์ƒ๊ด€๊ด€๊ณ„

    No full text
    Purpose: To investigate the availability of computed tomography (CT) based quantitative airway and emphysema measurements and to assess their correlation with pulmonary function in children with post-infectious bronchiolitis obliterans (PIBO). Materials and Methods: This retrospective study included chest CT scans and pulmonary function tests (PFT) completed between January 2005 and December 2016 on children diagnosed with PIBO. The quantitative analysis of segmental and subsegmental bronchi was performed on each chest CT scan. The emphysema volume (EV), the volume of lung area exhibiting lower attenuation than the mean attenuation of normal and air trapping areas, was also measured in each lobe. The ratio between EV and total lung volume (emphysema ratio, ER) was then calculated. The PFT values included spirometric parameters and impulse oscillometric parameters. Comparison analyses between CT parameters and PFT results were made with Pearson or Spearman. Results: In total 23 patients were enrolled (age 7.0 ยฑ 3.3 years โ€“ range, 4-15 years). We successfully measured 371 (371/414, 89.6%) segmental and 242 (242/414, 58.5%) subsegmental bronchi. In airway analysis, wall area showed negative correlation with forced expiratory volume in one second (FEV1) in the majority of the pulmonary lobes. The airway average diameter and airway area were also negatively correlated with FEV1 in bilateral lower lobes. Emphysema analyses demonstrated that EV was negatively