574 research outputs found

    Multi-Stacked Graphene Pellicle for Extreme Ultra Violet Lithography

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ํ™”ํ•™๋ถ€,2019. 8. ํ™๋ณ‘ํฌ.์ง‘์ ํšŒ๋กœ์˜ ๊ธฐ์ˆ ์ด ๋ฐœ์ „ํ•จ์— ๋”ฐ๋ผ์„œ ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ ์„ ํญ์„ ๊ฐ์†Œ์‹œํ‚ค๋Š” ๊ฒƒ์€ ํ•„์—ฐ์ ์ธ ์ผ์ด๋‹ค. ์„ ํญ์˜ ๊ฐ์†Œ๋ฅผ ์œ„ํ•ด์„œ๋Š” ๋‹ค์–‘ํ•œ ๋ฐ˜๋„์ฒด ๊ณต์ • ๊ธฐ์ˆ ์˜ ๊ฐœ๋ฐœ์ด ํ•„์š”ํ•˜๋ฉฐ, ๊ทธ ์ค‘์—์„œ๋„ ๋…ธ๊ด‘ ๊ธฐ์ˆ ์€ ํŠนํžˆ ์ฃผ๋ชฉ์„ ๋ฐ›๊ณ  ์žˆ๋‹ค. ์ˆ˜ ๋ฐฑ ๋‚˜๋…ธ๋ฏธํ„ฐ ์ˆ˜์ค€์˜ ํŒŒ์žฅ์„ ์ด์šฉํ•˜๋Š” ์›์ž์™ธ์„  (DUV) ๋…ธ๊ด‘ ๊ธฐ์ˆ ์€ ํ•œ๊ณ„์— ๋„๋‹ฌํ•˜์˜€์œผ๋ฉฐ, ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ๋กœ์„œ ๋” ๋‚ฎ์€ ํŒŒ์žฅ ์˜์—ญ์„ ์‚ฌ์šฉํ•˜๋Š” ๊ทน์ž์™ธ์„  (EUV) ๋…ธ๊ด‘ ๊ธฐ์ˆ ์˜ ๋„์ž…์ด ์‹œ์ž‘๋˜์—ˆ๋‹ค. ์ด ๋•Œ ์‚ฌ์šฉ๋˜๋Š” 13.5nm์˜ EUV ์˜์—ญ์˜ ๋น›์€ ๊ณ ๋ฐ€๋„ ํ”Œ๋ผ์ฆˆ๋งˆ๋กœ๋ถ€ํ„ฐ ํ˜•์„ฑ๋˜๋ฉฐ, ๊ทธ์— ๋”ฐ๋ผ ๊ธฐ์กด์˜ ์›์ž์™ธ์„  ๋…ธ๊ด‘๊ณผ๋Š” ๋‹ฌ๋ฆฌ ์ง„๊ณต์˜ ํ™˜๊ฒฝ์—์„œ ๊ณต์ •์ด ์ง„ํ–‰๋˜์–ด์•ผ ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ฐจ์ด์ ์€ ์ƒˆ๋กœ์šด ๊ด‘ํ•™ ์‹œ์Šคํ…œ์„ ํ•„์š”๋กœ ํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ํŽ ๋ฆฌํด์„ ํฌํ•จํ•œ ๋ ˆํ‹ฐํด ์žฌ๋ฃŒ์˜ ๊ฐœ๋ฐœ์„ ํ•„์š”๋กœ ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ ์ธต ๊ทธ๋ž˜ํ•€ ํŽ ๋ฆฌํด์„ ์ œ์•ˆํ•œ๋‹ค. ํƒ„์†Œ์˜ ๋™์†Œ์ฒด์ด๋ฉฐ ์›์ž๋“ค์ด 2์ฐจ์› ํ‰๋ฉด์œผ๋กœ sp2 ํ˜ผ์„ฑ ๊ฒฐํ•ฉ์˜ ๊ตฌ์กฐ๋ฅผ ์ด๋ฃจ๊ณ  ์žˆ๋Š” ๊ทธ๋ž˜ํ•€์€ ์›์ž ๋‹จ์ผ์ธต์˜ ๋‘๊ป˜๋ฅผ ์ง€๋‹ˆ๊ธฐ ๋•Œ๋ฌธ์— ๋›ฐ์–ด๋‚œ ํŠน์„ฑ๋“ค์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ด ์ค‘์—์„œ๋„ ๊ทน์ž์™ธ์„  ๋…ธ๊ด‘ ๊ธฐ์ˆ ์šฉ ํŽ ๋ฆฌํด์— ์‘์šฉ๋  ์ˆ˜ ์žˆ๋Š” ์ด์œ ๋Š” ์ „๊ธฐ์  ํŠน์„ฑ, ์—ด์  ํŠน์„ฑ, ๋น›์„ ํˆฌ๊ณผ์‹œํ‚ค๋Š” ๊ด‘ํ•™์  ํŠน์„ฑ ๊ทธ๋ฆฌ๊ณ  ๋Œ€๋ฉด์ ์œผ๋กœ ์œ ์ง€๋  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๊ณ„์  ๊ฐ•๋„ ํŠน์„ฑ๊นŒ์ง€ ๋›ฐ์–ด๋‚˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ ์ธต ๊ทธ๋ž˜ํ•€ ํŽ ๋ฆฌํด์˜ ์ œ์•ˆ์— ์•ž์„œ์„œ ๋จผ์ €, ๋Œ€๋ฉด์ ์œผ๋กœ ํ™”ํ•™๊ธฐ์ƒ์ฆ์ฐฉ๋ฒ•(chemical vapor deposition)์„ ์ด์šฉํ•˜์—ฌ ๋Œ€๋ฉด์ ์œผ๋กœ ๊ทธ๋ž˜ํ•€ ๋ฐ•๋ง‰์„ ํ•ฉ์„ฑํ•˜์˜€๋‹ค. ํ™”ํ•™๊ธฐ์ƒ์ฆ์ฐฉ๋ฒ•์œผ๋กœ ํ•ฉ์„ฑ๋œ ๊ทธ๋ž˜ํ•€์— ๊ธฐ์ฒด์ƒ ๋ถ„์ž ๋„ํ•‘ (vapor-phase molecular doping)์„ ํ•˜์—ฌ ๊ทธ ํŠน์„ฑ์„ ๋” ๋›ฐ์–ด๋‚œ ๋ฐฉํ–ฅ์œผ๋กœ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ ํŒŒ๋ผํ•€์„ ์ด์šฉํ•˜๋Š” ์ƒˆ๋กœ์šด ์ „์‚ฌ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€์œผ๋ฉฐ ์ด ๋ฐฉ๋ฒ•์œผ๋กœ ๊ธฐ์กด์˜ ์ „์‚ฌ๋ฐฉ๋ฒ•๋ณด๋‹ค ์ข‹์€ ํŠน์„ฑ์˜ ๊ทธ๋ž˜ํ•€์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ทน์ž์™ธ์„  ๋…ธ๊ด‘ ๊ธฐ์ˆ ์— ์ ์ธต ๊ทธ๋ž˜ํ•€ ํŽ ๋ฆฌํด์„ ์ ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์—ด ๋ถ€ํ•˜, ํˆฌ๊ณผ์œจ ๊ทธ๋ฆฌ๊ณ  ์ƒ์‚ฐ์„ฑ ๊ด€์ ์—์„œ ๊ฐœ๋ฐœ๋˜์–ด์•ผ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด์„œ ์ˆ˜ ์‹ญ ๋‚˜๋…ธ๋ฏธํ„ฐ ์ˆ˜์ค€์˜ ๋ฐ•๋ง‰์„ ๊ตฌํ˜„ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ์ผ๋ฐ˜์ ์ธ ์Šต์‹์ „์‚ฌ ๋ฐฉ๋ฒ•์„ ๋ฐ˜๋ณตํ•˜์—ฌ ์—ด ์ธต์— ํ•ด๋‹นํ•˜๋Š” ์ ์ธต ๊ทธ๋ž˜ํ•€ ๋ฐ•๋ง‰์„ ์ค€๋น„ํ•˜์˜€๋‹ค. ์ž์™ธ์„  ๋ถ„๊ด‘ ๋ถ„์„ ๋ฐ ๋ผ๋งŒ ๋ถ„๊ด‘ ๋ถ„์„์œผ๋กœ ์ ์ธต์ด ์ œ๋Œ€๋กœ ์ด๋ฃจ์–ด์กŒ์Œ์„ ํ™•์ธํ–ˆ์œผ๋ฉฐ, ์›์žํ˜„๋ฏธ๊ฒฝ์œผ๋กœ ํ˜•์„ฑ๋œ ์ ์ธต ๋ฐ•๋ง‰์˜ ๋‘๊ป˜์„œ ์•ฝ 15.4nm์˜€๋‹ค. ์ ์ธต ๊ทธ๋ž˜ํ•€ ๋ฐ•๋ง‰์œผ๋กœ ๊ทน์ž์™ธ์„  ์˜์—ญ์—์„œ์˜ ํˆฌ๊ณผ์œจ์„ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ง€๋ฆ„ 10mm์— ํ•ด๋‹นํ•˜๋Š” ์›์˜ ํฌ๊ธฐ๋กœ ๋…๋ฆฝํ˜• (free-standing) ๋ฐ•๋ง‰ ์‹œ๋ฃŒ๋ฅผ ๊ตฌํ˜„ํ•˜๋Š” ๋ฐ์— ์„ฑ๊ณตํ•˜์˜€์œผ๋ฉฐ, ์ง„๊ณต์˜ ํ™˜๊ฒฝ์—์„œ ์ธก์ •๋œ ๊ทน์ž์™ธ์„  ํˆฌ๊ณผ์œจ์€ 87%์˜€๋‹ค.As the technology of integrated circuits develops, it is inevitable to reduce the line width of transistors. In order to reduce the line width, it is necessary to develop various semiconductor processing technologies, among which exposure technology has particularly attracted attention. The deep ultraviolet (DUV) lithography techniques using wavelengths on the order of a few hundred nanometers have reached their limits. And the introduction of extreme ultraviolet (EUV) lithography techniques using a lower wavelength range as a new technology has begun. In this case, the light in the EUV region of 13.5 nm wavelength is emitted from the high-density plasma. Thus, the process must be performed in a vacuum environment unlike the conventional DUV lithography. These differences not only require new optical systems, but also require the development of reticle materials, including pellicles. In this thesis, we propose Multi-Stacked Graphene Pellicle for EUV lithography. Graphene, which is a carbon isotope and has a sp2 hybridized structure in a two-dimensional plane has excellent properties, because it has a thickness of a single layer of atoms. Among them, the reason that can be applied to the pellicle for EUV lithography is that it is excellent in electrical characteristics, thermal properties, optical properties and mechanical strength. Before the proposal of Multi-Stacked Graphene Pellicle, a large area graphene film was synthesized by chemical vapor deposition (CVD) method. By the vapor-phase molecular doping and its characteristics can be controlled in a better direction. We also propose a novel transfer method, paraffin-assisted transfer. This method can achieve graphene with better characteristics than conventional transfer method. The proposed Multi-Stacked Graphene Pellicle for EUV lithography must be developed in terms of heat load, transmittance in EUV region and productivity. To meet these requirements, we aimed to develop thin films of several tens of nanometer. The typical wet transfer method was repeated to prepare multi-stacked graphene film corresponding to 10 (ten) layers. UV-Vis and Raman spectroscopic analysis showed that the transfer and stacking process was completed properly. The thickness of multi-stacked graphene film was measured by atomic force microscope (AFM). And the result was about 15.4 nm. To measure the transmittance in the EUV region multi-stacked graphene film, a free-standing sample of 10 mm in diameter was fabricated. And the EUV light transmittance was in a vacuum environment 87 %.Chapter 1. Introduction ๏ผ‘ 1.1. Motivation ๏ผ‘ 1.2. Outline of the Thesis ๏ผ’ Chapter 2. CVD Graphene Films ๏ผ” 2.1. Synthesis of CVD Graphene Films ๏ผ” 2.2. Modulation of Properties of Graphene ๏ผ™ Chapter 3. Paraffin-assisted Graphene Transfer ๏ผ‘๏ผ“ 3.1. Introduction ๏ผ‘๏ผ“ 3.2. Experimental ๏ผ‘๏ผ– 3.3. Results and Discussion ๏ผ‘๏ผ˜ Chapter 4. Multi-Stacked Graphene Pellicle for Extreme Ultra Violet Lithography ๏ผ‘๏ผ™ 4.1. Introduction ๏ผ‘๏ผ™ 4.2. Experimental ๏ผ’๏ผ‘ 4.3. Results and Discussion ๏ผ’๏ผ– Chapter 5. Conclusion ๏ผ“๏ผ Bibliography ๏ผ“๏ผ‘ ๊ตญ ๋ฌธ ์ดˆ ๋ก ๏ผ“๏ผ•Maste

