264 research outputs found

    Evidence from U.S. Listed Firms

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‚ฌํšŒ๊ณผํ•™๋Œ€ํ•™ ๊ฒฝ์ œํ•™๋ถ€, 2021. 2. ์žฅ์šฉ์„ฑ.I report that certain predetermined promising firms grow larger than other firms especially during recession periods. Between two measurements of growth, absolute changes in market shares of revenue and employment, only for revenue, the unique positive role of recession on growth of expected high-growth firms over other firms is found. After further channel analysis is conducted, I also find that the aspects of superior performances of expected high-growth firms during recessions compared to other firms and routine times actually come from expected high-growth firms which have larger increments in their spending of valuable resources on investments during recession times. These results impart some supportive evidence for Schumpeterโ€™s creative destruction argument and opportunity cost hypothesis.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์‚ฌ์ „์ ์œผ๋กœ ์‹๋ณ„๋œ ํŠน์ • ์œ ๋ง๊ธฐ์—…๋“ค์ด ๋‹ค๋ฅธ ๊ธฐ์—…๋“ค์— ๋น„ํ•ด ๊ฒฝ๊ธฐ์นจ์ฒด๊ธฐ์— ์„ฑ์žฅ์˜ ์ •๋„๊ฐ€ ํฌ๋‹ค๋Š” ๊ฒฐ๋ก ์„ ๋„์ถœํ•œ๋‹ค. ํ•œํŽธ, ๋งค์ถœ ๋ฐ ๊ณ ์šฉ์˜ ์‹œ์žฅ ์ ์œ ์œจ์˜ ์ ˆ๋Œ€ ๋ณ€ํ™”๋ถ„์ด๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์„ฑ์žฅ์ฒ™๋„ ์ค‘ ์˜ค์ง ๋งค์ถœ์— ๋Œ€ํ•ด์„œ๋งŒ ๊ฒฝ๊ธฐ์นจ์ฒด๊ธฐ์— ๊ณ ์„ฑ์žฅ ๊ธฐ๋Œ€ ๊ธฐ์—…๋“ค์˜ ์„ฑ์žฅ์ด ๋‹ค๋ฅธ ๊ธฐ์—…๋“ค์— ๋น„ํ•ด ๋” ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋˜ํ•œ, ์ถ”๊ฐ€์ ์ธ ์ฑ„๋„ ๋ถ„์„์„ ํ†ตํ•ด์„œ ์ด์™€ ๊ฐ™์€ ์œ ๋ง๊ธฐ์—…๋“ค์˜ ๊ฒฝ๊ธฐ์นจ์ฒด๊ธฐ์˜ ์›”๋“ฑํ•œ ์„ฑ์žฅ ์–‘์ƒ์€ ์‚ฌ์‹ค ์œ ๋ง๊ธฐ์—… ์ค‘์—์„œ๋„ ๊ฒฝ๊ธฐ์นจ์ฒด๊ธฐ์— ํˆฌ์ž๋ฅผ ์ฆ๊ฐ€์‹œํ‚จ ๊ธฐ์—…๋“ค์—์„œ ๋Œ€๋ถ€๋ถ„ ๋‚˜ํƒ€๋‚˜๋Š” ์‚ฌ์‹ค์„ ํ™•์ธํ•˜์˜€๋‹ค. ์œ„ ๊ฒฐ๊ณผ๋Š” ์Š˜ํŽ˜ํ„ฐ์˜ ์ฐฝ์กฐ์  ํŒŒ๊ดด ๋ฐ ๊ธฐํšŒ๋น„์šฉ ๊ฐ€์„ค์„ ์ง€์ง€ํ•˜๋Š” ๊ฐ„์ ‘์ ์ธ ์ฆ๊ฑฐ๊ฐ€ ๋  ์ˆ˜ ์žˆ๋‹ค.1. Introduction 1 2. Literature Review 8 3. Basic Settings and Data 13 3.1. Basic Settings 13 3.1.1. Identifying Recessions 13 3.1.2. Time Frame Setting 14 3.2. Data and Variable Descriptions 16 3.2.1. Data Sources 16 3.2.2. Variable Descriptions 18 4. Firm Growth Analysis 26 4.1. Simple Regression for Each Recessions 26 4.2. DID Regression 32 4.3. Robustness Tests 41 4.3.1. Survivorship Bias 41 4.3.2. Endogenous Threshold Model 46 5. Growth Channel Analysis 51 5.1. R&D and Capital Investments 51 5.2. R&D and Capital Stocks 58 6. Conclusion 63 Reference 66 Abstract 70Maste

    ๋ผ์ง€-์˜์žฅ๋ฅ˜ ๊ฐ„ ์ด์ข… ์ „์ธต๊ฐ๋ง‰์ด์‹์—์„œ ํ•ญ CD40 ๋‹จ์ผํด๋ก ํ•ญ์ฒด๋ฅผ ์ด์šฉํ•œ ๋ฉด์—ญ์–ต์ œ์š”๋ฒ•๊ณผ ํ•ญ CD20 ๋‹จ์ผํด๋ก ํ•ญ์ฒด ๋ฐ ํƒ€ํฌ๋กœ๋ฆฌ๋ฌด์Šค๋ฅผ ํฌํ•จํ•œ ๋ณตํ•ฉ๋ฉด์—ญ์–ต์ œ์š”๋ฒ•์˜ ์žฅ๊ธฐ ์œ ํšจ์„ฑ๊ณผ ์•ˆ์ „์„ฑ์˜ ๋น„๊ต ๋ถ„์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์˜๊ณผ๋Œ€ํ•™ ์˜ํ•™๊ณผ,2019. 