correlated with FEV1 and positively correlated with an oscillometric parameter, reactance at 5 Hz. Conclusion: Quantitative airway and emphysema measurements from chest CT are feasible and can demonstrate pulmonary function in pediatric PIBO patients.open์„

    ๋‚จ๋ถ๊ฒฝํ˜‘๋ณดํ—˜์˜ ํ‰๊ฐ€ ๋ฐ ๊ฐœ์„ ๋ฐฉ์•ˆ์— ๊ด€ํ•œ ์—ฐ๊ตฌ : ํšจ๊ณผ์„ฑ ๋ฐ ์ ์ •์„ฑ์„ ์ค‘์‹ฌ์œผ๋กœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ํ–‰์ •๋Œ€ํ•™์› ํ–‰์ •ํ•™๊ณผ, 2017. 8. ๊ถŒํ˜์ฃผ.๊ฐœ์„ฑ๊ณต๋‹จ์ด ํ์‡„ ๋œ์ง€ 1๋…„์ด ์ง€๋‚œ ์ง€๊ธˆ๊นŒ์ง€๋„ ๊ฐœ์„ฑ๊ณต๋‹จ ์žฌ๊ฐœ ํ•„์š”์„ฑ๊ณผ ๋”๋ถˆ์–ด ํ์‡„๋กœ ์ธํ•ด ๋ฐœ์ƒํ•œ ํ”ผํ•ด์— ๋Œ€ํ•œ ํ•ฉ๋ฆฌ์ ์ธ ์ง€์›๋ฐฉ์•ˆ์ด ์ •์น˜๊ถŒ, ์ •๋ถ€, ๊ฐœ์„ฑ๊ณต๋‹จ ์ง„์ถœ ๊ธฐ์—…๊ฐ„ ๋œจ๊ฑฐ์šด ๋…ผ์Ÿ๊ฑฐ๋ฆฌ๊ฐ€ ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ ์™€์ค‘์— ๋Œ€๋ถํˆฌ์ž์— ๋Œ€ํ•œ ์œ ์ผํ•œ ์œ„ํ—˜ํšŒํ”ผ ์ •์ฑ…์ˆ˜๋‹จ์ธ ๋‚จ๋ถ๊ฒฝํ˜‘๋ณดํ—˜์— ๋Œ€ํ•œ ๋งŽ์€ ๋น„ํŒ๊ณผ ํ•จ๊ป˜ ๊ฐœ์„ ์š”๊ตฌ๊ฐ€ ์ด์–ด์ง€๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” 04๋…„ ๋„์ž…๋œ ๊ฒฝํ˜‘๋ณดํ—˜์ด ๊ทธ๊ฐ„ ํšจ๊ณผ์„ฑ์ด ์žˆ์—ˆ๋Š”์ง€๋ฅผ ์‚ดํŽด๋ณด๊ณ , ํ˜„์žฌ ์ œ์‹œ๋˜๊ณ  ์žˆ๋Š” ๊ฐœ์„ ์š”๊ตฌ๋“ค์ด ๊ฒฝํ˜‘๋ณดํ—˜์˜ ์ ์ •์„ฑ์— ๊ธ์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€๋ฅผ ์•Œ์•„๋ณด๋Š”๋ฐ ๊ทธ ๋ชฉ์ ์ด ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ฒฝํ˜‘๋ณดํ—˜์˜ ํšจ๊ณผ์„ฑ๊ณผ ์ ์ •์„ฑ์„ ์‹ฌ๋„ ์žˆ๊ฒŒ ์ •์˜๋‚ด๋ฆฌ๊ธฐ ์œ„ํ•ด ๊ฒฝํ˜‘๋ณดํ—˜์˜ ์ฃผ์š”ํ•œ ํŠน์ง• 2๊ฐ€์ง€๋ฅผ ์ œ์‹œํ•œ๋‹ค. ํ•˜๋‚˜๋Š” ๋ถํ•œ์˜ ์ •์น˜์  ์œ„ํ—˜์„ ๋‹ด๋ณดํ•˜๋Š” ์ •์น˜์  ์œ„ํ—˜๋ณดํ—˜์ด๊ณ , ๋‹ค๋ฅธ ํ•˜๋‚˜๋Š” ์ •๋ถ€ ๊ธฐ๊ธˆ์œผ๋กœ ์ง€์›๋˜๋Š” ์ •์ฑ…๋ณดํ—˜์˜ ์ธก๋ฉด์ด๋‹ค. ๋‘ ์ธก๋ฉด์— ๋Œ€ํ•œ ๋ถ„์„ ๊ฒฐ๊ณผ, ๊ฒฝํ˜‘๋ณดํ—˜์˜ ํšจ๊ณผ์„ฑ์€ ๋Œ€๋ถํˆฌ์ž์˜ ํ™œ์„ฑํ™”์— ์žˆ์Œ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ, ๊ฒฝํ˜‘๋ณดํ—˜์€ ๋‚จ๋ถ๊ฒฝํ˜‘์ด ์œ„์ถ•๋˜๋Š” ์‹œ๊ธฐ์— ๋” ํ™œ์„ฑํ™”๋˜์—ˆ๊ณ , ๋‚จ๋ถ๊ด€๊ณ„์˜ ์•…ํ™”๋ผ๋Š” ์•…์กฐ๊ฑด ์†์—์„œ๋„ ๋Œ€๋ถํˆฌ์ž์˜ ํ™•๋Œ€์— ๊ธฐ์—ฌํ•œ ๊ฒƒ์œผ๋กœ ๋“œ๋Ÿฌ๋‚˜ ํšจ๊ณผ์„ฑ์€ ์ž…์ฆ๋˜๋Š” ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค. ๋‹ค์Œ์œผ๋กœ, ์ •์น˜์  ์œ„ํ—˜๋ณดํ—˜์˜ ์ ์ •์„ฑ์„ ๊ทœ์ •ํ•˜๋Š” ์š”์†Œ์™€ ์ •์ฑ…๋ณดํ—˜์˜ ์ ์ •์„ฑ์„ ์„ค๋ช…ํ•˜๋Š” ์š”์†Œ์˜ ๊ต์ง‘ํ•ฉ์„ ํ†ตํ•ด ๊ฒฝํ˜‘๋ณดํ—˜์˜ ํ•ต์‹ฌ์ ์ธ ์ ์ •์„ฑ ์ง€ํ‘œ๊ฐ€ ์ •์น˜์  ์œ„ํ—˜์„ ํ•ฉ๋ฆฌ์ ์œผ๋กœ ์ธก์ •ํ•˜์—ฌ ๋ณดํ—˜์š”์œจ์„ ์ฑ…์ •ํ•˜๋Š” ๊ฒƒ์ž„์„ ๋ฐํžŒ๋‹ค. ๋‹ค๋งŒ, ๊ฒฝํ˜‘๋ณดํ—˜์€ ์ •์น˜์  ์œ„ํ—˜์„ ์ธก์ •ํ•จ์— ์žˆ์–ด ์ค‘์š”ํ•œ ์š”์†Œ์ธ ๋ถํ•œ ์™ธ๊ตญ์ธํˆฌ์ž๋ฒ•์— ๋Œ€ํ•œ ๊ฐ๊ด€์ ์ด๊ณ  ๋ณด์ˆ˜์ ์ธ ์ ‘๊ทผ ์—†์ด ๋ณดํ—˜์š”์œจ์„ ํƒ€ ์ •์ฑ…๋ณดํ—˜๋ณด๋‹ค๋„ ๋‚ฎ๊ฒŒ ์ฑ…์ •ํ•จ์œผ๋กœ์จ ์ ์ •์„ฑ ์ธก๋ฉด์—์„œ ํ•œ๊ณ„๊ฐ€ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๋“œ๋Ÿฌ๋‚ฌ๋‹ค. ํ•œํŽธ, ํ˜„์žฌ ์ œ๊ธฐ๋˜๊ณ  ์žˆ๋Š” ์ฃผ์š” ๊ฐœ์„ ๋ฐฉ์•ˆ์ธ ์ž์‚ฐ๋ณดํ—˜ํ™”, ๋ณดํ—˜๊ธˆ ์ง€๊ธ‰ํ•œ๋„ ์ƒ์Šน, ๊ธฐ์—…ํœด์ง€ ๋ณด์ƒ ๋„์ž…๊ณผ ๊ด€๋ จํ•˜์—ฌ ์•ž์„œ ์‚ดํŽด๋ณธ ์ด๋ก ์  ๊ฐœ๋… ํ‹€์— ๊ทผ๊ฑฐํ•˜์—ฌ ์ ์ •์„ฑ์„ ๊ฒ€์ฆํ•ด ๋ณด์•˜๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์ž์‚ฐ๋ณดํ—˜ํ™”์™€ ๊ธฐ์—…ํœด์ง€ ๋ณด์ƒ ๋„์ž…์˜ ์ ์ •์„ฑ์€ ์ƒ๋Œ€์ ์œผ๋กœ ๋†’์€ ๋ฐ˜๋ฉด, ๋ณดํ—˜๊ธˆ ์ง€๊ธ‰ํ•œ๋„ ์ƒ์Šน์€ ์ ์ •์„ฑ์„ ์ €ํ•ดํ• ๋งŒํ•œ ์š”์†Œ๊ฐ€ ๋งŽ์€ ๊ฒƒ์œผ๋กœ ํ™•์ธ๋˜์—ˆ๋‹ค. ํ–ฅํ›„ ๋‚จ๋ถ๊ฒฝํ˜‘๋ณดํ—˜์„ ํšจ๊ณผ์ ์œผ๋กœ ์šด์˜ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋‚จ๋ถ๊ด€๊ณ„์˜ ์žฌ๊ฐœ๊ฐ€ ์ „ํ–ฅ์ ์ธ์ง€ ์ œํ•œ์ ์ธ์ง€๋ฅผ ๋ฉด๋ฐ€ํžˆ ์‚ดํŽด์•ผ ํ•  ๊ฒƒ์ด๋‹ค. ๋งŒ์•ฝ ์ „๋ฉด์ ์ธ ๊ฐœ์„ ์ด ์ด๋ค„์ง„๋‹ค๋ฉด ๋‚จ๋ถ๊ฒฝํ˜‘๋ณดํ—˜์€ ๊ฐ€์ž…๋ฅ  ์ œ๊ณ ์— ๊ฐ€์žฅ ํฐ ์ •์ฑ…์  ๋ชฉํ‘œ๋ฅผ ๋‘๊ณ  ์ž ์žฌ๊ณ ๊ฐ๊ธฐ์—…๋“ค ์•ž ์ ๊ทน์ ์ธ ์ธ์„ผํ‹ฐ๋ธŒ๋ฅผ ์ œ๊ณตํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๋ฐ˜๋ฉด, ๋ถˆ์•ˆ์š”์†Œ๊ฐ€ ์ƒ์กดํ•œ ์ƒํƒœ์—์„œ ์žฌ๊ฐœ๋œ๋‹ค๋ฉด ๋ณดํ—˜์š”์œจ ์ƒํ–ฅ, ๊ฐ€์ž…๊ธˆ์•ก ํ•œ๋„์˜ ๋ณด์ˆ˜์  ์กฐ์ •, ์—ญ์„ ํƒ ๋ฐฉ์ง€์žฅ์น˜๋„์ž… ๋“ฑ์„ ๊ฐ•ํ™”ํ•ด์•ผ ์ ์ •์„ฑ์„ ๋‹ด๋ณดํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค.์ œ 1 ์žฅ ์„œ ๋ก  1 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  1 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ์˜ ๋ฒ”์œ„ 5 ์ œ 2 ์žฅ ์ด๋ก ์  ๋…ผ์˜ ๋ฐ ์„ ํ–‰์—ฐ๊ตฌ ๊ฒ€ํ†  6 ์ œ 1 ์ ˆ ์ด๋ก ์  ๋…ผ์˜ 6 1. ๋‚จ๋ถ๋ณดํ—˜์˜ ๊ฐœ์š” ๋ฐ ์˜์˜ 6 2. ๋‚จ๋ถ๋ณดํ—˜์˜ ์„ฑ๊ฒฉ 8 3. ํ˜„ํ–‰ ๊ฒฝํ˜‘๋ณดํ—˜์˜ ๋ณด์ƒ์ฒด๊ณ„ 11 4. ๋ณดํ—˜๊ธˆ ์ง€๊ธ‰๊ฒฝ๊ณผ ๋ฐ ๊ฒฐ๊ณผ 15 ์ œ 2 ์ ˆ ์„ ํ–‰์—ฐ๊ตฌ ๊ฒ€ํ†  17 1. ์ •์น˜์  ์œ„ํ—˜๋ณดํ—˜์˜ ํšจ๊ณผ์„ฑ ๋ฐ ์ ์ •์„ฑ์— ๊ด€ํ•œ ์—ฐ๊ตฌ 17 2. ์ •์ฑ…๋ณดํ—˜์˜ ํšจ๊ณผ์„ฑ ๋ฐ ์ ์ •์„ฑ์— ๊ด€ํ•œ ์—ฐ๊ตฌ 23 3. ๊ฒฝํ˜‘๋ณดํ—˜์˜ ์ œ๋„๊ฐœ์„ ์— ๊ด€ํ•œ ์—ฐ๊ตฌ 26 3.1. ์ž์‚ฐ๋ณดํ—˜ํ™” ๊ด€๋ จ ์„ ํ–‰์—ฐ๊ตฌ 27 3.2. ๋ณดํ—˜๊ธˆ ์ง€๊ธ‰ํ•œ๋„ ๊ด€๋ จ ์„ ํ–‰์—ฐ๊ตฌ 28 3.3. ๊ธฐ์—…ํœด์ง€๋ณด์ƒ ๊ด€๋ จ ์„ ํ–‰์—ฐ๊ตฌ 29 4. ์†Œ๊ฒฐ 30 ์ œ 3 ์žฅ ์—ฐ๊ตฌ ์„ค๊ณ„ 32 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ ๊ฐ€์„ค ์„ค์ • 32 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ ๋Œ€์ƒ ๋ฐ ๋ฐฉ๋ฒ• 40 1. ์—ฐ๊ตฌ ๋Œ€์ƒ 40 2. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• 41 ์ œ 4 ์žฅ ์—ฐ๊ตฌ ๋ถ„์„ 42 ์ œ 1 ์ ˆ ๊ฒฝํ˜‘๋ณดํ—˜์˜ ๋Œ€๋ถํˆฌ์ž ํšจ๊ณผ์„ฑ ๊ฒ€์ฆ 42 ์ œ 2 ์ ˆ ๊ฒฝํ˜‘๋ณดํ—˜์˜ ๋ณดํ—˜์š”์œจ ์ ์ •์„ฑ ๊ฒ€์ฆ 47 1. ์ •์น˜์  ์œ„ํ—˜๋ณดํ—˜์˜ ์œ„ํ—˜ ๋ฒ”์ฃผ 48 2. ๋ถํ•œ์˜ ์™ธ๊ตญ์ธํˆฌ์ž๋ฒ•์— ๋Œ€ํ•œ ํ‰๊ฐ€ 53 3. ๊ฒฝํ˜‘๋ณดํ—˜์˜ ๋ณดํ—˜์š”์œจ ํ‰๊ฐ€ 55 ์ œ 3 ์ ˆ ์ฃผ์š” ๊ฐœ์„ ์‚ฌํ•ญ์ด ์ ์ •์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ 58 1. ์ž์‚ฐ๋ณดํ—˜ํ™”์˜ ํšจ๊ณผ์„ฑ 58 2. ๋ณดํ—˜๊ธˆ ์ง€๊ธ‰ํ•œ๋„ ์ฆ๊ฐ€์˜ ํšจ๊ณผ์„ฑ 62 3. ๊ธฐ์—…ํœด์ง€๋ณด์ƒ ๋„์ž…์˜ ํšจ๊ณผ์„ฑ 64 4. ์†Œ๊ฒฐ 65 ์ œ 4 ์ ˆ ๋‚จ๋ถ๊ด€๊ณ„ ์‹œ๋‚˜๋ฆฌ์˜ค๋ณ„ ์ ์ •์„ฑ ์ œ๊ณ ๋ฐฉ์•ˆ 67 1. ๊ฐœ์„ฑ๊ณต๋‹จ ์žฌ๊ฐœ ๊ฐ€๋Šฅ์„ฑ 67 2. ์‹œ๋‚˜๋ฆฌ์˜ค๋ณ„ ์ ์ •์„ฑ ์ œ๊ณ  ๋ฐฉ์•ˆ 69 ์ œ 5 ์žฅ ๊ฒฐ ๋ก  71 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ๊ฒฐ๊ณผ์˜ ์š”์•ฝ 71 ์ œ 2 ์ ˆ ์ •์ฑ…์  ์‹œ์‚ฌ์  74 ์ œ 3 ์ ˆ ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„ ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ๋ฐฉํ–ฅ 76 ์ฐธ๊ณ ๋ฌธํ—Œ 79 Abstract 84Maste

    Volume difference in upper central incisal according to the changes of restorative design and marginal location

    No full text
    ์น˜์˜ํ•™๊ณผ/๋ฐ•์‚ฌ[ํ•œ๊ธ€]๋ณด์ฒ ๋ฌผ ์ œ์ž‘์„ ์œ„ํ•œ ์น˜์•„ ์‚ญ์ œ ์‹œ์˜ ์‚ญ์ œ ์ •๋„๋ฅผ ์•Œ์•„๋ณด๊ธฐ ์œ„ํ•˜์—ฌ ์ƒ์•… ์ค‘์ ˆ์น˜ ํ˜•ํƒœ์˜ ์ธ๊ณต์น˜์•„ 36๊ฐœ๋ฅผ ๊ฐ€์ง€๊ณ  ๋ณด์ฒ ๋ฌผ ์‚ญ์ œ ๋””์ž์ธ์— ๋”ฐ๋ผ 4๊ฐœ์˜ ๊ตฐ์œผ๋กœ ๋‚˜๋ˆ„๊ณ  ๊ฐ ๊ตฐ๋งˆ๋‹ค ๋ณ€์—ฐ๋ถ€์˜ ์œ„์น˜์— ๋”ฐ๋ผ์„œ 3๊ฐœ์˜ ์†Œ๊ทธ๋ฃน์œผ๋กœ ๋‚˜๋ˆ„์–ด์„œ ์ด 12๊ฐ€์ง€ ์กฐํ•ฉ์„ ๋งŒ๋“ค์—ˆ๋‹ค. ์‚ญ์ œ ์ „์˜ ๋ถ€ํ”ผ๋ฅผ Micro CT๋ฅผ ์ด์šฉํ•ด์„œ ์žฌ๊ณ  ์‚ญ์ œ ํ›„์˜ ๋ถ€ํ”ผ๋ฅผ ๊ฐ™์€ ๋ฐฉ๋ฒ•์œผ๋กœ ์ธก์ •ํ•˜์—ฌ ์ด๋“ค์„ ์ค‘์ฒฉ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ์‚ญ์ œ ์ „ ํ›„์˜ ๋ถ€ํ”ผ๋ฅผ ๋น„๊ตํ•˜์—ฌ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฒฐ๊ณผ๋ฅผ ์–ป์—ˆ๋‹ค.1. ์‚ญ์ œ์‹œ์˜ ๋ถ€ํ”ผ๋ณ€ํ™”๋Š” traditional laminate veneer๏ผœ full laminate veneer๏ผœ all ceramic crown๏ผœ metal ceramic crown์˜ ์ˆœ์„œ๋กœ ์ ์ฐจ ์œ ์˜์„ฑ ์žˆ๋Š” ์ฆ๊ฐ€๋ฅผ ๋ณด์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋™์ผ ๊ตฐ๋‚ด์—์„œ๋Š” CEJ ์ƒ๋ฐฉ 1mm๏ผœ CEJ๏ผœ CEJ ํ•˜๋ฐฉ 1mm์˜ ์ˆœ์„œ๋กœ ๋ถ€ํ”ผ๋ณ€ํ™”์˜ ์œ ์˜์„ฑ ์žˆ๋Š” ์ฆ๊ฐ€๋ฅผ ๋ณด์˜€๋‹ค (p๏ผœ0.05).2. All ceramic crown๊ณผ metal ceramic crown์˜ ์‚ญ์ œ๋กœ ์ธํ•œ ๋ถ€ํ”ผ ๊ฐ์†Œ๋Š” ์•ฝ 31~48%์˜€์œผ๋ฉฐ ๋ผ๋ฏธ๋„ค์ดํŠธ์˜ ๊ฒฝ์šฐ ์•ฝ 14~30%์˜ ๋ถ€ํ”ผ๊ฐ์†Œ๋ฅผ ๋ณด์˜€๋‹ค.3. ์ „ํ†ต์ ์ธ ๋””์ž์ธ์˜ ๋ผ๋ฏธ๋„ค์ดํŠธ์˜ ๋ถ€ํ”ผ ๊ฐ์†Œ๋Š” ๊ฐ€์žฅ ํฐ ๋ถ€ํ”ผ๋ณ€ํ™”๋ฅผ ๋ณด์ธ metal ceramic crown์˜ ์•ฝ 1/3 ์ •๋„์˜€๋‹ค.4. ๊ฐ€์žฅ ํฐ ๋ถ€ํ”ผ๋ณ€ํ™”๋ฅผ ๋‚˜ํƒ€๋‚ธ ๋ผ๋ฏธ๋„ค์ดํŠธ (CEJ ํ•˜๋ฐฉ 1mm)์˜ ๊ฒฝ์šฐ์—” ๊ฐ€์žฅ ์ ๊ฒŒ ์‚ญ์ œํ•œ all ceramic crown (CEJ ์ƒ๋ฐฉ 1mm)๊ณผ ๊ฑฐ์˜ ๋น„์Šทํ•œ ๋ถ€ํ”ผ ๊ฐ์†Œ๋ฅผ ๋ณด์˜€๋‹ค.5. Metal ceramic crown์ด all ceramic crown์— ๋น„ํ•ด ์•ฝ1.1๋ฐฐ (13.7%) ๋” ๋งŽ์€ ๋ถ€ํ”ผ๊ฐ์†Œ๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. 6. ๋ผ๋ฏธ๋„ค์ดํŠธ ์‚ญ์ œ ๋””์ž์ธ์—์„œ๋Š” CEJ ์ƒ๋ฐฉ 1mm์—์„œ CEJ๋กœ ์ด๋™ํ•  ๋•Œ๋ณด๋‹ค CEJ์—์„œ CEJ ํ•˜๋ฐฉ 1mm๋กœ ์ด๋™ํ•  ๋•Œ์— ์‚ญ์ œ ๋ถ€ํ”ผ์˜ ์ฆ๊ฐ€ ํญ์ด ๋” ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ ์ธ๊ณต์น˜๊ด€ ์‚ญ์ œ ๋””์ž์ธ์—์„œ๋Š” ๊ฐ™์€ ๊ฒฝ์šฐ์— ์ฆ๊ฐ€ํญ์ด ๋” ์ค„์–ด๋“ค์—ˆ๋‹ค. [์˜๋ฌธ]ope
    • โ€ฆ
    corecore