    ์˜ค๋ฐฐ์ž ์ถ”์ถœ๋ฌผ์˜ ํ•ญ๊ท ํšจ๊ณผ์™€ ์žฌ๊ด‘ํ™”ํšจ๊ณผ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์น˜์˜ํ•™๋Œ€ํ•™์› ์น˜์˜๊ณผํ•™๊ณผ, 2019. 2. ์ง„๋ณดํ˜•.Galla Chinensis has been used in traditional medicine for years. It inhibits the adherence of planktonic oral bacteria as well as inhibiting acid production by cariogenic bacteria. However, little is known about the relevant conditions of GCE exposure time and concentration and the effect of GCE on the structural and functional activity of cariogenic bacteria. Also, experiments have not been performed to investigate the co-operative effects of calcium and the GCE on enhancing the remineralization underneath the biofilm model. Thus, this study aimed to evaluate the antimicrobial activity of various concentrations of GCE on S. mutans and other oral streptococci related to dental caries and to investigate the effects of GCE with calcium on enhancing remineralization in vitro. For the anti-bacterial effect experiment, biofilm formed on glass surfaces were treated with GCE at different concentrations at different exposure time. For the remineralization experiment, S. mutans biofilm was formed on bovine enamel specimens over a 72 h period and treated with the following compounds for 10 min: 1.0 mol calcium (CA), a 4,000 ppm aqueous solutions of G. Chinensis extract (GCE) and 4,000 ppm aqueous solutions of GCE with 1.0 mol CA. The enamel specimens were analyzed for enamel surface microhardness after remineralization. In bacterial growth at different GCE concentrations of bacteria over time, bacterial growth was inhibited as the concentration of GCE increased. 1.0 mg/ml GCE had similar bactericidal effects against S. mutans and S. oralis biofilms to that of 2.0 mg/ml CHX, and also showed incomplete septa was also observed in the outline of the cell wall, disruption of the cell membrane. This study also found that natural G. Chinensis has a significant effect on enhancing the remineralization of enamel lesion, and it had combined synergic effects with calcium in improving remineralization. This suggests that GCE might be a useful agent for preventing dental caries.์˜ค๋ฐฐ์ž๋Š” ๋ถ‰๋‚˜๋ฌด ์žŽ์— ์˜ค๋ฐฐ์ž ์ง„๋”ง๋ฌผ์ด ์ž์ƒ์„ ์ฃผ์–ด ์ƒ๊ธฐ๋Š” ๋ฒŒ๋ ˆ์ง‘์œผ๋กœ์„œ, ํ•ญ๊ท ์ž‘์šฉ, ํ•ญ์‚ฐํ™” ๋ฐ ์žฌ๊ด‘ํ™” ์ž‘์šฉ์„ ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋ณด๊ณ ๋˜์—ˆ๋‹ค. ์ƒˆ๋กœ์šด ๋ฌผ์งˆ์„ ํ•ญ์ƒ์ œ๋กœ ์‚ฌ์šฉํ•  ๋•Œ ๋‚จ์šฉ์œผ๋กœ ์ธํ•œ ์•…์˜ํ–ฅ์„ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋ฌผ์งˆ์˜ ๋…ธ์ถœ๊ณผ ๊ด€๋ จํ•˜์—ฌ ๊ทธ ํŠน์„ฑ, ํšจ๋Šฅ ๋ฐ ์•ˆ์ „์„ฑ์„ ๋ณด๋‹ค ์ž˜ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ˆ˜ํ–‰๋˜์–ด์•ผ ํ•œ๋‹ค. ์ด์ „ ์—ฐ๊ตฌ์—์„œ ๋ถˆ์†Œ์™€ ์˜ค๋ฐฐ์ž์˜ ํ™”ํ•ฉ๋ฌผ์ด ๋ฒ•๋ž‘์งˆ์˜ ์žฌ๊ด‘ํ™”๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•˜์—ฌ ๋ณด๊ณ ํ•œ ๋ฐ”๋Š” ์žˆ์œผ๋‚˜, ์นผ์Š˜๊ณผ ์˜ค๋ฐฐ์ž์˜ ํ™”ํ•ฉ๋ฌผ์ด ์น˜์•„์˜ ๋ฒ•๋ž‘์งˆ ์žฌ๊ด‘ํ™”์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•ด ๋ฐœํ‘œ๋œ ์—ฐ๊ตฌ๋Š” ์•„์ง ์—†์—ˆ๋‹ค. ์ด์— ์ด๋ฒˆ ์—ฐ๊ตฌ์—์„œ๋Š” ํ•ญ๊ท , ์žฌ๊ด‘ํ™” ํšจ๊ณผ๊ฐ€ ์žˆ๋‹ค๊ณ  ์•Œ๋ ค์ง„ ์˜ค๋ฐฐ์ž ์ถ”์ถœ๋ฌผ์˜ ํ•ญ๊ท ํ™œ์„ฑ์„ Streptococcus mutans ์™€ ๊ธฐํƒ€ ์น˜์•„ ์šฐ์‹์„ ์œ ๋ฐœํ•˜๋Š” ๊ท ์„ ์ด์šฉํ•˜์—ฌ ํ•ญ๊ท ํšจ๊ณผ๋ฅผ ํ‰๊ฐ€ํ•˜๊ณ , ์ตœ์  ๋†๋„๋ฅผ ์กฐ์‚ฌํ•˜์˜€์œผ๋ฉฐ, ์˜ค๋ฐฐ์ž ์ถ”์ถœ๋ฌผ๊ณผ ์นผ์Š˜ ํ˜ผํ•ฉ ๋ฌผ์งˆ์˜ ๋ฒ•๋ž‘์งˆ ์žฌ๊ด‘ํ™” ํšจ๊ณผ๋ฅผ ํ™•์ธํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ํ•ญ๊ท  ์ž‘์šฉ์˜ ํšจ๊ณผ ์‹คํ—˜์„ ์œ„ํ•˜์—ฌ, ์˜ค๋ฐฐ์ž ์ถ”์ถœ๋ฌผ๊ณผ ํด๋กœ๋ฅดํ—ฅ์‹œ๋”˜(์–‘์„ฑ๋Œ€์กฐ๊ตฐ), dimethyl sulfoxide(์Œ์„ฑ๋Œ€์กฐ๊ตฐ)์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. S. mutans, S. sanguinis, S. oralis ๋กœ ํ˜•์„ฑ๋œ ๋ฐ”์ด์˜ค ํ•„๋ฆ„์„ ๋‹ค์–‘ํ•œ ์˜ค๋ฐฐ์ž ์ถ”์ถœ๋ฌผ์˜ ๋†๋„์™€ ๋…ธ์ถœ ์‹œ๊ฐ„์œผ๋กœ ์ฒ˜๋ฆฌํ•œ ํ›„, ์‚ด๊ท  ํ™œ์„ฑ, ์‚ฐ ๋ฐœ์ƒ, ์ตœ์†Œ ์–ต์ œ ๋†๋„ ๋ฐ ์„ธ๊ท  ํ˜•ํƒœ ๋ณ€ํ™”๋ฅผ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์žฌ๊ด‘ํ™” ํšจ๊ณผ ์‹คํ—˜์„ ์œ„ํ•˜์—ฌ, 1.0 mol ์นผ์Š˜(CA), 4,000 ppm ์˜ค๋ฐฐ์ž์ถ”์ถœ๋ฌผ(GCE), 4,000 ppm ์˜ค๋ฐฐ์ž์ถ”์ถœ๋ฌผ๊ณผ 1.0 mol ์นผ์Š˜ ํ˜ผํ•ฉ์•ก(GCE+CA)์œผ๋กœ ์ฒ˜๋ฆฌํ•œ ํ›„, ๋ฒ•๋ž‘์งˆ ํ‘œ๋ฉด ๊ฒฝ๋„ ๋“ฑ์„ ์ธก์ •ํ•˜์—ฌ ๋‹ค์Œ์˜ ๊ฒฐ๋ก ์„ ์–ป์—ˆ๋‹ค. 1. ์˜ค๋ฐฐ์ž์˜ ๋†๋„๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ๋ฐ•ํ…Œ๋ฆฌ์•„ ์„ฑ์žฅ์€ ์–ต์ œ๋˜์—ˆ๋‹ค. 2. 1.0 mg/ml ์˜ค๋ฐฐ์ž์˜ ๋†๋„๋Š” S. mutans ์™€ S. oralis ๋ฐ”์ด์˜ค ํ•„๋ฆ„์— ๋Œ€ํ•ด 2.0 mg/ml ํด๋กœ๋ฅดํ—ฅ์‹œ๋”˜๊ณผ ์œ ์‚ฌํ•œ ํ•ญ๊ท ํšจ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค. 3. TEM ๊ด€์ฐฐ ๊ฒฐ๊ณผ, 1.0 mg/ml ์˜ค๋ฐฐ์ž ๊ตฐ์€ ๋ถˆ์™„์ „ ์ค‘๊ฒฉ์„ ๋ณด์—ฌ ์„ธํฌ๋ฒฝ ์œค๊ณฝ์—์„œ ์„ธํฌ๋ง‰์˜ ํŒŒ๊ดด๊ฐ€ ๊ด€์ฐฐ๋˜์—ˆ๊ณ , 1.0 mg/ml GCE ์‹คํ—˜๊ตฐ๊ณผ 2.0 mg/ml CHX ๋Œ€์กฐ๊ตฐ์—์„œ ์„ธํฌ ๋‚ด ๋‚ด์šฉ๋ฌผ์˜ ์‚ผ์ถœ์ด ๋ณด์˜€๋‹ค. 4. GCE ์™€ CA ํ˜ผํ•ฉ๊ตฐ์—์„œ ์žฌ๊ด‘ํ™” ํšจ๊ณผ๊ฐ€ ๊ฐ€์žฅ ๋†’์•˜๋‹ค (p < 0.05). ๊ฒฐ๋ก ์ ์œผ๋กœ, ์˜ค๋ฐฐ์ž๊ฐ€ ๋ฒ•๋ž‘์งˆ์˜ ์žฌ๊ด‘ํ™”๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๊ณ  ์นผ์Š˜๊ณผ ์ƒ์Šนํšจ๊ณผ๊ฐ€ ์žˆ์œผ๋ฉฐ, ์‚ฐ ์ƒ์„ฑ์„ ์–ต์ œํ•˜๊ณ  ์น˜์•„์šฐ์‹์„ธ๊ท ์˜ ๋ฏธ์„ธ๊ตฌ์กฐ๋ฅผ ๋ณ€ํ™”์‹œํ‚ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ, ํ•ญ์šฐ์‹์ œ๋กœ์„œ ์‚ฌ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ๊ฐ€๋Š ํ•ด ๋ณผ ์ˆ˜ ์žˆ์—ˆ๋‹ค.1. Introduction 1 1.1 Backgrounds 2 1.2 Research purposes 7 2. Literature Review 8 2.1 Research trends on natural products 9 2.2 G. Chinensis 12 2.3 Research trends on the anti-bacterial activity of G. Chinensis 14 2.4 Research trends on the remineralization effect of G. Chinensis 16 3. Material & Methods 18 3.1 Anti-bacterial activity of G. Chinensis extract against cariogenic bacteria in biofilm model 19 3.1.1 G. Chinensis extract (GCE) samples and test compounds preparation 19 3.1.2 Bacterial species, cultivation and formation of biofilm 20 3.1.3 Determination of minimum inhibitory concentration 20 3.1.4 Antibacterial activity of GCE against S. mutans and normal oral streptococci 21 3.1.5 Acidogenicity of S. mutans and normal oral streptococci biofilms 22 3.1.6 Morphological changes analysis 22 3.1.7 Statistical analysis 23 3.2 Remineralization effect of GCE and calcium of enamel in S. mutans biofilm model 24 3.2.1 Preparation of enamel specimens 25 3.2.2 Bacteria strain, media, growth conditions 26 3.2.3 Remineralization process 26 3.2.4 Measurement of bacterial viability 27 3.2.5 Measurement of acid production 27 3.2.6 Morphological changes analysis 28 3.2.7 Assessment of remineralization effect 28 3.2.8 Statistical analysis 29 4. Results 30 4.1 Antibacterial activity of GCE 31 4.1.1 Antibacterial activity of GCE on cariogenic bacteria biofilm 31 4.1.2 Effects of GCE on acid production inhibition 39 4.1.3 Morphological changes by SEM and TEM 43 4.2 Remieralization effect of GCE and calcium of enamel 50 4.2.1 Enamel microhardness changes after the experimental procedure 50 4.2.2 Antibacterial activity of GCE for S. mutans biofilm 52 4.2.3 Inhibition of acid production 54 4.2.4 Morphological changes in S. mutans biofilms 56 5. Discussion 58 6. Conclusions 69 Bibliography 72 ๊ตญ๋ฌธ์ดˆ๋ก 82Docto

    Inflammasome and Cognitive Symptoms in Human Diseases: Biological Evidence from Experimental Research

    Get PDF
    Cognitive symptoms are prevalent in the elderly and are associated with an elevated risk of developing dementia. Disease-driven changes can cause cognitive disabilities in memory, attention, and language. The inflammasome is an innate immune intracellular complex that has a critical role in the host defense system, in that it senses infectious pathogen-associated and endogenous danger-associated molecular patterns. An unbalanced or dysregulated inflammasome is associated with infectious, inflammatory, and neurodegenerative diseases. Due to its importance in such pathological conditions, the inflammasome is an emerging drug target for human diseases. A growing number of studies have revealed links between cognitive symptoms and the inflammasome. Several studies have shown that reducing the inflammasome component mitigates cognitive symptoms in diseased states. Therefore, understanding the inflammasome regulatory mechanisms may be required for the prevention and treatment of cognitive symptoms. The purpose of this review is to discuss the current understanding of the inflammasome and its relationships with cognitive symptoms in various human diseases.ope

    ์ง€๊ตฌ ๋งจํ‹€์˜ ์ตœ๋Œ€ 14 GPa๊นŒ์ง€์—์„œ ํƒ„์†Œ๋ฅผ ํฌํ•จํ•˜๋Š” ๋น„์ •์งˆ ๋ฐ ๊ฒฐ์ •์งˆ ๊ทœ์‚ฐ์—ผ ๋ฌผ์งˆ์˜ ์••๋ ฅ์— ๋”ฐ๋ฅธ ํƒ„์†Œ ํ™”ํ•™์ข… ๋ฐ ์›์ž ๊ตฌ์กฐ ๋ณ€ํ™”: ๊ณ ์ƒ ํ•ต์ž๊ธฐ๊ณต๋ช… ๋ถ„์„ ๋ฐ ๋ผ๋งŒ ๋ถ„๊ด‘๋ถ„์„ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€,2019. 2. ์ด์„ฑ๊ทผ.๋งจํ‹€์€ ์ง€๊ตฌ์ƒ์—์„œ ๊ฐ€์žฅ ํฐ ํƒ„์†Œ ์ €์žฅ๊ณ ๋กœ ๋งจํ‹€ ๋‚ด์—์„œ์˜ ํƒ„์†Œ์˜ ํ™”ํ•™์ข… ๋ณ€ํ™”๋Š” ๊ทœ์‚ฐ์—ผ ์šฉ์œต์ฒด์˜ ์ง€๊ตฌ๋ฌผ๋ฆฌ ๋ฐ ์ง€๊ตฌํ™”ํ•™์  ์„ฑ์งˆ ๋ณ€ํ™”, ๋งจํ‹€ ๋‚ด์˜ ์‚ฐ์†Œ ํ“จ๊ฐ€์‹œํ‹ฐ ์กฐ์ ˆ, ๊ทธ๋ฆฌ๊ณ  ๋งจํ‹€ ๋‚ด์˜ ํƒ„์†Œ ๋ถ„ํฌ์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ค‘์š”์„ฑ์œผ๋กœ, ๊ทœ์‚ฐ์—ผ ์šฉ์œต์ฒด ๋‚ด์— ์šฉํ•ด๋œ ํƒ„์†Œ ํ™”ํ•™์ข…์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” 4 GPa๊นŒ์ง€์˜ ์••๋ ฅ ์กฐ๊ฑด์—์„œ ํ™œ๋ฐœํžˆ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹œ๋ฃŒ ํ•ฉ์„ฑ์—์„œ์˜ ์–ด๋ ค์›€์œผ๋กœ, ์ƒ๋ถ€ ๋งจํ‹€์— ํ•ด๋‹นํ•˜๋Š” 4โ€“14 GPa์˜ ์••๋ ฅ ์กฐ๊ฑด์—์„œ ๊ทœ์‚ฐ์—ผ ์šฉ์œต์ฒด ๋‚ด์˜ ํƒ„์†Œ ํ™”ํ•™์ข… ๋ณ€ํ™”์™€ ๊ทธ์— ๋”ฐ๋ฅธ ๊ทœ์‚ฐ์—ผ ๋ฌผ์งˆ์˜ ๊ตฌ์กฐ ๋ณ€ํ™”์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ์•„์ง๊นŒ์ง€ ์ง„ํ–‰๋˜์ง€ ์•Š์•˜๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๊ฒฐ์ •์งˆ ๋ฐ ๋น„์ •์งˆ ๊ทœ์‚ฐ์—ผ ๋ฌผ์งˆ ๋‚ด์— ์กด์žฌํ•˜๋Š” ํƒ„์†Œ์— ๋Œ€ํ•ด ์••๋ ฅ์— ์˜ํ•œ ํ™”ํ•™์ข… ๋ณ€ํ™”๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ํ™•์ธํ•˜๊ณ ์ž ๋‹คํ•ต์ข… (13C, 27Al, 29Si, 17O, and 7Li) ๊ณ ์ƒ ํ•ต์ž๊ธฐ๊ณต๋ช… ๋ถ„๊ด‘๋ถ„์„ (NMR)๊ณผ ๋ผ๋งŒ ๋ถ„๊ด‘๋ถ„์„์„ ์ด์šฉํ–ˆ๋‹ค. ๋…ผ๋ฌธ์˜ ์ฃผ ๋ชฉ์ ์€ ๊ฒฐ์ •์งˆ ๋ฐ ๋น„์ •์งˆ ๊ทœ์‚ฐ์—ผ ๋ฌผ์งˆ ๋‚ด์— ์กด์žฌํ•˜๋Š” ํƒ„์†Œ ํ™”ํ•™์ข…์„ ๋ถ„์„ํ•˜๊ณ  ์ •๋Ÿ‰ํ™”ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์••๋ ฅ์— ์˜ํ•œ ์•Œ์นผ๋ฆฌ ๊ทœ์‚ฐ์—ผ ์šฉ์œต์ฒด์˜ ๊ตฌ์กฐ ๋ณ€ํ™”๋„ ํ•จ๊ป˜ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ์šฐ์„  13C๋กœ ๋ถ€ํ™”๋œ ๋น„์ •์งˆ ํƒ„์†Œ์™€์˜ ๋ฐ˜์‘์œผ๋กœ ์ƒ์„ฑ๋œ ์—”์Šคํ…Œํƒ€์ดํŠธ (enstatite) ๊ฒฐ์ •์„ 1.5 GPa์—์„œ ํ•ฉ์„ฑํ•˜๊ณ , ์‹œ๋ฃŒ ๋‚ด์— ์กด์žฌํ•˜๋Š” ํƒ„์†Œ ํ™”ํ•™์ข…์„ ํ•จ์œ ํ•œ ์œ ์ฒด ํฌํš๋ฌผ ๋ฐ ํƒ„์†Œ ํ™”ํ•™์ข…์— ๋Œ€ํ•œ ์ฒด๊ณ„์ ์ธ ๋ถ„์„ ๋ฐฉ๋ฒ•์„ ์ˆ˜๋ฆฝํ–ˆ๋‹ค. ๋ผ๋งŒ ์ŠคํŽ™ํŠธ๋Ÿผ์—์„œ๋Š” ์œ ์ฒด ํฌํš๋ฌผ ๋‚ด์—์„œ CO2 ๋ฐ CO, CH4, H2O, H2์™€ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ํ™”ํ•™์ข…์ด ๋ถˆ๊ท ์งˆํ•˜๊ฒŒ ๋ถ„ํฌํ•˜๊ณ  ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€์œผ๋‚˜, 13C MAS NMR ์ŠคํŽ™ํŠธ๋Ÿผ์—์„œ๋Š” CO2, CO์™€ ๋”๋ถˆ์–ด ๋ผ๋งŒ์—์„œ ํ™•์ธ๋˜์ง€ ์•Š์•˜๋˜ CO32-๊ฐ€ ํ™•์ธ๋˜์—ˆ๋‹ค. ๋ผ๋งŒ ์ŠคํŽ™ํŠธ๋Ÿผ์—์„œ ํ™•์ธ๋˜์ง€ ์•Š์•˜๋˜ ํ™”ํ•™์ข…์ด ๊ฒฐ์ •์งˆ ๊ทœ์‚ฐ์—ผ ๋‚ด๋ถ€์— ์šฉํ•ด๋œ ํ™”ํ•™์ข…์ธ์ง€๋ฅผ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด 13C MAS NMR ์ŠคํŽ™ํŠธ๋Ÿผ์—์„œ์˜ ํ”ผํฌ ์„ธ๊ธฐ์™€ ์‹œ๋ฃŒ ๋‚ด์˜ 13C ํ•จ๋Ÿ‰์— ๋Œ€ํ•œ ๊ด€๊ณ„์‹์„ ์„ธ์› ๋‹ค. ๊ด€๊ณ„์‹์œผ๋กœ๋ถ€ํ„ฐ CO32-๋Š” 28โ€“45 ppm ์กด์žฌํ•˜๋Š” ๊ฒƒ์œผ๋กœ ํ™•์ธ๋˜์—ˆ์œผ๋ฉฐ, ์ด๊ฒƒ์€ ์—”์Šคํ…Œํƒ€์ดํŠธ ๊ฒฐ์ • ๋‚ด์˜ ํƒ„์†Œ ์šฉํ•ด๋„ (0.05โ€“4.7 ppm)๋ณด๋‹ค ํ›จ์”ฌ ๋†’์œผ๋ฏ€๋กœ CO32-๋Š” ๋ถ„๋ฆฌ๋œ ์ƒ์œผ๋กœ ์กด์žฌํ•  ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์—”์Šคํ…Œํƒ€์ดํŠธ ๋‚ด์˜ ํƒ„์†Œ ํ™”ํ•™์ข…์„ ๋™์ •ํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋œ ๋ผ๋งŒ ๋ฐ NMR ๋ฐฉ๋ฒ•๋ก ์„ ์ด์šฉํ•˜์—ฌ ์•ž์œผ๋กœ ๊ทœ์‚ฐ์—ผ ๊ฒฐ์ • ๋‚ด์— ์กด์žฌํ•˜๋Š” ํƒ„์†Œ ํ™”ํ•™์ข…์„ ์ •๋Ÿ‰์ ์œผ๋กœ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค. 8 GPa๊นŒ์ง€์˜ ์••๋ ฅ์—์„œ ์ด์„ฑ๋ถ„๊ณ„ Na-๊ทœ์‚ฐ์—ผ ์šฉ์œต์ฒด์™€ ์‚ผ์„ฑ๋ถ„๊ณ„ Na-์•Œ๋ฃจ๋ฏธ๋…ธ๊ทœ์‚ฐ์—ผ ์šฉ์œต์ฒด ๋‚ด์— ์กด์žฌํ•˜๋Š” ํƒ„์†Œ์˜ ์••๋ ฅ์— ๋”ฐ๋ฅธ ํ™”ํ•™์ข… ๋ณ€ํ™”์™€ ๊ทธ์— ๋”ฐ๋ฅธ ๊ทœ์‚ฐ์—ผ ์šฉ์œต์ฒด์˜ ๊ตฌ์กฐ ๋ณ€ํ™”์— ๋Œ€ํ•ด ์ดํ•ดํ•˜๊ณ ์ž ๋‹คํ•ต์ข…(13C, 27Al, 29Si, 17O) ๊ณ ์ƒ NMR์„ ์ด์šฉํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ์ด์„ฑ๋ถ„๊ณ„ Na-๊ทœ์‚ฐ์—ผ ์šฉ์œต์ฒด์—์„œ๋Š” ๊ทœ์‚ฐ์—ผ ์šฉ์œต์ฒด ๋‚ด์— ์šฉํ•ด๋œ ํƒ„์‚ฐ์—ผ ์ด์˜จ๋งŒ์ด ๊ด€์ฐฐ๋˜์—ˆ์œผ๋ฉฐ, 6 GPa ์ด์ƒ์˜ ์••๋ ฅ์—์„œ๋Š” ๊ทœ์‚ฐ์—ผ ์‚ฌ๋ฉด์ฒด์™€ ์—ฐ๊ฒฐ๋œ ์—ฐ๊ฒฐํƒ„์‚ฐ์—ผ์˜ ํ˜•์„ฑ์ด ํ™•์ธ๋˜์—ˆ๋‹ค. ๊ทธ์— ๋ฐ˜ํ•ด ์‚ผ์„ฑ๋ถ„๊ณ„ Na-์•Œ๋ฃจ๋ฏธ๋…ธ๊ทœ์‚ฐ์—ผ ์šฉ์œต์ฒด์—์„œ๋Š” CO2, CO, CO32-๊ฐ€ ํ™•์ธ๋˜์—ˆ์œผ๋ฉฐ, 6 GPa๊นŒ์ง€ ์••๋ ฅ์ด ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ํƒ„์‚ฐ์—ผ ์ด์˜จ์˜ ๋ถ„์œจ์ด ์ฆ๊ฐ€ํ–ˆ๋‹ค. ๋„ค ์ข…๋ฅ˜์˜ ํƒ„์‚ฐ์—ผ ํ™”ํ•™์ข… ์ค‘, Al(CO3)Si์˜ ๋ถ„์œจ์ด ์••๋ ฅ์˜ ์ฆ๊ฐ€์— ๋”ฐ๋ผ ๊ฐ€์žฅ ๋งŽ์ด ์ฆ๊ฐ€ํ–ˆ์œผ๋ฉฐ ์ด๊ฒƒ์€ 27Al 3QMAS NMR ์ŠคํŽ™ํŠธ๋Ÿผ์—์„œ ๋ณด์ด๋Š” Al์˜ ์œ„์ƒํ•™์  ๋ฌด์งˆ์„œ๋„์˜ ์ฆ๊ฐ€์™€ ๊ด€๋ จ์ด ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค. 13C MAS NMR์—์„œ์˜ ํ”ผํฌ ์„ธ๊ธฐ์™€CO2์˜ ์Šคํ•€-๊ฒฉ์ž ์™„ํ™” ์‹œ๊ฐ„์œผ๋กœ๋ถ€ํ„ฐ ๊ณ„์‚ฐํ–ˆ์„ ๋•Œ, Na-์•Œ๋ฃจ๋ฏธ๋…ธ๊ทœ์‚ฐ์—ผ ์šฉ์œต์ฒด ๋‚ด์— ์กด์žฌํ•˜๋Š” ํƒ„์†Œ์˜ ์ดํ•จ๋Ÿ‰์€ 1.5 GPa์—์„œ๋Š” ~1 wt%, 6 GPa์—์„œ ~4 wt%๋กœ ์œ ์ถ”๋œ๋‹ค. 4 GPa์ด์ƒ์˜ ์••๋ ฅ์—์„œ ๊ทœ์‚ฐ์—ผ ์šฉ์œต์ฒด ๋‚ด์˜ ํƒ„์†Œ ํ™”ํ•™์ข… ๋ณ€ํ™”์— ๋Œ€ํ•œ ๋ณธ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ์ƒ๋ถ€ ๋งจํ‹€ ๋‚ด์— ์กด์žฌํ•˜๋Š” ๊ทœ์‚ฐ์—ผ ์šฉ์œต์ฒด ๋‚ด์—์„œ์˜ ํƒ„์†Œ ํ™”ํ•™์ข… ๋ฐ ํ•จ๋Ÿ‰์— ๋Œ€ํ•œ ์ดํ•ด๋ฅผ ๋„์šธ ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค. ํƒ„์†Œ๊ฐ€ ์—†๋Š” ๊ทœ์‚ฐ์—ผ ์šฉ์œต์ฒด์—์„œ์˜ ์••๋ ฅ์— ๋”ฐ๋ฅธ ๊ตฌ์กฐ ๋ณ€ํ™”๋ฅผ ์ดํ•ดํ•˜๊ณ  ํ˜ผํ•ฉ ์–‘์ด์˜จ ํšจ๊ณผ๋ฅผ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด์„œ 8 GPa๊นŒ์ง€์˜ ๊ณ ์•• ํ™˜๊ฒฝ์—์„œ Na-Li ๊ทœ์‚ฐ์—ผ ์šฉ์œต์ฒด์˜ ๊ตฌ์กฐ ๋ณ€ํ™”์— ๋Œ€ํ•ด NMR ๋ถ„๊ด‘๋ถ„์„์„ ํ†ตํ•ด ์—ฐ๊ตฌํ–ˆ๋‹ค. 29Si MAS NMR ์ŠคํŽ™ํŠธ๋Ÿผ์€ ๋ฆฌํŠฌ ํ•จ๋Ÿ‰(XLi)๊ณผ ๊ด€๊ณ„์—†์ด ์••๋ ฅ์ด ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ๊ณ ๋ฐฐ์œ„์ˆ˜์˜ Si ํ•จ๋Ÿ‰์ด ๋Œ€์ฒด์ ์œผ๋กœ ๋น„์Šทํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚จ์„ ๋ณด์˜€๋‹ค. 7Li MAS NMR ์ŠคํŽ™ํŠธ๋Ÿผ์—์„œ๋Š” ์••๋ ฅ ๋ฐ XLi์ด ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ํ”ผํฌ ์œ„์น˜์™€ ํญ์ด ์ ์ง„์ ์œผ๋กœ ๋ณ€ํ•˜๋Š” ์–‘์ƒ์„ ๋ณด์˜€๋‹ค. Na-Li ๊ทœ์‚ฐ์—ผ ์šฉ์œต์ฒด ๋‚ด์˜ 7Li์˜ ์Šคํ•€-์Šคํ•€ ์™„ํ™” ์‹œ๊ฐ„์œผ๋กœ๋ถ€ํ„ฐ, Na๊ณผ Li์˜ ์–‘์ด์˜จ ๋ฌด์งˆ์„œ๋„๋Š” 1 ๊ธฐ์••์—์„œ๋Š” ๋ฌด์ž‘์œ„ ๋ถ„ํฌ์˜€๋‹ค๊ฐ€ ๊ณ ์••์œผ๋กœ ๊ฐˆ์ˆ˜๋ก ๋ณด๋‹ค ํ™”ํ•™์  ์งˆ์„œ๋ฅผ ์ด๋ฃฌ๋‹ค. 14 GPa๊นŒ์ง€์˜ ๊ณ ์•• ํ™˜๊ฒฝ์—์„œ ํƒ„์†Œ๋ฅผ ํ•จ์œ ํ•˜๊ณ  ์žˆ๋Š” ๋น„์ •์งˆ ๊ทœ์‚ฐ์—ผ ๋‚ด์—์„œ ์••๋ ฅ์— ๋”ฐ๋ฅธ ํƒ„์†Œ ํ™”ํ•™์ข… ๋ณ€ํ™”๋ฅผ ๋ผ๋งŒ ๋ถ„๊ด‘๋ถ„์„๊ณผ NMR์„ ์ด์šฉํ•ด ๋ถ„์„ํ–ˆ๋‹ค. ํƒ„์†Œ๋ฅผ ํ•จ์œ ํ•œ Na-์•Œ๋ฃจ๋ฏธ๋…ธ๊ทœ์‚ฐ์—ผ ์šฉ์œต์ฒด์—์„œ๋Š” CO2์™€ CO32- ๊ฐ€ ์กด์žฌํ•จ์„ ํ™•์ธํ–ˆ๊ณ , 9.2 GPa๊นŒ์ง€ ์••๋ ฅ์ด ์ฆ๊ฐ€ํ•  ๋•Œ ์—ฐ๊ฒฐ ํƒ„์‚ฐ์—ผ์˜ ๋ถ„์œจ์ด ์ฆ๊ฐ€ํ•˜๋ฉฐ, ์ด๋Ÿฌํ•œ ๊ฒฝํ–ฅ์„ฑ์€ ์ด์ „์˜ ๊ณ„์‚ฐ ๊ฒฐ๊ณผ์™€ ์ผ์น˜ํ•œ๋‹ค. 14 GPa์—์„œ ํ•ฉ์„ฑ๋œ ํƒ„์†Œ๋ฅผ ํ•จ์œ ํ•œ Na-์•Œ๋ฃจ๋ฏธ๋…ธ๊ทœ์‚ฐ์—ผ ๊ฒฐ์ •์—์„œ๋Š” ๋‚˜๋…ธ๋‹ค์ด์•„๋ชฌ๋“œ๊ฐ€ ํ™•์ธ๋˜์—ˆ๊ณ , 13C MAS NMR ์—์„œ๋Š” ๋‚˜๋…ธ๋‹ค์ด์•„๋ชฌ๋“œ์™€ ํƒ„์‚ฐ์—ผ ๊ด‘๋ฌผ์˜ ์กด์žฌ๊ฐ€ ํ™•์ธ๋๋‹ค. ํƒ„์†Œ๋ฅผ ํฌํ•จํ•œ ์ด์„ฑ๋ถ„๊ณ„ Na-๊ทœ์‚ฐ์—ผ ์šฉ์œต์ฒด์—์„œ๋Š” 14 GPa๊นŒ์ง€ ์••๋ ฅ์ด ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์—ฐ๊ฒฐํƒ„์‚ฐ์—ผ์˜ ๋ถ„์œจ์ด 60%๊นŒ์ง€ ์ฆ๊ฐ€ํ•จ์„ ํ™•์ธํ–ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์••๋ ฅ์— ๋”ฐ๋ฅธ ์—ฐ๊ฒฐ ํƒ„์‚ฐ์—ผ์˜ ์ฆ๊ฐ€๋Š” ๊ณ ์•• ํ™˜๊ฒฝ์—์„œ ํƒ„์†Œ๋ฅผ ํฌํ•จํ•œ ๋น„์ •์งˆ ์šฉ์œต์ฒด์˜ ์ค‘ํ•ฉํ™”๊ณผ์ •์— ๋Œ€ํ•œ ๊ตฌ์กฐ์  ํ”„๋ก์‹œ๋กœ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ ํƒ„์‚ฐ์•” ์šฉ์œต์ฒด์™€ ๊ทœ์‚ฐ์—ผ ์šฉ์œต์ฒด ์‚ฌ์ด์˜ ๋ถˆ์‘ ๋ถ„๋ฆฌ์— ๊ด€ํ•œ ๋ฏธ์‹œ์  ์ •๋ณด๋ฅผ ์ œ๊ณตํ•  ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค.Mantle is the largest carbon reservoir in the Earth and the speciation of carbon in the Earths interior plays an important role in the geophysical and geochemical properties of silicate melts and overall distribution of carbon in the mantle. Due to its importance, previous researchers have reported the speciation and the solubility of carbon in silicate melts at high pressure up to 4 GPa. Yet the speciation of carbon in silicate melts and the effect of carbon species on silicate melts and crystals at high pressure above 4 GPa up to 14 GPa is not yet fully understood due to the difficulties in synthesizing samples and the lack of suitable probes to detect carbon species. This dissertation is for a systematic exploration of pressure-induced speciation of carbon in silicate glasses and crystals at high pressure up to 14 GPa using multi-nuclear (13C, 27Al, 29Si, 17O, and 7Li) solid-state nuclear magnetic resonance (NMR) and Raman spectroscopy. The main objective of this thesis is probing and quantifying the carbon species in silicate melts and crystals at high pressure. The pressure-induced structural changes of alkali silicate melts at high pressure is also studied. The systematic protocols to characterize carbon-bearing fluid inclusions and other carbon-bearing species in enstatite synthesized with 13C-enriched amorphous carbon were established using high-resolution 13C solid-state NMR and Raman spectroscopy. The Raman spectra revealed the presence of various molecular species in fluid inclusion, such as CO2, CO, CH4, H2O, and H2, and their heterogeneous distribution in carbon-bearing fluid inclusion. 13C MAS NMR spectra showed the presence of CO2, CO, and CO32- in enstatite. As the carbonate species is not observed in fluid inclusions by Raman spectroscopy, the relationship between 13C abundance and peak intensity in the 13C magic angle spinning (MAS) NMR was established to identify the phase of carbonate species in the carbon-bearing enstatite. The estimated carbonate species is ~28โ€“45 ppm, which is much higher than the solubility of carbon species in enstatite (0.05โ€“4.7 ppm). The current methods to characterize carbon-bearing species in enstatite using Raman and NMR spectroscopy can be used to provide quantitative analysis of carbon species in silicate crystals. The structural changes of carbon and its effect on the silicate network in binary sodium silicate and ternary sodium aluminosilicate melts at high pressure up to 8 GPa were investigated using multi-nuclear solid-state NMR. In binary sodium silicate melts, only carbonate species are observed, and the formation of bridging carbonates is observed above 6 GPa. In contrast, the presence of CO2, CO, and CO32- is observed in ternary sodium aluminosilicate melts at high pressure up to 6 GPa, and the fraction of carbonate species gradually increases with increasing pressure. Among four carbonate species, the fraction of Al(CO3)Si increases the most with increasing pressure which may be related to the topological disorder of Al in 27Al 3QMAS NMR spectra for carbon-bearing sodium aluminosilicate melts. Based on the peak intensity in 13C MAS NMR spectra and the spin-lattice relaxation time of CO2 in carbon-bearing sodium aluminosilicate melts, the total carbon contents gradually increase from ~1 wt% at 1.5 GPa to ~4 wt% at 6 GPa. The current results on the speciation of carbon in silicate melts above 4 GPa give insights into the carbon species and its contents in carbon-bearing silicate melts in the upper mantle. To identify the structural changes of carbon-free silicate melts at high pressure and the effect of cation mixing in those melts, multi-nuclear solid-state NMR study on the Na-Li silicate glasses quenched from melts at high pressure up to 8 GPa was performed. 29Si MAS NMR spectra of Na-Li silicate glasses show a relatively constant ratio of highly coordinated Si at high pressure regardless of lithium content (XLi). 