8. ๊น€๋ฏธ๊ธˆ.Purpose: Many countries are suffering from shortage of donor corneas, and eligible donor pool will decrease. Porcine corneas will be good substitutes for human corneas, however antigenic difference is one of the most serious challenges. We aimed to compare the efficacy and safety of anti-CD40 antibody with those of rituximab-based regimen on the survival of full-thickness corneal grafts in pig-to-rhesus xenotransplantation. In addition, our ultimate goal was to choose a more effective and safer immunosuppressant protocol for clinical trials. Methods: Thirteen Chinese rhesus macaques consecutively underwent full-thickness corneal transplantation using porcine corneas. Six primates were administered anti-CD40 antibody (2C10R4), and others were administered rituximab, basiliximab, and tacrolimus. Graft survival, changes in effector and memory T and B cell subsets, donor-specific and anti-ฮฑGal antibodies, and aqueous complement were evaluated. Systemic adverse reactions were monitored. Results: Both anti-CD40 antibody (>511, >422, >273, >203, >196, 41 days) and anti-CD20 antibody (>470, 297, >260, >210, >158, 134, >97days) achieved long-term survival. In the anti-CD20 group, the number of activated B cells was significantly lower than that in the anti-CD 40 group (p=0.0216, Mann-Whitney test), and the level of aqueous complements at 6 month was significantly higher than preoperative level (p=0.0085, Friedman test). There was no difference in the levels of T cells, donor-specific and anti-ฮฑGal antibodies between two groups. In the anti-CD20 group, although three primates suffered from adverse reactions, all of them were manageable. Conclusion: Both anti-CD40 antibody and anti-CD20 antibody protocol are effective on the long-term survival of full-thickness corneal xenotransplantation with less adverse reactions in anti-CD40 treatment. Therefore, it is necessary to adjust the dose of anti-CD20 antibody protocol to reduce side effects in order to use this clinically available regimen immediately in further studies.๋ชฉ์ : ์ธ๊ตฌ์˜ ๋…ธ๋ นํ™”์™€ ๋ฐฑ๋‚ด์žฅ ์ˆ˜์ˆ , ๊ตด์ ˆ๊ต์ • ์ˆ˜์ˆ  ๋“ฑ์˜ ๋ณดํŽธํ™”๋กœ ์ธํ•ด ๊ฐ๋ง‰์„ ๊ธฐ์ฆํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ฆ์ž์˜ ์ˆ˜๊ฐ€ ์ ์ฐจ ์ค„์–ด๋“ค๊ณ  ์žˆ๋‹ค. ๋ผ์ง€์˜ ๊ฐ๋ง‰์€ ์ธ๊ฐ„์˜ ๊ฐ๋ง‰์„ ๋Œ€์ฒดํ•  ์ˆ˜ ์žˆ๋Š” ์ ์ ˆํ•œ ํ›„๋ณด ๋ฌผ์งˆ์ด๋ฉฐ, ์ด๋ฅผ ์ด์šฉํ•œ ์ด์ข…๊ฐ๋ง‰์ด์‹์ด ์ธ๊ฐ„ ๊ณต์—ฌ๊ฐ๋ง‰์˜ ๋ถ€์กฑ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ํšจ๊ณผ์ ์ธ ๋Œ€์•ˆ์œผ๋กœ ํ™œ๋ฐœํžˆ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ด์ข…๊ฐ๋ง‰์ด์‹์„ ์„ฑ๊ณต์ ์œผ๋กœ ์‹œํ–‰ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ด์ข…๊ฐ„์˜ ํ•ญ์› ์ฐจ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ๋ฉด์—ญ์–ต์ œ์ œ์˜ ์‚ฌ์šฉ์ด ํ•„์ˆ˜์ ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ผ์ง€-์˜์žฅ๋ฅ˜ ๊ฐ„ ์ด์ข… ์ „์ธต๊ฐ๋ง‰์ด์‹์—์„œ ํ•ญ CD40 ํ•ญ์ฒด๋ฅผ ์ด์šฉํ•œ ๊ณต์ž๊ทน ์ฐจ๋‹จ ๋ฉด์—ญ์–ต์ œ์š”๋ฒ•๊ณผ ํ˜„์žฌ ์ž„์ƒ์—์„œ ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ํ•ญ CD20 ํ•ญ์ฒด๋ฅผ ๋น„๋กฏํ•œ ๋ฐ”์‹ค๋ฆฌ์‹œ๋ง™, ํƒ€ํฌ๋กœ๋ฆฌ๋ฌด์Šค์˜ ๋ณตํ•ฉ๋ฉด์—ญ์–ต์ œ์š”๋ฒ•์˜ ์žฅ๊ธฐ์ ์ธ ํšจ๊ณผ ๋ฐ ์•ˆ์ „์„ฑ์„ ๋น„๊ตํ•˜์—ฌ, ํ–ฅํ›„ ์ž„์ƒ์‹œํ—˜์—์„œ ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ๋ฉด์—ญ์–ต์ œ์š”๋ฒ•์„ ์„ ์ •ํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋ฐฉ๋ฒ•: ์—ด ์„ธ ๋งˆ๋ฆฌ์˜ ์˜์žฅ๋ฅ˜ (Chinese rhesus macaques) ์—์„œ 7.5mm ์ง๊ฒฝ์˜ ๋ผ์ง€ ๊ฐ๋ง‰์„ ์ด์šฉํ•˜์—ฌ ์ „์ธต๊ฐ๋ง‰์ด์‹์„ ์‹œํ–‰ํ•˜์˜€๋‹ค. ์ด ์ค‘ ์—ฌ์„ฏ ๋งˆ๋ฆฌ๋Š” ํ•ญ CD40 ํ•ญ์ฒด(2C10R4)๋ฅผ ๊ณ„ํš๋œ ์ผ์ •๋Œ€๋กœ ์ •๋งฅ ํˆฌ์—ฌ ํ•˜์˜€๊ณ , ๋‚˜๋จธ์ง€ ์˜์žฅ๋ฅ˜์—๋Š” ํ•ญ CD20 ํ•ญ์ฒด, ๋ฐ”์‹ค๋ฆฌ์‹œ๋ง™ ๋ฐ ํƒ€ํฌ๋กœ๋ฆฌ๋ฌด์Šค๋ฅผ ์ •๋งฅ ํ˜น์€ ๊ทผ์œก ์ฃผ์‚ฌ๋กœ ํˆฌ์—ฌํ•˜์˜€๋‹ค. ์ด์‹ ๊ฐ๋ง‰ํŽธ์˜ ์ƒ์กด์—ฌ๋ถ€๋ฅผ ๊ด€์ฐฐํ•˜๊ธฐ ์œ„ํ•ด, ์ •๊ธฐ์ ์œผ๋กœ ์ด์‹ ๊ฐ๋ง‰ํŽธ์„ ๊ด€์ฐฐํ•˜์˜€๊ณ , ์ค‘์‹ฌ ๊ฐ๋ง‰ ๋‘๊ป˜์™€ ์•ˆ์••์„ ์ธก์ •ํ•˜์˜€๋‹ค. ๋˜ํ•œ ์˜์žฅ๋ฅ˜ ํ˜ˆ์•ก ๋‚ด์˜ ์ž‘๋™ ๋ฐ ๊ธฐ์–ต T ์„ธํฌ ๋ฐ B ์„ธํฌ, ๊ณต์—ฌ์ž ํŠน์ด ํ•ญ์ฒด, ํ•ญ ฮฑGal ํ•ญ์ฒด ๋ฐ ๋ฐฉ์ˆ˜ ๋‚ด ๋ณด์ฒด์˜ ๋ณ€ํ™”๋ฅผ ์กฐ์‚ฌํ•˜์˜€๊ณ , ์ง€์†์ ์ธ ์•ฝ์ œ ํˆฌ์—ฌ์™€ ์žฅ๊ธฐ๊ฐ„์˜ ๋ฉด์—ญ์–ต์ œ๋กœ ์ธํ•œ ์ „์‹  ๋ถ€์ž‘์šฉ์˜ ๋ฐœ์ƒ ์—ฌ๋ถ€๋ฅผ ๊ด€์ฐฐํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ: ํ•ญ CD40 ํ•ญ์ฒด๋ฅผ ํˆฌ์—ฌํ•œ ๊ตฐ๊ณผ(511, 422, 273, 203, 196์ผ ์ด์ƒ, 41์ผ) ํ•ญ CD20 ํ•ญ์ฒด ๋“ฑ์„ ํˆฌ์—ฌํ•œ ๊ตฐ(470, 260, 210, 158, 97์ผ ์ด์ƒ, 297, 134์ผ) ๋ชจ๋‘์—์„œ ์ด์‹ ๊ฐ๋ง‰ํŽธ์˜ ์žฅ๊ธฐ ์ƒ์กด์„ ๊ด€์ฐฐํ•˜์˜€๋‹ค. ํ•ญ CD20 ํ•ญ์ฒด ๋“ฑ์„ ํˆฌ์—ฌํ•œ ๊ตฐ์—์„œ ํ™œ์„ฑ B ์„ธํฌ์˜ ์ˆ˜๊ฐ€ ํ•ญ CD40 ํ•ญ์ฒด ํˆฌ์—ฌ ๊ตฐ์— ๋น„ํ•ด ์œ ์˜ํ•˜๊ฒŒ ๋‚ฎ์•˜๊ณ  (p=0.0216, Mann-Whitney test), ์ˆ˜์ˆ  ํ›„ 6๊ฐœ์›” ์งธ์— ๋ฐฉ์ˆ˜ ๋‚ด ๋ณด์ฒด์˜ ๋†๋„๊ฐ€ ์ˆ˜์ˆ  ์ „๊ณผ ๋น„๊ตํ•˜์—ฌ ์œ ์˜ํ•˜๊ฒŒ ๋†’์•˜๋‹ค (p=0.0085, Friedman test). ํ•ญ CD20 ํ•ญ์ฒด ๋“ฑ์„ ํˆฌ์—ฌํ•œ ์˜์žฅ๋ฅ˜ ์ค‘ ์„ธ ๋งˆ๋ฆฌ์—์„œ ์ „์‹  ๋ถ€์ž‘์šฉ์ด ๊ด€์ฐฐ๋˜์—ˆ์œผ๋ฉฐ, ์ด๋Š” ๋ชจ๋‘ ์ผ์‹œ์ ์ธ ์•ฝ๋ฌผ ์น˜๋ฃŒ๋กœ ์กฐ์ ˆ๋˜์—ˆ๋‹ค. ๊ฒฐ๋ก : ํ•ญ CD40 ํ•ญ์ฒด๋ฅผ ์ด์šฉํ•œ ๊ณต์ž๊ทน ์ฐจ๋‹จ ๋ฉด์—ญ์–ต์ œ์š”๋ฒ•๊ณผ ํ•ญ CD20 ํ•ญ์ฒด๋“ฑ์˜ ๋ณตํ•ฉ๋ฉด์—ญ์–ต์ œ์š”๋ฒ•์€ ๋ชจ๋‘ ๋ผ์ง€-์˜์žฅ๋ฅ˜ ๊ฐ„ ์ด์ข… ์ „์ธต๊ฐ๋ง‰์ด์‹์—์„œ ์ด์‹ ๊ฐ๋ง‰ํŽธ์˜ ์žฅ๊ธฐ ์ƒ์กด์— ํšจ๊ณผ์ ์ด์—ˆ์œผ๋‚˜, ํ•ญ CD20 ํ•ญ์ฒด ๋“ฑ์„ ํˆฌ์—ฌํ•œ ๊ตฐ์—์„œ ์ผ์‹œ์ ์ธ ์ „์‹  ๋ถ€์ž‘์šฉ์„ ๋ณด์ธ ๊ฐœ์ฒด๊ฐ€ ์žˆ์—ˆ๋‹ค. ํ•ญ CD20 ํ•ญ์ฒด ๋“ฑ์˜ ๋ณตํ•ฉ๋ฉด์—ญ์–ต์ œ์š”๋ฒ•์€ ํ˜„์žฌ ์ž„์ƒ์—์„œ ์‚ฌ์šฉ ์ค‘์ธ ์•ฝ์ œ๋“ค๋กœ ์ด์ข…๊ฐ๋ง‰์ด์‹์˜ ์ž„์ƒ์‹œํ—˜์— ๋ฐ”๋กœ ์ ์šฉ์ด ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ์žฅ์ ์ด ์žˆ์œผ๋‚˜, ๋ณด๋‹ค ์•ˆ์ „ํ•˜๊ฒŒ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ถ€์ž‘์šฉ์„ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์šฉ๋Ÿ‰ ์กฐ์ ˆ์ด ๋ฐ˜๋“œ์‹œ ํ•„์š”ํ•  ๊ฒƒ์œผ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค.Introductionโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ1 Materials and Methodsโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ4 Resultsโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ9 Discussionโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ14 Acknowledgmentsโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ42 Referencesโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ43 ๊ตญ๋ฌธ์ดˆ๋กโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ48 ๊ฐ์‚ฌ์˜๊ธ€โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ51Docto

    ํ†ตํ•ฉ์ ์ธ ์ƒ์žฅ์กฐ์ ˆ ์‹ ํ˜ธ๋“ค์˜ ํ™˜๊ฒฝ๋ณ€ํ™”์— ๋Œ€ํ•œ ์‹๋ฌผ ํ˜•ํƒœ ์ ์‘์— ๋ผ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ํ™”ํ•™๋ถ€, 2022.2. ๋ฐ•์ถฉ๋ชจ.Plants in early developmental stages, from soil emergence to seedling establishment, experience dramatic changes in surrounding environments. Seedlings are particularly sensitive to changes imposed by environmental stimuli, such as light and temperature, and undergo morphological changes to achieve the best fitness. Alterations in plant body are elaborately shaped by coordination of diverse endogenous signaling pathways with external signals. Thus, studies on signaling crosstalks between endogenous and external signaling pathways are essential for understanding physiological responses of seedlings to fluctuating environments. However, not yet unexplored molecular and genetic linkages between endogenous signaling pathway and environmental cues still exist. In this study, I investigated molecular and genetic mechanisms underlying morphogenic adaptation of hypocotyls regulated by endogenous signaling pathways under varying light and temperature environments. In Chapter 1, I discuss the effects of a plant hormone ethylene on hypocotyl thermomorphogenesis in the light. The gaseous phytohormone ethylene plays vital roles in diverse developmental and environmental adaptation processes, such as fruit ripening, seedling establishment, mechanical stress tolerance and submergence escape. It is also known that in the light, ethylene promotes hypocotyl growth by stimulating the expression of PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) transcription factor, which triggers microtubule reorganization during hypocotyl cell elongation. In particular, ethylene has been implicated in plant responses to warm temperatures in recent years. However, it is currently unclear how ethylene signals are functionally associated with hypocotyl thermomorphogenesis at the molecular level. Here, I show that ETHYLENE-INSENSITIVE 3 (EIN3)-mediated ethylene signals attenuate hypocotyl thermomorphogenesis by suppressing auxin responses. At warm temperatures, when the activity of the PIF4 thermomorphogenesis promoter is prominently high, the ethylene-activated EIN3 transcription factor directly induces the transcription of ARABIDOPSIS PP2C CLADE D7 (APD7) gene encoding a protein phosphatase that inactivates the plasma membrane (PM) H+-ATPase proton pumps. In conjunction with the promotive role of the PM H+-ATPases in hypocotyl cell elongation, these observations strongly support that the EIN3-directed induction of APD7 gene is linked with the suppression of auxin-induced cell expansion, leading to the reduction in thermomorphogenic hypocotyl growth. These data demonstrate that APD7 acts as a molecular hub that integrates ethylene and auxin signals into hypocotyl thermomorphogenesis. I propose that the ethyleneโ€“auxin signaling crosstalks via the EIN3-APD7 module facilitate the fine-tuning of hypocotyl thermomorphogenesis under natural environments, which often fluctuate in a complex manner. In Chapter 2, studies on molecular crosstalks between karrikin (KAR) and GA (gibberellic acid)/DELLA signaling pathways in the hypocotyl deetiolation process are described. Morphogenic adaptation of young seedlings to light environments is a critical developmental process that ensures plant survival and propagation, as they emerge from the soil. The photomorphogenic responses are facilitated by a network of light and growth hormonal signals, such as auxin and GA. KARs, a group of small butenolide compounds that is produced from burning plant materials in wildfires, are known to stimulate seed germination in fire-prone plant species. Notably, recent studies strongly support that they also facilitate seedling establishment, while underlying molecular mechanisms have been unexplored yet. Here, I demonstrate that SUPPRESSOR OF MAX2 1 (SMAX1), a negative regulator of KAR signaling, integrates light and KAR signals into GA-DELLA pathways that regulate hypocotyl growth during seedling photomorphogenesis and establishment. SMAX1-deficient Arabidopsis mutants exhibited a reduced hypocotyl elongation, and the short hypocotyl phenotypes were efficiently rescued by exogenous GA application and mutations in DELLA genes, such as REPRESSOR OF ga1-3 (RGA) and GIBBERELLIC ACID INSENSITIVE (GAI). Consistently, I found that SMAX1 facilitates the degradation of DELLA proteins in the hypocotyls in the light. Interestingly, light induces the accumulation of SMAX1 proteins, and the SMAX1-mediated degradation of DELLA is elevated in seedling establishment during the dark-to-light transition. These observations indicate that the SMAX1-mediated integration of light and KAR signals into GA pathways elaborately modulates seedling establishment. I propose that SMAX1 serves as a safeguard that ensures an optimized photomorphogenesis upon exposure to KARs, which is indicative of clear growth environments, as encountered following wildfires in nature.์ƒˆ์‹น๋‹์›€์—์„œ๋ถ€ํ„ฐ ์ƒˆ์‹นํ™•๋ฆฝ๊นŒ์ง€์˜ ์ดˆ๊ธฐ ๋ฐœ๋‹ฌ ๋‹จ๊ณ„์— ์žˆ๋Š” ์‹๋ฌผ๋“ค์€ ๊ทน์‹ฌํ•œ ์ฃผ๋ณ€ ํ™˜๊ฒฝ ๋ณ€ํ™”๋ฅผ ๊ฒช๊ฒŒ ๋œ๋‹ค. ์ƒˆ์‹น๋“ค์€ ๋น›๊ณผ ์˜จ๋„์™€ ๊ฐ™์€ ํ™˜๊ฒฝ ์ž๊ทน์˜ ์ž‘์€ ๋ณ€ํ™”์—๋„ ๋ฏผ๊ฐํ•˜๊ฒŒ ๋ฐ˜์‘ํ•˜๊ณ  ๊ธฐ๊ด€์˜ ํ˜•ํƒœ์  ๋ณ€ํ™”๋ฅผ ํ†ตํ•ด์„œ ๊ทธ ํ™˜๊ฒฝ์— ์œ ๋ฆฌํ•œ ๊ฑด๊ฐ•ํ•œ ์‹๋ฌผ์ฒด๋ฅผ ์–ป๊ณ ์ž ํ•œ๋‹ค. ์ด๋Ÿฐ ์‹๋ฌผ์ฒด์˜ ๋ณ€ํ™”๋“ค์€ ์™ธ๋ถ€ ํ™˜๊ฒฝ ์‹ ํ˜ธ๋“ค๊ณผ ์‹๋ฌผ์ฒด ๋‚ด์˜ ์‹ ํ˜ธ์ „๋‹ฌ๊ฒฝ๋กœ๋“ค์˜ ์กฐ์ง์  ๋ฐ ํ†ตํ•ฉ์ ์ธ ์กฐ์ ˆ ๊ณผ์ •์œผ๋กœ ์ธํ•ด ๋งŒ๋“ค์–ด์ง€๊ฒŒ ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ, ๋‚ดโ€ข์™ธ๋ถ€ ์‹ ํ˜ธ์ „๋‹ฌ ๊ฒฝ๋กœ ๊ฐ„์˜ ์‹ ํ˜ธ๊ต์ฐจ๋“ค์„ ์—ฐ๊ตฌํ•˜๋Š” ๊ฒƒ์€ ํ™˜๊ฒฝ๋ณ€ํ™”์— ๋Œ€ํ•œ ์‹๋ฌผ ์ƒˆ์‹น์˜ ์ƒ๋ฆฌ์ ์ธ ๋ฐ˜์‘๋“ค์„ ์ดํ•ดํ•˜๋Š” ๋ฐ ํ•„์ˆ˜์ ์ด๋‹ค. ํ•˜์ง€๋งŒ, ์•„์ง๊นŒ์ง€ ์—ฐ๊ตฌ๋˜์ง€ ์•Š์€ ๋‚ดโ€ข์™ธ๋ถ€ ์‹ ํ˜ธ์ „๋‹ฌ ๊ฒฝ๋กœ ๊ฐ„ ๋ถ„์ž์  ์œ ์ „์ž์  ์—ฐ๊ฒฐ์ ์ด ์—ฌ์ „ํžˆ ์กด์žฌํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ณ€ํ™”ํ•˜๋Š” ๋น›๊ณผ ์˜จ๋„ ํ™˜๊ฒฝ ํ•˜์—์„œ, ๋‚ด๋ถ€์ ์ธ ์‹ ํ˜ธ์ „๋‹ฌ๊ฒฝ๋กœ๋“ค์— ์˜ํ•ด ์กฐ์ ˆ๋˜๋Š” ์ƒˆ์‹น ์ค„๊ธฐ์˜ ํ˜•ํƒœ์  ์ ์‘์— ๋Œ€ํ•œ ๋ถ„์ž์ โ€ข์œ ์ „์ž์  ๊ธฐ์ž‘์„ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ์ œ 1์žฅ์—์„œ๋Š” ๋น›์ด ์žˆ๋Š” ํ™˜๊ฒฝ์—์„œ์˜ ์ƒˆ์‹น ์ค„๊ธฐ ์˜จ๋„ํ˜•ํƒœํ˜•์„ฑ์— ๋Œ€ํ•œ ์‹๋ฌผํ˜ธ๋ฅด๋ชฌ ์—ํ‹ธ๋ Œ์˜ ์ž‘์šฉ์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ๊ธฐ์ฒด ์ƒํƒœ์˜ ์‹๋ฌผํ˜ธ๋ฅด๋ชฌ ์—ํ‹ธ๋ Œ์€ ๊ณผ์ผ์ˆ™์„ฑ, ์ƒˆ์‹นํ™•๋ฆฝ, ๋ฌผ๋ฆฌ์  ์ž๊ทน์— ๋Œ€ํ•œ ์ŠคํŠธ๋ ˆ์Šค ์ €ํ•ญ๋ ฅ, ๊ทธ๋ฆฌ๊ณ  ์ž ์ˆ˜ํƒˆ์ถœ๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ๋ฐœ๋‹ฌ์ โ€ขํ™˜๊ฒฝ์  ์ ์‘ ๊ณผ์ •์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค. ๋˜ํ•œ, ๋น›์ด ์žˆ๋Š” ํ™˜๊ฒฝ์—์„œ, ์—ํ‹ธ๋ Œ์€ PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) ์ „์‚ฌ์ธ์ž์˜ ๋ฐœํ˜„๋Ÿ‰์„ ์ฆ๊ฐ€์‹œ์ผœ ์ƒˆ์‹น์˜ ์ค„๊ธฐ ์„ธํฌ์˜ ๋ฏธ์†Œ๊ด€์˜ ์žฌ์กฐ๋ฆฝ์„ ํ†ตํ•ด ์ƒˆ์‹น์˜ ์ค„๊ธฐ ์ƒ์žฅ์„ ์ด‰์ง„ํ•œ๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ํŠนํžˆ, ์ตœ๊ทผ์— ์‹๋ฌผ์˜ ์˜จ๋„ ๋ฐ˜์‘์„ฑ์— ๋Œ€ํ•œ ์—ํ‹ธ๋ Œ์ด ์—ฐ๊ด€๋˜์–ด ์žˆ์Œ์ด ๋ฐํ˜€์ง€๊ณ  ์žˆ์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์•„์ง๊นŒ์ง€๋Š” ์–ด๋–ป๊ฒŒ ์—ํ‹ธ๋ Œ ์‹ ํ˜ธ๊ฐ€ ์ƒˆ์‹น ์ค„๊ธฐ์˜ ์˜จ๋„ํ˜•ํƒœํ˜•์„ฑ์„ ์กฐ์ ˆํ•˜๋Š” ์ง€์— ๋Œ€ํ•œ ๋ถ„์ž์ ์ธ ์ˆ˜์ค€์—์„œ ์—ฐ๊ตฌ๋œ ๋ฐ” ์—†๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š”, ETHYLENE-INSENSITIVE 3 (EIN3) ์— ์˜ํ•œ ์—ํ‹ธ๋ Œ ์‹ ํ˜ธ๊ฐ€ ๋˜ ๋‹ค๋ฅธ ์‹๋ฌผํ˜ธ๋ฅด๋ชฌ์ธ ์˜ค์˜ฅ์‹  (auxin) ์˜ ๋ฐ˜์‘์„ฑ์„ ์–ต์ œํ•จ์œผ๋กœ์จ ์ƒˆ์‹น ์ค„๊ธฐ ์˜จ๋„ํ˜•ํƒœํ˜•์„ฑ์„ ์•ฝํ™”์‹œํ‚จ๋‹ค๋Š” ๊ฒƒ์„ ๋ฐํ˜”๋‹ค. ์˜จ๋„ํ˜•ํƒœํ˜•์„ฑ์„ ์ด‰์ง„ํ•˜๋Š” PIF4 ์ „์‚ฌ์ธ์ž๊ฐ€ ํ™œ์„ฑํ™”๋˜๋Š” ๋น„๊ต์  ๋”ฐ๋œปํ•œ ์˜จ๋„์—์„œ๋Š”, ์—ํ‹ธ๋ Œ์— ์˜ํ•ด ํ™œ์„ฑํ™”๋œ EIN3 ์ „์‚ฌ์ธ์ž๊ฐ€ ์ง์ ‘์ ์œผ๋กœ ์›ํ˜•์งˆ๋ง‰์˜ H+-ATPase ์–‘์„ฑ์žํŽŒํ”„๋ฅผ ๋ถˆํ™œ์„ฑํ™”ํ•˜๋Š” ๋‹จ๋ฐฑ์งˆ ํƒˆ์ธ์‚ฐํ™”ํšจ์†Œ๊ฐ€ ์ฝ”๋“œํ™”๋˜์–ด ์žˆ๋Š” ARABIDOPSIS PP2C CLADE D7 (APD7) ์œ ์ „์ž์˜ ์ „์‚ฌ๋ฅผ ์œ ๋„ํ•œ๋‹ค. ๊ธฐ์กด์— ์•Œ๋ ค์ง„ H+-ATPase์˜ ์„ธํฌ ์ƒ์žฅ์„ ์ด‰์ง„ํ•˜๋Š” ์—ญํ• ๊ณผ ๋”๋ถˆ์–ด, ๋ณธ ์—ฐ๊ตฌ์—์„œ ๋ฐํžŒ EIN3์— ์˜ํ•œ APD7 ์œ ์ „์ž์˜ ์ „์‚ฌ ์œ ๋„๊ฐ€ ์˜ค์˜ฅ์‹ ์— ์˜ํ•œ ์„ธํฌ ์ƒ์žฅ์„ ์–ต์ œํ•˜๋Š” ๊ฒƒ๊ณผ ์—ฐ๊ด€๋˜์–ด ์ œํ•œ๋œ ์ƒˆ์‹น ์ค„๊ธฐ์˜ ์˜จ๋„ํ˜•ํƒœํ˜•์„ฑ์— ๊ธฐ์ธํ•  ๊ฒƒ์ด๋ผ ์ƒ๊ฐ๋œ๋‹ค. ์ด์— ๋”ฐ๋ผ, APD7์€ ์ƒˆ์‹น ์ค„๊ธฐ ์˜จ๋„ํ˜•ํƒœํ˜•์„ฑ์—์„œ ์—ํ‹ธ๋ Œ๊ณผ ์˜ค์˜ฅ์‹  ์‹ ํ˜ธ๋“ค์„ ํ†ตํ•ฉํ•˜๋Š” ๋ถ„์ž์ ์ธ ์ค‘์ถ”๋ผ๊ณ  ์ •๋ฆฌํ•  ์ˆ˜ ์žˆ๋‹ค. EIN3-APD7 ๋ชจ๋“ˆ์— ์˜ํ•ด ์—ํ‹ธ๋ Œ-์˜ค์˜ฅ์‹  ์‹ ํ˜ธ ์ „๋‹ฌ ๊ฒฝ๋กœ ๊ฐ„์˜ ๊ต์ฐจ๊ฐ€ ์ผ์–ด๋‚˜๋Š” ๊ฒƒ์€ ์—ฌ๋Ÿฌ ํ™˜๊ฒฝ์ž๊ทน๋“ค์ด ๋ณต์žกํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ์ข…์ข… ๋ณ€ํ•˜๋Š” ์ž์—ฐ์ ์ธ ํ™˜๊ฒฝ์—์„œ ์ƒˆ์‹น ์ค„๊ธฐ ์˜จ๋„ํ˜•ํƒœํ˜•์„ฑ์„ ์„ธ๋ฐ€ํ•˜๊ฒŒ ์กฐ์ •ํ•˜๊ธฐ ์œ„ํ•จ์ด๋ผ ์ƒ๊ฐ๋œ๋‹ค. ์ œ 2์žฅ์—์„œ๋Š” ํƒˆํ™ฉํ™”๊ณผ์ • (deetiolation process) ์—์„œ ์ƒˆ์‹น์˜ ์ค„๊ธฐ ์•ˆ์—์„œ ์ผ์–ด๋‚˜๋Š” ์นด๋ฆฌํ‚จ (KAR) ๊ณผ ์ง€๋ฒ ๋ ๋ฆฐ์‚ฐ (gibberellic acid) /DELLA ์‹ ํ˜ธ ์ „๋‹ฌ ๊ฒฝ๋กœ๋“ค ๊ฐ„์˜ ๊ต์ฐจ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ๊ธฐ์ˆ ํ•˜์˜€๋‹ค. ๋น› ์ž๊ทน์— ๋Œ€ํ•œ ์–ด๋ฆฐ ์ƒˆ์‹น๋“ค์˜ ํ˜•ํƒœ์ ์ธ ์ ์‘์€ ํ™ ์•ˆ์„ ๋ฒ—์–ด๋‚œ ํ›„์˜ ์ƒ์กด๊ณผ ๋ฒˆ์˜์„ ๋ณด์žฅํ•˜๋Š” ์ค‘์š”ํ•œ ๋ฐœ๋‹ฌ ๊ณผ์ •์ด๋‹ค. ๋น›ํ˜•ํƒœํ˜•์„ฑ์  ๋ฐ˜์‘๋“ค์€ ์˜ค์˜ฅ์‹ ๊ณผ ์ง€๋ฒ ๋ ๋ฆฐ์‚ฐ๊ณผ ๊ฐ™์€ ์ƒ์žฅํ˜ธ๋ฅด๋ชฌ๋“ค๊ณผ ๋น› ์‹ ํ˜ธ๋“ค์˜ ๋„คํŠธ์›Œํฌ์— ์˜ํ•ด ์กฐ์ ˆ๋œ๋‹ค. ๋“ค๋ถˆ์— ์˜ํ•ด ๋ถˆํƒ€๋Š” ์‹๋ฌผ์ฒด์—์„œ ์ƒ์„ฑ๋˜๋Š” ์ž‘์€ ๋ทฐํ…Œ๋†€๋ผ์ด๋“œ๊ณ„ ํ™”ํ•ฉ๋ฌผ๋“ค ์ค‘์˜ ์ผ๋ถ€๋ถ„์ธ ์นด๋ฆฌํ‚จ์€ ๋ถˆ์— ์•ฝํ•œ ์‹๋ฌผ์ข…๋“ค์˜ ์”จ์•— ๋ฐœ์•„๋ฅผ ์ด‰์ง„ํ•œ๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ํฅ๋ฏธ๋กญ๊ฒŒ๋„, ์ตœ๊ทผ ์—ฐ๊ตฌ์— ๋”ฐ๋ฅด๋ฉด, ์นด๋ฆฌํ‚จ์€ ์ƒˆ์‹นํ™•๋ฆฝ์„ ์šฉ์ดํ•˜๊ฒŒ ํ•ด์ค€๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๊ทธ์— ๋Œ€ํ•œ ๋ถ„์ž์ ์ธ ๊ธฐ์ž‘์— ๋Œ€ํ•ด์„œ๋Š” ์•„์ง ์•Œ๋ ค์ง„ ๋ฐ” ์—†๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์นด๋ฆฌํ‚จ ์‹ ํ˜ธ ์ „๋‹ฌ์˜ ์Œ์„ฑ์กฐ์ ˆ์ž์ธ SUPPRESSOR OF MAX2 1 (SMAX1) ์ด ๋น›๊ณผ ์นด๋ฆฌํ‚จ ์‹ ํ˜ธ๋“ค์„ ์ƒˆ์‹น ๋น›ํ˜•ํƒœํ˜•์„ฑ๊ณผ ํ™•๋ฆฝ ๊ณผ์ • ์ค‘ ์ƒˆ์‹น ์ค„๊ธฐ ์ƒ์žฅ์„ ์กฐ์ ˆํ•˜๋Š” ์ง€๋ฒ ๋ ๋ฆฐ์‚ฐ-DELLA ์‹ ํ˜ธ์ „๋‹ฌ๊ฒฝ๋กœ์— ํ†ตํ•ฉ์‹œํ‚จ๋‹ค๋Š” ๊ฒƒ์„ ๋ฐํ˜”๋‹ค. SMAX1์ด ๊ฒฐ์—ฌ๋œ ์• ๊ธฐ์žฅ๋Œ€ (Arabidopsis thaliana) ๋Œ์—ฐ๋ณ€์ด์ฒด๋“ค์€ ์งง์€ ์ƒˆ์‹น ์ค„๊ธฐ ํ‘œํ˜„ํ˜•์„ ๋ณด์—ฌ์ฃผ๊ณ , ๊ทธ ์งง์€ ํ‘œํ˜„ํ˜•์€ ์™ธ๋ถ€์ ์ธ ์ง€๋ฒ ๋ ๋ฆฐ์‚ฐ ์ฒจ๊ฐ€์™€ REPRESSOR OF ga1-3 (RGA) ๊ณผ GIBBERELLIC ACID INSENSITIVE (GAI) ๊ณผ ๊ฐ™์€ DELLA ์œ ์ „์ž๋“ค์„ ๋Œ์—ฐ๋ณ€์ด ์‹œํ‚ด์œผ๋กœ์จ ํšŒ๋ณต๋˜๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์ด์™€ ์ผ๊ด€๋˜๊ฒŒ, ๋น› ์กฐ๊ฑด ํ•˜์—์„œ ์ƒˆ์‹น ์ค„๊ธฐ ๋‚ด์˜ SMAX1์ด DELLA ๋‹จ๋ฐฑ์งˆ๋“ค์˜ ๋ถ„ํ•ด๋ฅผ ์šฉ์ดํ•˜๊ฒŒ ํ•ด์ค€๋‹ค๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ•˜์˜€๋‹ค. ํฅ๋ฏธ๋กญ๊ฒŒ๋„, ๋น› ์ž๊ทน์€ SMAX1 ๋‹จ๋ฐฑ์งˆ์˜ ์ถ•์ ์„ ์œ ๋„ํ•˜๊ณ  SMAX1์— ์˜ํ•œ DELLA ๋‹จ๋ฐฑ์งˆ์˜ ๋ถ„ํ•ด ๊ณผ์ •์€ ๋น› ํ™˜๊ฒฝ์œผ๋กœ ์ „ํ™˜๋  ๋•Œ ๋” ์ด‰์ง„๋œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” SMAX1์— ์˜ํ•ด ์ง€๋ฒ ๋ ๋ฆฐ์‚ฐ ์‹ ํ˜ธ์ „๋‹ฌ๊ฒฝ๋กœ๋กœ ๋น›๊ณผ ์นด๋ฆฌํ‚จ ์‹ ํ˜ธ๋“ค์ด ํ†ตํ•ฉ๋˜๋Š” ๊ฒƒ์ด ์ƒˆ์‹นํ™•๋ฆฝ ๊ณผ์ •์„ ์„ธ๋ฐ€ํžˆ ์กฐ์ ˆํ•˜๋Š” ๊ฒƒ์„ ๋ฐํ˜”๋‹ค. ์ด๋ฅผ ํ†ตํ•ด, ์ž์—ฐ์ ์œผ๋กœ ๋ฐœ์ƒํ•˜์—ฌ ์ฃผ๋ณ€์„ ํƒœ์›Œ ๊นจ๋—์ด ์ •๋ฆฌํ•˜๋Š” ๋“ค๋ถˆ์— ์˜ํ•ด ์ƒ์„ฑ๋˜๋Š” ์นด๋ฆฌํ‚จ์ด ์ฃผ๋Š” ์ตœ์ ์˜ ์ƒ์žฅ ํ™˜๊ฒฝ์ด ์žˆ๋‹ค๋Š” ์ง€์‹œ ์‹ ํ˜ธ์— ๋”ฐ๋ผ SMAX1์€ ๋น›ํ˜•ํƒœํ˜•์„ฑ์˜ ์ตœ์ ํ™”๋ฅผ ๋ณด์žฅํ•˜๋Š” ๋ณดํ˜ธ ์žฅ์น˜๋กœ์„œ ์ž‘์šฉํ•œ๋‹ค ์ƒ๊ฐ๋œ๋‹ค.CONTENTS ABSTRACT i CONTENTS iv LIST OF FIGURES viii LIST OF TABLES xii ABBREVIATIONS xiii CHAPTER 1: EIN3-mediated ethylene signals attenuate auxin response during hypocotyl thermomorphogenesis 2 INTRODUCTION 2 MATERIALS AND METHODS 1. Plant materials 5 2. Plant growth conditions 6 3. Gene expression analysis 6 4. Confocal microscopy 7 5. Immunological assay 7 6. GUS staining 8 7. ChIP assay 8 8. Yeast two-hybrid assay 9 9. Media acidification 12 10. Statistical analysis 13 RESULTS Ethylene suppresses hypocotyl growth at warm temperatures 14 Thermoresponsive action of ethylene on hypocotyl growth is independent of PIF3 17 Ethylene function in hypocotyl thermomorphogenesis is distinct from the triple response 18 Thermoresponsive role of ethylene is functionally associated with PIF4 23 EIN3 is involved in the ethylene-mediated attenuation of hypocotyl thermomorphogenesis 31 EIN3-mediated ethylene signals do not affect the PIF4 activity 35 EIN3 attenuates auxin response during hypocotyl thermomorphogenesis 42 EIN3 directly activates the PP2C-encoding APD7 gene 47 EIN3-mediated ethylene signals inhibit the progression of apoplastic acidification 50 DISCUSSION 59 ACKNOWLEDGEMENTS 66 CHAPTER 2: SMAX1 integrates karrikin and light signals into GA-mediated hypocotyl growth during seedling establishment 68 INTRODUCTION 68 MATERIALS AND METHODS 1. Plant materials 73 2. Plant growth conditions 74 3. Gene expression assays 75 4. Yeast two-hybrid assays 75 5. Coimmunoprecipitation assays 77 6. Immunological analysis 78 7. Confocal microscopy 79 9. Quantitation and statistical analysis 80 RESULTS GA attenuates KAR-induced suppression of hypocotyl growth 81 GA-DELLA module mediates the function of KARs during hypocotyl growth 82 Interaction of SMAX1 with DELLAs is important for hypocotyl growth 90 SMAX1 represses the nuclear accumulation of RGA in hypocotyl cells 93 SMAX1 proteins accumulate in the light 95 Light signals enhance SMAX1 function in DELLA-mediated seedling establishment 105 SMAX1 integrates KAR and light signals into GA-mediated seedling establishment 118 DISCUSSION 120 ACKNOWLEDGEMENTS 124 REFERENCES 125 PUBLICATION LIST 137 ABSTRACT IN KOREAN 139๋ฐ•

    ๊ฑด์„ค์‚ฐ์—… ์ •๋ณดํ™”๋ฅผ ํ†ตํ•œ ์ƒ์‚ฐ์„ฑ ์ œ๊ณ ๋ฐฉ์•ˆ ์—ฐ๊ตฌ(Strategies on enhancing productivity by adopting information technology for construction industry)

    Get PDF
    ๋…ธํŠธ : ์ด ์—ฐ๊ตฌ๋ณด๊ณ ์„œ์˜ ๋‚ด์šฉ์€ ๊ตญํ† ์—ฐ๊ตฌ์›์˜ ์ž์ฒด ์—ฐ๊ตฌ๋ฌผ๋กœ์„œ ์ •๋ถ€์˜ ์ •์ฑ…์ด๋‚˜ ๊ฒฌํ•ด์™€๋Š” ์ƒ๊ด€์—†์Šต๋‹ˆ๋‹ค

    ๊ฑด์„ค์‚ฐ์—…์˜ ์ข…ํ•ฉ์  ๊ด€๋ฆฌ๋ฐฉ์•ˆ ์—ฐ๊ตฌ

    Get PDF
    ๋…ธํŠธ : ์ด ์ฑ…์€ ๊ตญํ† ๊ฐœ๋ฐœ์—ฐ๊ตฌ์›์˜ ์ž์ฒด ์—ฐ๊ตฌ๋ฌผ๋กœ์„œ ์ •๋ถ€์˜ ์ •์ฑ…์ด๋‚˜ ๊ฒฌํ•ด์™€๋Š” ์ƒ๊ด€์—†์Œ์„ ๋ฐํž™๋‹ˆ๋‹ค

    ๊ฑด์„ค์‚ฐ์—… ์ง€์‹๊ธฐ๋ฐ˜ ๊ตฌ์ถ•๋ฐฉ์•ˆ ์—ฐ๊ตฌ(A study on strategies for establishment of knowledge-based construction industry)

    Get PDF
    ๋…ธํŠธ : ์ด ์—ฐ๊ตฌ๋ณด๊ณ ์„œ์˜ ๋‚ด์šฉ์€ ๊ตญํ† ์—ฐ๊ตฌ์›์˜ ์ž์ฒด ์—ฐ๊ตฌ๋ฌผ๋กœ์„œ ์ •๋ถ€์˜ ์ •์ฑ…์ด๋‚˜ ๊ฒฌํ•ด์™€๋Š” ์ƒ๊ด€์—†์Šต๋‹ˆ๋‹ค

    ์ง€์—ญ๊ฐœ๋ฐœ์‚ฌ์—…์˜ ํšจ์œจ์  ์ถ”์ง„์„ ์œ„ํ•œ SOCํˆฌ์ž ์—ฐ๊ณ„์ง‘ํ–‰ ๋ฐฉ์•ˆ

    Get PDF
    ๋…ธํŠธ : ์ด ์—ฐ๊ตฌ๋ณด๊ณ ์„œ์˜ ๋‚ด์šฉ์€ ๊ตญํ† ์—ฐ๊ตฌ์›์˜ ์ž์ฒด ์—ฐ๊ตฌ๋ฌผ๋กœ์„œ ์ •๋ถ€์˜ ์ •์ฑ…์ด๋‚˜ ๊ฒฌํ•ด์™€๋Š” ์ƒ๊ด€์—†์Šต๋‹ˆ๋‹ค

    ๊ฑด์„ค์‚ฐ์—… ๊ตฌ์กฐ๋ณ€ํ™” ๋ฐ ์ „๋ง(Structural change and prospects in construction industry)

    Get PDF
    ๋…ธํŠธ : ์ด ์—ฐ๊ตฌ๋ณด๊ณ ์„œ์˜ ๋‚ด์šฉ์€ ๊ตญํ† ์—ฐ๊ตฌ์›์˜ ์ž์ฒด ์—ฐ๊ตฌ๋ฌผ๋กœ์„œ ์ •๋ถ€์˜ ์ •์ฑ…์ด๋‚˜ ๊ฒฌํ•ด์™€๋Š” ์ƒ๊ด€์—†์Šต๋‹ˆ๋‹ค
    • โ€ฆ
    corecore