7Li MAS NMR spectra of Na-Li silicate glasses show continuous changes of peak position and widths with varying XLi and pressure. Based on the spin-spin relaxation of 7Li in Na-Li silicate glasses at high pressure, the cation disorder of Na and Li changes from random distribution to more chemically ordered structure with increasing pressure in XLi = 0.50 and 0.75. This indicates the pressure-induced chemical order in mixed alkali cations in silicate melts at high pressure. The structural changes of carbon species in silicate melts at high pressure up to 14 GPa were investigated using Raman spectroscopy and solid-state NMR. In carbon-bearing sodium aluminosilicate glasses, the fraction of bridging carbonates increases with increasing pressure up to 9.2 GPa, which is generally consistent with previous theoretical calculations. Raman spectra of carbon-bearing sodium aluminosilicate crystals formed at 14 GPa showed the presence of nano-diamonds in the sample and 13C MAS NMR spectra showed the presence of carbonate minerals and nano-diamonds. In carbon-bearing sodium silicate melts at high pressure up to 14 GPa, the fraction of bridging carbonates [Si(CO3)Si] increases up to ~60 % with increasing pressure up to 14 GPa. The increase of bridging carbonates with pressure may provide insight into the structural proxy of polymerization of carbon-bearing silicate melts at high pressure and immiscibility of carbonatite and silicate melts in the mantle.Abstract i List of Figures ix List of Tables xvii Chapter 1. Introduction 1 1.1. Introduction 1 1.2. Estimation of carbon budget in the mantle 5 1.3. Carbon flux between Earths surface and the mantle 7 1.4. The speciation of carbon in silicate crystals and glasses at high pressure 9 1.5. Pressure-induced structural changes of silicate melts at high pressure 13 1.6. Introduction to multi-anvil press 15 References 19 Chapter 2. Probing carbon-bearing species and CO2 inclusion in amorphous carbon-MgSiO3 enstatite reaction products at 1.5 GPa: Insights from 13C high-resolution solid-state NMR 36 Abstract 36 2.1. Introduction 37 2.2. Experimental & computational methods 42 2.2.1. Sample preparation 42 2.2.2. Raman spectroscopy 43 2.2.3. NMR spectroscopy 44 2.2.4. Quantum chemical calculations 46 2.3. Results 46 2.3.1. Probing of CO2 in fluid inclusions in carbon-bearing enstatite: Insights from Raman spectroscopy 46 2.3.2. Probing of carbon species and inclusion in carbon-bearing enstatite: 13C MAS NMR results 49 2.3.3. Pressure-induced structural changes of amorphous carbon: Insights from 13C MAS NMR 51 2.4. Discussion 54 2.4.1. Origin of peak at 125.2 ppm in carbon-bearing enstatite 54 2.4.2. 13C NMR chemical shift for orthocarbonate species ([4]C): Insights from quantum chemical calculations 56 2.4.3. External vs. structurally-incorporated carbon species in the carbon-bearing enstatite: Insights from quantitative 13C spin counting experiment using ADM-SiO2 mixture 57 2.4.4. Sources of 12C contamination 61 2.5. Implications 62 Appendix 71 References 82 Chapter 3. Effect of pressure on the short-range structure and speciation of carbon in alkali silicate and aluminosilicate glasses and melts at high pressure up to 8 GPa: 13C, 27Al, 17O and 29Si solid-state NMR study 96 Abstract 96 3.1. Introduction 98 3.2. Experimental Methods 104 3.2.1. Sample preparation 104 3.2.2. NMR spectroscopy 107 3.3. Results 110 3.3.1. 27Al 3QMAS NMR results: Pressure-induced topological disorder in Al in carbon-bearing albite glasses quenched from melts at high pressure up to 6 GPa 110 3.3.2. 29Si MAS NMR results: carbon-bearing Na2O-3SiO2 and albite glasses quenched from melts at high pressure 111 3.3.3. 17O NMR results: oxygen environments in carbon-bearing Na2O-3SiO2 glasses quenched from melts at high pressure 115 3.3.4. 13C MAS NMR results of carbon-bearing albite glasses quenched from melts at high pressure 116 3.3.5. 13C MAS NMR results for carbon-bearing NS3 glasses quenched from melts at high pressure up to 8 GPa 118 3.3.6. Quantitative measurements of the speciation of carbon in albite melts by 13C MAS NMR spectra using 13C spin-lattice (T1) relaxation results and analyses 119 3.4. Discussion 123 3.4.1. 13C NMR peak assignment of bridging carbonate ions in carbon-bearing albite and NS3 glasses 123 3.4.2. 13C NMR peak assignment of free carbonate ions in carbon-bearing NS3 glasses 125 3.4.3. Origin of the presence of bridging carbonate ions in NS3 glasses upon compression 126 3.4.4. The speciation of carbonates in albite glasses quenched from melt at high pressure 126 3.4.5. Presence of CO in albite glasses quenched from melts at high pressure 128 3.4.6. Effect of carbon speciation on the properties and isotope composition in silicate melts at high pressure 130 3.5. Conclusion 133 Appendix 145 References 154 Chapter 4. Effect of chemical disorder on structural changes in Na-Li silicate glasses quenched from melts at high pressure 170 Abstract 170 4.1. Introduction 171 4.2. Experimental methods 176 4.2.1. Sample preparation 176 4.2.2. NMR spectroscopy 177 4.3. Results 178 4.3.1. Structural changes in Si in NLS3 glasses: Insights from 29Si MAS NMR 178 4.3.2. Structure of Li+ in NLS3 glasses quenched from melts at high pressures: Insights from 7Li MAS NMR results 180 4.3.3. Distribution of 7Li in NLS3 glasses: Insights from spin-spin relaxation of 7Li in NLS3 glasses 183 4.3.4. Fraction of non-bridging oxygen in NLS3 glasses at high pressures: Insights from 17O 3QMAS NMR results 187 4.3.5. Distribution of mixed cations of different ionic radii in silicate melts at high pressures 190 4.4. Conclusion 191 Appendix 202 References 214 Chapter 5. Speciation of carbon in aluminosilicate glasses and crystals at high pressure up to 14 GPa: Insights from 13C solid-state NMR and Raman spectroscopy 225 5.1. Introduction 225 5.2. Experimental methods 227 5.2.1. Sample preparation 227 5.2.2. NMR spectroscopy 228 5.2.3. Raman spectroscopy 229 5.2.4. SEM/EDS analysis 229 5.3. Results 230 5.3.1. Characterization of C-bearing aluminosilicate crystals at 14 GPa 230 5.3.2. Raman spectra 231 5.3.3. 13C MAS NMR spectra of C-bearing aluminosilicate glasses and crystals at high pressure 232 5.3.4. 27Al 3QMAS NMR spectra and 29Si MAS NMR spectra of C-bearing aluminosilicate glasses and crystals at high pressure 234 5.3.5. 13C and 29Si MAS NMR spectra of C-bearing alkali silicate glasses at high pressure 236 5.3.6. Quantification of carbon species in albite glasses by 13C MAS NMR spectra 238 5.4. Discussion 239 5.4.1. Peak assignment of graphite and nano-diamond quenched from high pressure and high temperature conditions 239 5.4.2. Peak broadening of CO2 in C-bearing albite glasses with increasing pressure 241 5.4.3. Redox reaction of carbon and the oxygen fugacity of mantle 242 5.5. Conclusion 244 References 255 Appendix. 265 A1. Abstract Published in Korean Journal 265 A2. Publication list 267 ์š”์•ฝ (๊ตญ๋ฌธ์ดˆ๋ก) 272Docto

    ์˜๊ณผ๋Œ€ํ•™์˜ ํ•™์ƒ์ง€์› ์ฒด๊ณ„ ์š”๊ตฌ๋ถ„์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์˜ํ•™๊ณผ ์˜ํ•™๊ต์œกํ•™์ „๊ณต, 2016. 8. ์ด์Šนํฌ.๋ณธ ์—ฐ๊ตฌ๋Š” ์˜๊ณผ๋Œ€ํ•™์˜ ํ•™์ƒ๋“ค์ด ๋Œ€ํ•™ ์ƒํ™œ์—์„œ ๊ฒฝํ—˜ํ•˜๋Š” ์–ด๋ ค์›€์ด ๋ฌด์—‡์ธ์ง€ ํƒ์ƒ‰ํ•˜๊ณ  ์ด๋ฅผ ์ฃผ์ œ๋กœ ํ•œ ํ•™์ƒ์ง€์› ํ”„๋กœ๊ทธ๋žจ์˜ ์ง‘๋‹จ๋ณ„ ์ค‘์š”๋„์™€ ๋งŒ์กฑ๋„๋ฅผ ํ™•์ธํ•˜์—ฌ ์˜๊ณผ๋Œ€ํ•™์˜ ํ•™์ƒ์ง€์› ์ฒด๊ณ„์— ๋Œ€ํ•œ ์š”๊ตฌ๋ฅผ ๋ถ„์„ํ•˜๋Š” ๋ฐ ๊ทธ ๋ชฉ์ ์ด ์žˆ๋‹ค. ๊ตฌ์ฒด์ ์ธ ์—ฐ๊ตฌ๋ฌธ์ œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ์˜๊ณผ๋Œ€ํ•™์ƒ ์ƒ๋‹ด ์‹œ ์ฃผํ˜ธ์†Œ๋ฌธ์ œ๋Š” ๋ฌด์—‡์ธ๊ฐ€? ๋‘˜์งธ, ์ง‘๋‹จ(์„ฑ๋ณ„, ํ•™๋…„, ์ž…ํ•™์œ ํ˜•, ์œ ๊ธ‰ยทํœดํ•™ ๊ฒฝํ—˜, ํ•™์—…์„ฑ์ทจ ์ˆ˜์ค€)์— ๋”ฐ๋ผ ์š”๊ตฌํ•˜๋Š” ์ง€์› ํ”„๋กœ๊ทธ๋žจ์ด ์–ด๋–ป๊ฒŒ ๋‹ค๋ฅธ๊ฐ€? ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋ชฉ์ ์„ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ๋Š” ๋‘ ๋‹จ๊ณ„๋กœ ์ง„ํ–‰๋˜์—ˆ๋‹ค. 1๋‹จ๊ณ„๋Š” ์˜๊ณผ๋Œ€ํ•™์˜ ํ•™์ƒ๋“ค์ด ๋Œ€ํ•™ ์ƒํ™œ์—์„œ ๊ฒฝํ—˜ํ•˜๋Š” ์–ด๋ ค์›€์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ์‹ค์ œ ์ƒ๋‹ด์— ์ฐธ์—ฌํ•œ ์˜๊ณผ๋Œ€ํ•™์ƒ์ด ์ฃผ๋กœ ํ˜ธ์†Œํ•˜๋Š” ๋ฌธ์ œ ํ™•์ธ์„ ์œ„ํ•œ ๊ณผ์ •์ด์—ˆ๋‹ค. ์˜๊ณผ๋Œ€ํ•™ ์ฐจ์›์—์„œ ํ•™์ƒ ์ง€์›์„ ์œ„ํ•œ ์ „๋‹ด ์กฐ์ง์„ ๊ฐ–์ถ”๊ณ  ๊ต์œกํ•™ ๋˜๋Š” ์ž„์ƒ์‹ฌ๋ฆฌํ•™์„ ์ „๊ณตํ•œ ์ „๋ฌธ ์ธ๋ ฅ์— ์˜ํ•ด ์šด์˜๋˜๋Š” ์„œ์šธ ์†Œ์žฌ ์ผ๊ฐœ ๋Œ€ํ•™์„ ์„ ์ •ํ•˜์˜€๋‹ค. ํ•ด๋‹น ๋Œ€ํ•™์˜ ์˜ํ•™๊ณผ์™€ ์˜ํ•™์ „๋ฌธ๋Œ€ํ•™์› 1ํ•™๋…„๋ถ€ํ„ฐ 4ํ•™๋…„ ํ•™์ƒ ์ค‘ 2012ํ•™๋…„๋„ 1ํ•™๊ธฐ๋ถ€ํ„ฐ 2015ํ•™๋…„๋„ 1ํ•™๊ธฐ์— ์ƒ๋‹ด ํ”„๋กœ๊ทธ๋žจ์— ์ฐธ์—ฌํ•œ 283์‚ฌ๋ก€๋ฅผ 4์ธ์˜ ์—ฐ๊ตฌ์ž๊ฐ€ ํ˜„์ƒํ•™์  ์—ฐ๊ตฌ๋ฐฉ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ฐœ๋ณ„ ์ƒ๋‹ด ์‚ฌ๋ก€๋ฅผ ํ•™์ƒ์˜ ์–ธ์–ด๋กœ ์š”์•ฝํ•˜์—ฌ ๊ธฐ์ˆ ํ•˜๊ณ , ๊ทธ ๋‚ด์šฉ์—์„œ ์ฃผํ˜ธ์†Œ๋ฌธ์ œ์™€ ๊ด€๋ จ๋œ ์–ด๊ตฌ๋‚˜ ๋ฌธ์žฅ์„ ๋ฐ”ํƒ•์œผ๋กœ 93๊ฐœ์˜ ๊ตฌ์„ฑ์˜๋ฏธ์™€ 22๊ฐœ์˜ ์ฃผ์ œ, 10๊ฐœ์˜ ์ฃผ์ œ๊ตฐ, 3๊ฐœ์˜ ๋ฒ”์ฃผ๋ฅผ ๋„์ถœํ•˜์˜€๋‹ค. 2๋‹จ๊ณ„๋Š” 1๋‹จ๊ณ„์—์„œ ๋„์ถœ๋œ ์ฃผํ˜ธ์†Œ๋ฌธ์ œ ์ค‘์—์„œ 10๊ฐœ์˜ ์ฃผ์ œ๊ตฐ์„ ํ•™์ƒ์ง€์› ํ”„๋กœ๊ทธ๋žจ์˜ ๊ฐ ์ฃผ์ œ๋กœ ์„ ์ •ํ•˜๊ณ  ์ง‘๋‹จ์— ๋”ฐ๋ผ ์ค‘์š”๋„์™€ ๋งŒ์กฑ๋„์— ์ฐจ์ด๊ฐ€ ์žˆ๋Š”์ง€ ํ™•์ธํ•˜๋Š” ๊ณผ์ •์ด์—ˆ๋‹ค. 1๋‹จ๊ณ„์™€ ๋™์ผํ•œ ์„œ์šธ ์†Œ์žฌ ์ผ๊ฐœ ๋Œ€ํ•™์˜ ์˜ํ•™๊ณผ์™€ ์˜ํ•™์ „๋ฌธ๋Œ€ํ•™์› 1ํ•™๋…„๋ถ€ํ„ฐ 4ํ•™๋…„ ํ•™์ƒ์„ ๋Œ€์ƒ์œผ๋กœ ์„ค๋ฌธ์กฐ์‚ฌ๋ฅผ ์‹œํ–‰ํ•˜์˜€์œผ๋ฉฐ 433๋ช…์˜ ์‘๋‹ต์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ๋„์ถœ๋œ ๊ฒฐ๊ณผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ์˜๊ณผ๋Œ€ํ•™์ƒ์˜ ์ƒ๋‹ด ์‹œ ๋‚˜ํƒ€๋‚˜๋Š” ์ฃผํ˜ธ์†Œ๋ฌธ์ œ๋Š” ํ•™์—…๋ฌธ์ œ, ์ง„๋กœ๋ฌธ์ œ, ์‹ฌ๋ฆฌใƒป์‚ฌํšŒ์  ๋ฌธ์ œ์˜ ์„ธ ๊ฐ€์ง€ ๋ฒ”์ฃผ๋กœ ๊ตฌ๋ถ„๋œ๋‹ค. ํ•™์—…๋ฌธ์ œ๋Š” ํ•™์—…๋™๊ธฐ, ํ•™์Šต๋ฐฉ๋ฒ•ยทํ•™์Šต์ „๋žต์˜ ์ฃผ์ œ๊ตฐ์œผ๋กœ ๊ตฌ์„ฑ๋˜๊ณ , ์ง„๋กœ๋ฌธ์ œ๋Š” ์ง„๋กœ ๋ฐ ์ „๊ณต ์„ ํƒ, ์ž๊ธฐ์„ฑ์žฅ๋™๊ธฐ์˜ ์ฃผ์ œ๊ตฐ์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์‹ฌ๋ฆฌใƒป์‚ฌํšŒ์  ๋ฌธ์ œ๋Š” ์ •์„œ ๋ฐ ์„ฑ๊ฒฉ, ๊ฐ€์กฑ๊ด€๊ณ„, ๋™๋ฃŒยท์ด์„ฑ๊ณผ์˜ ๊ด€๊ณ„, ๊ฑด๊ฐ•, ๊ฒฝ์ œ, ๊ฐ€์น˜๊ด€์˜ ์ฃผ์ œ๊ตฐ์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ๋‘˜์งธ, ์ง‘๋‹จ์— ๋”ฐ๋ผ ํ•™์ƒ์ง€์› ํ”„๋กœ๊ทธ๋žจ์˜ ๊ฐ ์ฃผ์ œ๋ณ„ ์ค‘์š”๋„ ์ฐจ์ด๋ฅผ ์‚ดํŽด๋ณด๋ฉด ๋‚จํ•™์ƒ์— ๋น„ํ•ด ์—ฌํ•™์ƒ์ด ํ•™์Šต๋ฐฉ๋ฒ•ใƒปํ•™์Šต์ „๋žต, ์ง„๋กœ ๋ฐ ์ „๊ณต ์„ ํƒ, ๊ฑด๊ฐ•, ๊ฐ€์น˜๊ด€ ์ฃผ์ œ๊ตฐ์ด ์ค‘์š”ํ•˜๊ฒŒ ๋‹ค๋ค„์ ธ์•ผ ํ•œ๋‹ค๊ณ  ํ‰๊ฐ€ํ•˜์˜€๊ณ , 3ํ•™๋…„ ํ•™์ƒ์— ๋น„ํ•ด 1ํ•™๋…„ ํ•™์ƒ์ด ํ•™์Šต๋ฐฉ๋ฒ•ใƒปํ•™์Šต์ „๋žต์ด ์ค‘์š”ํ•˜๋‹ค๊ณ  ์ธ์‹ํ•˜์˜€์œผ๋ฉฐ, 4ํ•™๋…„ ํ•™์ƒ์€ 1ํ•™๋…„์— ๋น„ํ•ด ๊ฒฝ์ œ์  ์ง€์›์ด ์ค‘์š”ํ•˜๋‹ค๊ณ  ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์˜์˜ˆ๊ณผ ์ „ํ˜•์œผ๋กœ ์ž…ํ•™ํ•œ ํ•™์ƒ์— ๋น„ํ•ด ์˜ํ•™์ „๋ฌธ๋Œ€ํ•™์› ์ „ํ˜•์œผ๋กœ ์ž…ํ•™ํ•œ ํ•™์ƒ์ด ํ•™์Šต๋ฐฉ๋ฒ•ใƒปํ•™์Šต์ „๋žต, ๋™๋ฃŒใƒป์ด์„ฑ๊ณผ์˜ ๊ด€๊ณ„, ์ง„๋กœ ๋ฐ ์ „๊ณต ์„ ํƒ, ์ž๊ธฐ์„ฑ์žฅ๋™๊ธฐ, ๊ฑด๊ฐ•, ๊ฒฝ์ œ, ๊ฐ€์น˜๊ด€์— ๊ด€ํ•œ ์ง€์›์ด ์ค‘์š”ํ•˜๋‹ค๊ณ  ํ‰๊ฐ€ํ•˜๊ณ  ์žˆ์—ˆ๋‹ค. ์œ ๊ธ‰ ๋ฐ ํœดํ•™ ๊ฒฝํ—˜ ์œ ๋ฌด๋‚˜ ํ•™์—…์„ฑ์ทจ ์ˆ˜์ค€์— ๋”ฐ๋ฅธ ์ฐจ์ด๋Š” ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•˜๋‹ค. ์…‹์งธ, ์ง‘๋‹จ์— ๋”ฐ๋ผ ํ•™์ƒ์ง€์› ํ”„๋กœ๊ทธ๋žจ์˜ ๊ฐ ์ฃผ์ œ๋ณ„ ๋งŒ์กฑ๋„ ์ฐจ์ด๋ฅผ ์‚ดํŽด๋ณด๋ฉด ๋‚จํ•™์ƒ์— ๋น„ํ•ด ์—ฌํ•™์ƒ์ด ์ •์„œ ๋ฐ ์„ฑ๊ฒฉ, ํ•™์Šต๋ฐฉ๋ฒ•ใƒปํ•™์Šต์ „๋žต ์ฃผ์ œ๊ตฐ์— ๋Œ€ํ•œ ์ง€์›์ด ์ž˜ ์ด๋ค„์ง€๊ณ  ์žˆ๋‹ค๊ณ  ํ‰๊ฐ€ํ•˜์˜€์œผ๋ฉฐ, 1ํ•™๋…„ ํ•™์ƒ์€ ๋‹ค๋ฅธ ํ•™๋…„์— ๋น„ํ•ด ๋ชจ๋“  ์ฃผ์ œ๊ตฐ์— ๋Œ€ํ•œ ๋งŒ์กฑ๋„ ํ‰๊ฐ€๊ฐ€ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์˜ํ•™์ „๋ฌธ๋Œ€ํ•™์› ์ „ํ˜•์œผ๋กœ ์ž…ํ•™ํ•œ ํ•™์ƒ์— ๋น„ํ•ด ์˜์˜ˆ๊ณผ ์ „ํ˜•์œผ๋กœ ์ž…ํ•™ํ•œ ํ•™์ƒ์ด ์ง„๋กœ ๋ฐ ์ „๊ณต ์„ ํƒ์„ ์ฃผ์ œ๋กœ ํ•œ ํ•™์ƒ์ง€์› ํ”„๋กœ๊ทธ๋žจ์˜ ๋งŒ์กฑ๋„๋ฅผ ๋†’๊ฒŒ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ๋งŒ์กฑ๋„ ์ฐจ์ด ํ‰๊ฐ€์— ์žˆ์–ด์„œ๋„ ์œ ๊ธ‰ ๋ฐ ํœดํ•™ ๊ฒฝํ—˜ ์œ ๋ฌด๋‚˜ ํ•™์—…์„ฑ์ทจ ์ˆ˜์ค€์— ๋”ฐ๋ฅธ ์ฐจ์ด๋Š” ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•˜๋‹ค. ๋„ท์งธ, ์ง‘๋‹จ์— ๋”ฐ๋ฅธ ์ค‘์š”๋„-๋งŒ์กฑ๋„ ๋ถ„์„(Importance-Performance Analysis, IPA) ๊ฒฐ๊ณผ์˜ ์ฐจ์ด๋ฅผ ํ™•์ธ ๊ฒฐ๊ณผ ์˜ํ•™๊ณผ 1ํ•™๋…„์€ ๊ฐ€์กฑ๊ด€๊ณ„ ์ฃผ์ œ๊ตฐ์„ ์ œ์™ธํ•œ ๋ชจ๋“  ํ•ญ๋ชฉ์—์„œ ๋งŒ์กฑ๋„์— ๋น„ํ•ด ์ค‘์š”๋„๊ฐ€ ์œ ์˜ํ•˜๊ฒŒ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ „์ฒด ํ•™์ƒ์˜ IPA ๊ฒฐ๊ณผ๋ฅผ ์‚ดํŽด๋ณด๋ฉด ์ค‘์š”๋„๊ฐ€ ๋†’๊ณ  ํ˜„์žฌ์˜ ์ง€์› ์ˆ˜์ค€์ด ๋งŒ์กฑ์Šค๋Ÿฌ์šฐ๋ฏ€๋กœ ์œ ์ง€๋˜์–ด์•ผ ํ•  ์ฃผ์ œ๊ตฐ์€ ์ •์„œ ๋ฐ ์„ฑ๊ฒฉ, ํ•™์—…๋™๊ธฐ, ์ง„๋กœ ๋ฐ ์ „๊ณต์„ ํƒ, ์ž๊ธฐ์„ฑ์žฅ๋™๊ธฐ์ด์—ˆ๊ณ , ์ค‘์š”๋„๋Š” ๋†’์ง€๋งŒ ํ˜„์žฌ์˜ ๋งŒ์กฑ๋„๊ฐ€ ๋‚ฎ์•„ ์ง‘์ค‘์ ์œผ๋กœ ๊ฐœ์„ ์ด ํ•„์š”ํ•œ ์ฃผ์ œ๊ตฐ์€ ๊ฐ€์น˜๊ด€์ด์—ˆ๋‹ค. ์ค‘์š”๋„๋Š” ๋‚ฎ์ง€๋งŒ ๋งŒ์กฑ ์ˆ˜์ค€์€ ๋†’์•„ ๊ณผ์ž‰ ์ง€์›์ด ์ด๋ค„์ง€๊ณ  ์žˆ๋Š” ์ฃผ์ œ๊ตฐ์œผ๋กœ ํ•™์Šต๋ฐฉ๋ฒ•ยทํ•™์Šต์ „๋žต์ด ํ™•์ธ๋˜์—ˆ์œผ๋ฉฐ, ๊ฐ€์กฑ๊ด€๊ณ„, ๋™๋ฃŒยท์ด์„ฑ๊ณผ์˜ ๊ด€๊ณ„, ๊ฑด๊ฐ•, ๊ฒฝ์ œ ์ฃผ์ œ๊ตฐ์€ ์ค‘์š”๋„์™€ ๋งŒ์กฑ๋„๊ฐ€ ๋ชจ๋‘ ๋‚ฎ์•„ ํ”„๋กœ๊ทธ๋žจ ๊ฐœ๋ฐœ ๋ฐ ๊ฐœ์„  ์‹œ ์šฐ์„ ์ˆœ์œ„๋ฅผ ๊ณ ๋ คํ•  ๋•Œ ๊ฐ€์žฅ ๋‚ฎ์€ ์ˆœ์œ„์— ํ•ด๋‹นํ•˜๋Š” ํ•ญ๋ชฉ์œผ๋กœ ์„ ์ •๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์˜๊ณผ๋Œ€ํ•™๋งŒ์„ ์œ„ํ•œ ํ•™์ƒ์ง€์› ์กฐ์ง์—์„œ ์ œ๊ณตํ•˜๋Š” ์ƒ๋‹ด ํ”„๋กœ๊ทธ๋žจ์— ์‹ค์ œ๋กœ ์ฐธ์—ฌํ•œ ์˜๊ณผ๋Œ€ํ•™์ƒ์ด ๋Œ€ํ•™ ์ƒํ™œ์—์„œ ๊ฒฝํ—˜ํ–ˆ๋˜ ์–ด๋ ค์›€์„ ๊ตฌ์„ฑ์˜๋ฏธ(concepts), ์ฃผ์ œ(themes), ์ฃผ์ œ๊ตฐ(theme groups), ๋ฒ”์ฃผ(categories)๋กœ ๋ถ„๋ฅ˜ํ–ˆ๋‹ค. ์ด๋Š” ์˜๊ณผ๋Œ€ํ•™์ƒ์˜ ์ •์‹ ๊ฑด๊ฐ•, ์ŠคํŠธ๋ ˆ์Šค, ์‚ถ์˜ ์งˆ ๋“ฑ์„ ๋‹ค๋ฃฌ ์„ ํ–‰์—ฐ๊ตฌ์—์„œ ๋‹ค๋ฃจ์—ˆ๋˜ ์˜์—ญ์„ ์„ธ๋ถ„ํ™”ํ•˜์—ฌ ํ•™์ƒ๋“ค์˜ ๊ณ ๋ฏผ์„ ๋ณด๋‹ค ์ƒ์„ธํžˆ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค๋Š” ์ ์—์„œ ์˜์˜๊ฐ€ ์žˆ๋‹ค. ํŠนํžˆ ์„ ํ–‰์—ฐ๊ตฌ์—์„œ๋Š” ๋‹ค๋ฃจ์–ด์ง€์ง€ ์•Š์•˜๋˜ ์ ์„ฑ๋ถˆ์ผ์น˜ ๊ฒฝํ—˜์ด๋‚˜ ๋…ํŠนํ•œ ์˜๊ณผ๋Œ€ํ•™ ๋ฌธํ™” ์†์—์„œ ๊ฒฝํ—˜ํ•˜๋Š” ๊ฐˆ๋“ฑ์„ ๊ฐ€์น˜๊ด€ ์ฃผ์ œ๊ตฐ์œผ๋กœ ๋ถ„๋ฅ˜ํ•˜์—ฌ ์˜๊ณผ๋Œ€ํ•™์ƒ ์ง€์› ์‹œ ๋‹ค๋ฃจ์–ด์•ผ ํ•  ์ƒˆ๋กœ์šด ์˜์—ญ์œผ๋กœ ํ™•์ธํ•œ ๊ฒƒ์€ ๋งค์šฐ ์ฃผ๋ชฉํ•  ๋งŒํ•˜๋‹ค. ๋˜ํ•œ ์˜๊ณผ๋Œ€ํ•™์—์„œ ๋Œ€ํ•™๋ณธ๋ถ€์™€๋Š” ๋ณ„๋„๋กœ ํ•™์ƒ์ง€์› ์ฒด๊ณ„ ๋งˆ๋ จ์˜ ๋‹น์œ„์„ฑ์„ ์ธ์‹ํ•˜๊ณ  ์žˆ๋Š” ํ˜„ ์‹œ์ ์— ํ•™์ƒ์ง€์› ํ”„๋กœ๊ทธ๋žจ์˜ ์ฃผ์ œ๋ณ„ ์ค‘์š”๋„์™€ ๋งŒ์กฑ๋„๋ฅผ ํ™•์ธํ•˜๊ณ  ๋น„๊ตํ•˜์—ฌ ์ง‘๋‹จ๋ณ„๋กœ ํ”„๋กœ๊ทธ๋žจ์˜ ์š”๊ตฌ๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ๋Š” ํ•™์ƒ์ง€์› ์ฒด๊ณ„๋ฅผ ๊ตฌ์ถ•ํ•˜๋Š” ๋‹จ๊ณ„์—์„œ ์ดˆ์„์œผ๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์œผ๋ฆฌ๋ผ ๊ธฐ๋Œ€ํ•œ๋‹ค.โ… . ์„œ๋ก  1 A. ์—ฐ๊ตฌ์˜ ํ•„์š”์„ฑ ๋ฐ ๋ชฉ์  1 B. ์—ฐ๊ตฌ๋ชฉํ‘œ ๋ฐ ์—ฐ๊ตฌ๋‚ด์šฉ 4 C. ์šฉ์–ด ์ •์˜ 5 D. ์—ฐ๊ตฌ์˜ ์ œํ•œ์  6 โ…ก. ์ด๋ก ์  ๋ฐฐ๊ฒฝ 7 A. ์˜๊ณผ๋Œ€ํ•™์ƒ์— ๋Œ€ํ•œ ์ดํ•ด 7 B. ํ•™์ƒ์ง€์› ์ฒด๊ณ„ 14 C. ์š”๊ตฌ๋ถ„์„ 25 โ…ข. ์—ฐ๊ตฌ์ ˆ์ฐจ ๋ฐ ๋ฐฉ๋ฒ• 29 A. ํ•™์ƒ ์ง€์› ํ”„๋กœ๊ทธ๋žจ ์ด์šฉ์ž์˜ ์ฃผํ˜ธ์†Œ๋ฌธ์ œ 30 B. ์˜๊ณผ๋Œ€ํ•™์ƒ์˜ ์ง‘๋‹จ๋ณ„ ํŠน์„ฑ์— ๋”ฐ๋ฅธ ํ•™์ƒ ์ง€์› ํ”„๋กœ๊ทธ๋žจ์— ๊ด€ํ•œ ์š”๊ตฌ ์กฐ์‚ฌ 31 โ…ฃ. ์—ฐ๊ตฌ๊ฒฐ๊ณผ 35 A. ์˜๊ณผ๋Œ€ํ•™์ƒ ์ƒ๋‹ด ์‹œ ์ฃผํ˜ธ์†Œ๋ฌธ์ œ 35 B. ์ง‘๋‹จ์— ๋”ฐ๋ฅธ ์ง€์› ํ”„๋กœ๊ทธ๋žจ ์š”๊ตฌ(์ค‘์š”๋„ใƒป๋งŒ์กฑ๋„ ๋ถ„์„) 45 โ…ค. ๋…ผ์˜ ๋ฐ ๊ฒฐ๋ก  67 A. ๋…ผ์˜ 67 B. ๊ฒฐ๋ก  69 C. ์ œ์–ธ 72 ์ฐธ๊ณ  ๋ฌธํ—Œ 74 ๋ถ€๋ก 78 Abstract 86Maste

    MicroRNA ์กฐ์ ˆ์„ ํ†ตํ•œ ์ƒ์ฒ˜ ์น˜์œ  ๊ธฐ์ „์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› ์˜๊ณผ๋Œ€ํ•™ ์˜ํ•™๊ณผ, 2017. 8. ๋ฐ•๊ฒฝ์ฐฌ.ํ”ผ๋ถ€ ์ƒ์ฒ˜์˜ ์น˜์œ  ๊ณผ์ •์€ ์†์ƒ๋œ ํ”ผ๋ถ€์˜ ๊ธฐ๋Šฅ์„ ํšŒ๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์ˆ˜๋งŽ์€ ์ธ์ž๋“ค์ด ์ž‘์šฉํ•˜๋Š” ์ƒ๋ฆฌ์  ๊ณผ์ •์œผ๋กœ ์—ฌ๊ธฐ์— ๊ด€์—ฌํ•˜๋Š” ์œ ์ „์ž๋“ค์˜ ์กฐ์ ˆ์ด ์ค‘์š”ํ•˜๋‹ค. MicroRNA๋Š” ํ‘œ์  ์œ ์ „์ž์˜ ํŠน์ • ๋ถ€์œ„์— ๊ฒฐํ•ฉํ•˜์—ฌ ์œ ์ „์ž ๋ฐœํ˜„์„ ์กฐ์ ˆํ•˜๋Š” RNA๋กœ ์ƒ์ฒ˜ ์น˜์œ  ๊ณผ์ •์˜ ์—ฌ๋Ÿฌ ์‹œ๊ธฐ์—์„œ microRNA์˜ ๋ฐœํ˜„ ๋ณ€ํ™”๊ฐ€ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•  ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค. ์ตœ๊ทผ์— ํ”ผ๋ถ€ ์ค„๊ธฐ ์„ธํฌ ์กฐ์ ˆ๊ณผ ํ•ญ์ƒ์„ฑ ์œ ์ง€์— ํ•„์š”ํ•œ ๋ฏธ์„ธ ํ™˜๊ฒฝ์„ ์ œ๊ณตํ•˜๋Š” ๊ธฐ์ €๋ง‰์˜ ์ฃผ์„ฑ๋ถ„์ธ 4ํ˜• ์ฝœ๋ผ๊ฒ (COL4A3)์ด MIR135b์˜ ํ‘œ์  ์œ ์ „์ž์ž„์ด ๋ฐํ˜€์กŒ์œผ๋ฉฐ MIR135b๋ฅผ ์–ต์ œ์‹œํ‚ค๋ฉด 4ํ˜• ์ฝœ๋ผ๊ฒ ๋ฐœํ˜„์ด ์ฆ๊ฐ€ํ•˜์—ฌ ๊ฐ์งˆํ˜•์„ฑ์„ธํฌ์˜ ์ฆ์‹ ๋Šฅ๋ ฅ์ด ์ฆ๊ฐ€ํ•œ๋‹ค๋Š” ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๊ฐ€ ์žˆ์—ˆ๋‹ค. ๊ฐ์งˆ ํ˜•์„ฑ์„ธํฌ์˜ ์ฆ์‹๊ณผ ์—ฐ๊ด€๋œ MIR135b๊ฐ€ COL4A3 ์œ ์ „์ž๋ฟ ์•„๋‹ˆ๋ผ ์ƒ์ฒ˜ ์น˜์œ  ๊ณผ์ •์— ๊ด€์—ฌํ•˜๋Š” ๋‹ค๋ฅธ ์œ ์ „์ž์˜ ๋ฐœํ˜„์—๋„ ์˜ํ–ฅ์„ ๋ฏธ์น  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•˜๊ณ  ๊ทธ ์—ญํ• ์„ ์•Œ์•„๋ณด๊ณ ์ž ๋ณธ ์—ฐ๊ตฌ๋ฅผ ์‹œํ–‰ํ•˜๊ฒŒ ๋˜์—ˆ๋‹ค. ์ƒ๋ฌผ์ •๋ณดํ•™์  ๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ MIR135b์™€ ์ถ”์ • ๊ฒฐํ•ฉ ๋ถ€์œ„๋ฅผ ๊ฐ€์ง„ ํ›„๋ณด ์œ ์ „์ž๋“ค์„ ์„ ๋ณ„ํ•œ ํ›„ ๊ทธ ์ค‘ ์ •์ƒ์ ์ธ ์ƒ์ฒ˜ ์น˜์œ  ๊ณผ์ •์—์„œ ์ค‘์š”ํ•œ ์กฐ์ ˆ์ž ์—ญํ• ์„ ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ง„ FOXO1์— ๋Œ€ํ•œ luciferase reporter assay๋ฅผ ํ†ตํ•ด FOXO1์ด MIR135b์˜ ํ‘œ์  ์œ ์ „์ž์ž„์„ ํ™•์ธํ•˜์˜€๊ณ  ๊ฐ์งˆํ˜•์„ฑ์„ธํฌ์— MIR135b๋ฅผ transfection ์‹œํ‚จ ํ›„ western blot์„ ํ†ตํ•ด FOXO1 ๋ฐœํ˜„ ๊ฐ์†Œ๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ ํ”ผ๋ถ€ ์ƒ์ฒ˜ ์น˜์œ ์— ํšจ๊ณผ์ ์ธ ๋ฌผ์งˆ ์ค‘ ํ•˜๋‚˜๋กœ ์•Œ๋ ค์ง„ polydeoxyribonucleotide (PDRN)๋ฅผ ๊ฐ์งˆํ˜•์„ฑ์„ธํฌ์— 48์‹œ๊ฐ„ ์ฒ˜๋ฆฌํ•œ ํ›„ quantitative reverse transcription polymerase chain reaction (qRT-PCR)์„ ํ†ตํ•ด MIR135b ๊ฐ์†Œ์™€ FOXO1 mRNA์˜ ๋ฐœํ˜„ ์ฆ๊ฐ€๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ๋‹ค์–‘ํ•œ microRNA์™€ ์œ ์ „์ž๋“ค์˜ ๋ฐœํ˜„ ๋ณ€ํ™”์— ์˜ํ•ด ๋ฏธ์„ธํ•˜๊ฒŒ ์กฐ์ ˆ๋˜๋Š” ์ƒ์ฒ˜ ์น˜์œ ๊ณผ์ •์—์„œ PDRN์ด MIR135b ๋ฐœํ˜„์„ ์–ต์ œํ•˜๊ณ  ๊ทธ ํ‘œ์ ์ธ FOXO1 ๋ฐœํ˜„์„ ์ฆ๊ฐ€์‹œ์ผœ ์ •์ƒ์ ์ธ ํ”ผ๋ถ€ ์ƒ์ฒ˜ ์น˜์œ  ๊ณผ์ •์„ ์ด‰์ง„์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ๋ฉฐ MIR135b - FOXO1์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ์ƒ์ฒ˜ ์น˜์œ  ์กฐ์ ˆ ๊ฒฝ๋กœ์˜ ๊ฐ€๋Šฅ์„ฑ์„ ์‹œ์‚ฌํ•ด ์ค€๋‹ค.โ… . ์„œ๋ก  1 โ…ก. ์žฌ๋ฃŒ ๋ฐ ๋ฐฉ๋ฒ• 10 โ…ข. ๊ฒฐ๊ณผ 16 โ…ฃ. ๊ณ ์ฐฐ 30 ์ฐธ๊ณ ๋ฌธํ—Œ 41 ์˜๋ฌธ์ดˆ๋ก 54Docto

    Research Trends Regarding French Didactics in Korea

    Get PDF
    The purpose of this study is to investigate the trends and future directions of academic research by reviewing a total of 218 Korean articles related to French didactics that were published from 2005 to 2018. The study focused on the topics of research. We first classified the research topics to facilitate analysis. Next, the research topics of French didactics were analyzed and comprehensively reviewed to examine the trends of academic research. Finally, based on the implications derived in this process, several proposals are suggested for improving the situation and for future research of French didactics

    ์‚ฌ์ „ ๊ฒฝ๊ณ ์˜ ์กฐ์ ˆํšจ๊ณผ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์‚ฌํšŒ๊ณผํ•™๋Œ€ํ•™ ์–ธ๋ก ์ •๋ณดํ•™๊ณผ, 2022.2. ์ด์€์ฃผ.โ€˜๊ฐ€์งœ ๋‰ด์Šคโ€™์™€ ๊ฐ™์€ ํ—ˆ์œ„์ •๋ณด๋กœ ๋ฐœ์ƒํ•˜๋Š” ์‚ฌํšŒ์ •์น˜์  ๋ฌธ์ œ๊ฐ€ ์‹ฌ๊ฐํ•˜๊ฒŒ ๋Œ€๋‘๋˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ ์ตœ๊ทผ์—๋Š” ๊ฐ์ข… ์†Œ์…œ ๋ฏธ๋””์–ด ๋„คํŠธ์›Œํฌ๋ฅผ ํ†ตํ•ด ์‚ฌ์‹ค ์—ฌ๋ถ€๊ฐ€ ํ™•์ธ๋˜์ง€ ์•Š์€ ์ •๋ณด๊ฐ€ ๊ธ‰์†๋„๋กœ ์ „ํŒŒ๋˜๊ณ  ์žˆ์–ด ๊ทธ ๋ฌธ์ œ๋Š” ๋”์šฑ ๊ฐ€์ค‘๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฐ ๊ฐ€์šด๋ฐ ๋ณธ ์—ฐ๊ตฌ๋Š” ํ—ˆ์œ„์ •๋ณด ๊ต์ • ๋ฐฉ๋ฒ•์œผ๋กœ ํŒฉํŠธ์ฒดํฌ์™€ ๊ต์ •๋ฒ•์˜ ํšจ๊ณผ๋ฅผ ๋†’์ด๋Š” ๋ฐฉ์•ˆ์œผ๋กœ ์‚ฌ์ „ ๊ฒฝ๊ณ ์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ํŒฉํŠธ์ฒดํฌ ๊ฒฐ๊ณผ, ์‚ฌ์ „ ๊ฒฝ๊ณ ์˜ ์œ ๋ฌด์— ๋”ฐ๋ผ ๋…์ž์˜ ์‚ฌ์‹ค์„ฑ ์ธ์‹ ๋ฐ ๊ณต์œ  ์˜๋„๊ฐ€ ๋‹ฌ๋ผ์ง€๋Š”์ง€๋ฅผ ์‚ดํŽด๋ณด๊ณ , ํŒฉํŠธ์ฒดํฌ ๊ฒฐ๊ณผ์™€ ์‚ฌ์ „ ๊ฒฝ๊ณ  ๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ ํšจ๊ณผ๋ฅผ ์•Œ์•„๋ดค๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ ํŒฉํŠธ์ฒดํฌ์™€ ์‚ฌ์ „ ๊ฒฝ๊ณ ๊ฐ€ ๋…์ž์˜ ์ธ์‹ ๋ฐ ํ–‰๋™์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์‚ดํ”ผ๊ธฐ ์œ„ํ•ด 600๋ช…์„ ๋Œ€์ƒ์œผ๋กœ ์˜จ๋ผ์ธ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ–ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ํŒฉํŠธ์ฒดํฌ ๊ฒฐ๊ณผ๊ฐ€ ๊ฑฐ์ง“์ธ ๊ฒฝ์šฐ์™€ ๋น„๊ตํ–ˆ์„ ๋•Œ, ๋…์ž์˜ ์‚ฌ์‹ค์„ฑ ์ธ์‹์€ ํŒฉํŠธ์ฒดํฌ ๊ฒฐ๊ณผ๊ฐ€ ์‚ฌ์‹ค์ธ ๊ฒฝ์šฐ ๋” ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋˜ํ•œ ํŒฉํŠธ์ฒดํฌ ๊ฒฐ๊ณผ๊ฐ€ ์‚ฌ์‹ค์ธ ๊ฒฝ์šฐ, ํŒฉํŠธ์ฒดํฌ ๊ฒฐ๊ณผ๊ฐ€ ์ œ์‹œ๋˜์ง€ ์•Š์€ ๊ฒฝ์šฐ๋ณด๋‹ค ํ•ด๋‹น ์ •๋ณด๋ฅผ ์‚ฌ์‹ค๋กœ ๋ฏฟ๋Š” ๊ฒฝํ–ฅ์ด ๋” ๊ฐ•ํ–ˆ๋‹ค. ๋ฐ˜๋ฉด, ํŒฉํŠธ์ฒดํฌ ๊ฒฐ๊ณผ๊ฐ€ ๊ฑฐ์ง“์ธ ๊ฒฝ์šฐ, ์ œ์‹œ๋˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ์— ๋น„ํ•ด, ์ด๋ฏธ ๊ฑฐ์ง“์œผ๋กœ ํ™•์ธ๋œ ํ—ˆ์œ„์ •๋ณด์— ๋Œ€ํ•œ ์‹ ๋ขฐ๋„๊ฐ€ ์˜คํžˆ๋ ค ๋” ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋ฐ˜๋ฉด, ํŒฉํŠธ์ฒดํฌ ๊ฒฐ๊ณผ์— ๋”ฐ๋ผ ๊ฐœ์ธ์˜ ๊ณต์œ  ์˜๋„๋Š” ํŒฉํŠธ์ฒดํฌ ๊ฒฐ๊ณผ๊ฐ€ ์‚ฌ์‹ค์ธ ๊ฒฝ์šฐ, ์˜คํžˆ๋ ค ํŒฉํŠธ์ฒดํฌ ๊ฒฐ๊ณผ๊ฐ€ ๊ฑฐ์ง“์ธ ๊ฒฝ์šฐ๋ณด๋‹ค ๋” ๋‚ฎ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋‚˜์•„๊ฐ€, ํŒฉํŠธ์ฒดํฌ ๊ฒฐ๊ณผ๊ฐ€ ์‚ฌ์‹ค์ธ ๊ฒฝ์šฐ, ์ œ์‹œ๋˜์ง€ ์•Š์€ ๊ฒฝ์šฐ๋ณด๋‹ค ๊ณต์œ  ์˜๋„๊ฐ€ ๋‚ฎ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ์œผ๋‚˜, ํŒฉํŠธ์ฒดํฌ ๊ฒฐ๊ณผ๊ฐ€ ๊ฑฐ์ง“์ธ ์ง‘๋‹จ์˜ ๊ณต์œ  ์˜๋„๋Š” ๊ฒฐ๊ณผ๊ฐ€ ์ œ์‹œ๋˜์ง€ ์•Š๋Š” ์ง‘๋‹จ๋ณด๋‹ค ๋” ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์‚ฌ์ „ ๊ฒฝ๊ณ ์˜ ์œ ๋ฌด์— ๋”ฐ๋ฅธ ๊ฐœ์ธ์˜ ์‚ฌ์‹ค์„ฑ ์ธ์‹์˜ ์ฐจ์ด๋Š” ์—†์—ˆ์ง€๋งŒ, ๊ณต์œ  ์˜๋„์—๋Š” ์ฐจ์ด๊ฐ€ ์žˆ์—ˆ๋‹ค. ์‚ฌ์ „ ๊ฒฝ๊ณ ๊ฐ€ ์ฃผ์–ด์ง€๋Š” ๊ฒฝ์šฐ, ์‚ฌ๋žŒ๋“ค์€ ํ•ด๋‹น ์ •๋ณด๋ฅผ ๊ณต์œ ํ•  ๊ฐ€๋Šฅ์„ฑ์ด ๋” ๋‚ฎ์€ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํŒฉํŠธ์ฒดํฌ ๊ฒฐ๊ณผ์™€ ์‚ฌ์ „ ๊ฒฝ๊ณ ์˜ ์œ ๋ฌด์˜ ์ƒํ˜ธ์ž‘์šฉ ํšจ๊ณผ๋ฅผ ์•Œ์•„๋ดค๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์‚ฌ์‹ค์„ฑ ์ธ์‹์—์„œ ์œ ์˜ํ•œ ์ƒํ˜ธ์ž‘์šฉ์ด ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•˜์ง€๋งŒ, ๊ณต์œ  ์˜๋„์— ์žˆ์–ด์„œ ์œ ์˜ํ•œ ์ƒํ˜ธ์ž‘์šฉ ํšจ๊ณผ๊ฐ€ ์žˆ์—ˆ๋‹ค. ํŒฉํŠธ์ฒดํฌ ๊ฒฐ๊ณผ๊ฐ€ ์‚ฌ์‹ค์ผ ๋•Œ, ์‚ฌ์ „ ๊ฒฝ๊ณ ๊ฐ€ ์žˆ์œผ๋ฉด ๊ณต์œ  ์˜๋„๊ฐ€ ๋ถ€๋ถ„์ ์œผ๋กœ ๋‚ฎ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋ฐ˜๋ฉด, ํŒฉํŠธ์ฒดํฌ ๊ฒฐ๊ณผ๊ฐ€ ๊ฑฐ์ง“์ผ ๋•Œ๋Š” ์‚ฌ์ „ ๊ฒฝ๊ณ ๊ฐ€ ๊ณต์œ  ์˜๋„๋ฅผ ๋‚ฎ์ถ”๋Š” ํšจ๊ณผ๊ฐ€ ์กด์žฌํ–ˆ๋‹ค. ํ•œํŽธ์œผ๋กœ๋Š”, ์‚ฌ์ „ ๊ฒฝ๊ณ ๊ฐ€ ์กด์žฌํ•  ๋•Œ, ํŒฉํŠธ์ฒดํฌ ๊ฒฐ๊ณผ์™€ ๋ฌด๊ด€ํ•˜๊ฒŒ ๊ณต์œ  ์˜๋„์˜ ์ฐจ์ด๋Š” ์กด์žฌํ•˜์ง€ ์•Š์•˜๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์‚ฌ์ „ ๊ฒฝ๊ณ ๊ฐ€ ์—†๋Š” ๊ฒฝ์šฐ, ํŒฉํŠธ์ฒดํฌ ๊ฒฐ๊ณผ๊ฐ€ ๊ฑฐ์ง“์œผ๋กœ ํŒ๋ช…๋œ ๊ธฐ์‚ฌ์˜ ๊ฒฝ์šฐ ๊ณต์œ  ์˜๋„๊ฐ€ ๋” ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ํŒฉํŠธ์ฒดํฌ ๊ฒฐ๊ณผ์™€ ์‚ฌ์ „ ๊ฒฝ๊ณ  ๊ธฐ์‚ฌ์˜ ๋…ธ์ถœ์ด ๊ฐœ์ธ์˜ ์‚ฌ์‹ค์„ฑ ์ธ์‹ ๋ฐ ๊ณต์œ  ์˜๋„๋ฅผ ๊ฐ•ํ™” ํ˜น์€ ์•ฝํ™”์‹œํ‚ค๋Š”์ง€ ํ™•์ธํ•˜๊ณ  ๊ตฌ์ฒด์ ์œผ๋กœ ํ—ˆ์œ„์ •๋ณด์˜ ๊ต์ • ๋ฐฉ๋ฒ• ์ค‘ ํ•˜๋‚˜์ธ ํŒฉํŠธ์ฒดํฌ์˜ ๊ต์ •ํšจ๊ณผ๋ฅผ ๋†’์ด๊ธฐ ์œ„ํ•œ ์ „๋žต์œผ๋กœ์„œ ์‚ฌ์ „ ๊ฒฝ๊ณ ์˜ ํšจ๊ณผ๋ฅผ ๋ชจ์ƒ‰ํ–ˆ๋‹ค๋Š” ์ ์—์„œ ๋ณธ ์—ฐ๊ตฌ์˜ ์˜์˜๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค. ์ข…ํ•ฉํ•˜๋ฉด ๋ณธ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋Š” ํŒฉํŠธ์ฒดํฌ์˜ ๊ฒฐ๊ณผ๋ฅผ ์ œ์‹œํ•˜๋Š” ๊ฒƒ๋งŒ์œผ๋กœ ๋…์ž๋“ค์ด ํ•ด๋‹น ์ •๋ณด์˜ ์ง„์œ„ ์—ฌ๋ถ€์— ๋Œ€ํ•œ ์‚ฌ์‹ค์„ฑ ์ธ์‹ ๋ฐ ๊ณต์œ  ์˜๋„๊ฐ€ ๋‹ฌ๋ผ์งˆ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ •๋ณด์˜ ์ง„์œ„ ์—ฌ๋ถ€์— ๋Œ€ํ•œ ์‚ฌ์ „ ๊ฒฝ๊ณ ๋Š” ๋…์ž๊ฐ€ ํ•ด๋‹น ์ •๋ณด๋ฅผ ๊ณต์œ ํ• ์ง€๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ๋ฐ์— ์˜ํ–ฅ์„ ์ฃผ๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ฆ‰, ์ •๋ณด์˜ ๋ฐฐํฌ๋ฅผ ์ฒ˜๋ฒŒํ•œ๋‹ค๊ณ  ๊ฒฝ๊ณ ํ•˜๋Š” ๊ฒƒ๋งŒ์œผ๋กœ๋„ ๋…์ž์˜ ์ž˜๋ชป๋œ ์ •๋ณด์— ๋Œ€ํ•œ ๊ณต์œ  ์˜๋„๋Š” ์ค„์ผ ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค.Misinformation such as "fake news" is considered a serious social and political problem. In particular, in recent years, information that has not been confirmed to be true is rapidly spreading through various social media networks. This study focused on forewarning as a way to increase the effectiveness of fact-checking as a method of correcting misinformation. As a result of fact-checking, this study examined whether readers' perception of facts(truthfulness) and intention to share vary depending on the presence or absence of forewarning. Furthermore, it examined whether the fact-checking results and forewarning have an interactive effect on readers' truthfulness and sharing intentions of information. Specifically, an online experiment was conducted with 600 people to examine the effect of fact-checking results and forewarning on readers' perceptions and behaviors. As a result, compared with the case where the fact-checking result was false, the truthfulness was higher when the fact-checking result was true. In addition, when the fact-checking result was true, truthfulness of the information was a stronger than when the fact-checking result was not presented. On the other hand, when the fact-checking result was false, the truthfulness of information was higher than when the fact-checking result was not presented. On the other hand, depending on the fact-checking results, the individual's intention to share was lower than when the fact check result was true than when the fact-checking result was false. Furthermore, when the fact-checking result was true, the intention to share was lower than when the fact-checking result was not presented. Furthermore, the sharing intention of the group whose fact-checking result was false was higher than that of the group whose fact-checking result was not presented. There was no difference in individual truthfulness of facts according to the presence or absence of forewarning, but there was a difference in sharing intention. When a forewarning was given, people were less likely to share the information. The interaction effect between the fact-checking results and the presence or absence of forewarning was examined. As a result, there was no significant interaction in the truthfulness, but there was a significant interaction effect in the intention to share. When the fact-checking results was true, the intention to share was partially low if there was a forewarning. On the other hand, when the fact-checking result was false, forewarning had the effect of lowering sharing intentions. On the one hand, when there was a forewarning, there was no difference in sharing intention regardless of the fact-checking results. However, when there was no forewarning, the intention to share was higher in the case of articles whose fact-checking result was found to be false. This study is significant in that it sought the effect of forewarning as a strategy to strengthen or weaken the effectiveness of fact-checking as one of the methods of correcting false information. Taken together, the results of this study showed that the reader's perception of the authenticity and intention to share the information may vary just by presenting the results of the fact-checking, and that forewarning about the authenticity of the information affects the reader's decision to share it. In other words, it suggests that the reader's intention to share false information can be reduced just by warning that the sharing of information is punished.์ œ 1 ์žฅ ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  1 ์ œ 1 ์ ˆ ํ—ˆ์œ„์ •๋ณด์˜ ํ™•์‚ฐ๊ณผ ๋Œ€์‘ 1 ์ œ 2 ์ ˆ ๊ต์ •์ •๋ณด๋กœ์„œ ํŒฉํŠธ์ฒดํฌ 6 ์ œ 2 ์žฅ ์ด๋ก ์  ๋ฐฐ๊ฒฝ 9 ์ œ 1 ์ ˆ ํ—ˆ์œ„์ •๋ณด์— ๋Œ€ํ•œ ์„ ํ–‰ ๋…ผ์˜ 9 1. ์˜ค์ •๋ณด, ์กฐ์ž‘์ •๋ณด ๋ฐ ๊ฐ€์งœ ๋‰ด์Šค 9 2. ํ—ˆ์œ„์ •๋ณด ๊ณต์œ  ๋ฐ ์ „ํŒŒ 12 ์ œ 2 ์ ˆ ํ—ˆ์œ„์ •๋ณด ๊ต์ •(correction) 15 1. ํ—ˆ์œ„์ •๋ณด์˜ ๊ต์ • ๊ณผ์ • 15 2. ๊ฐ€์งœ ๋‰ด์Šค ๊ต์ •๋ฒ•์œผ๋กœ์„œ์˜ ํŒฉํŠธ์ฒดํฌ(fact-check) 18 ์ œ 3 ์ ˆ ๊ต์ •์— ๋Œ€ํ•œ ์ €ํ•ญ(resistance to correction) 22 1. ์ง„์‹ค-๊ธฐ๋ณธ๊ฐ’ ์ด๋ก (truth-default theory) 23 2. ํ™•์ฆ ํŽธํ–ฅ(confirmation bias) 25 3. ์ง„์‹ค์ฐฉ๊ฐํšจ๊ณผ(illusory truth effect) 27 4. ์˜ค์ •๋ณด ์ง€์† ํšจ๊ณผ(continued influence effect) 30 ์ œ 4 ์ ˆ ์‚ฌ์ „ ๊ฒฝ๊ณ (forewarning) 34 1. ์ ‘์ข… ์ด๋ก (inoculation theory) 35 2. ์‚ฌ์ „ ๊ฒฝ๊ณ ์˜ ํšจ๊ณผ 38 ์ œ 5 ์ ˆ ์—ฐ๊ตฌ ๋ฌธ์ œ ๋ฐ ๊ฐ€์„ค 44 ์ œ 3 ์žฅ ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• 50 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ ์„ค๊ณ„ 50 1. ์‹คํ—˜ ๊ฐœ์š” 50 1) ์‹คํ—˜ ์ฐธ๊ฐ€์ž 50 2) ์‹คํ—˜ ์ ˆ์ฐจ 50 ์ œ 2 ์ ˆ ์ฃผ์š” ๋ณ€์ธ ์ •์˜ ๋ฐ ์ธก์ • 53 1. ์‚ฌ์ „ ๊ฒฝ๊ณ (forewarning) 53 2. ํŒฉํŠธ์ฒดํฌ ๊ฒฐ๊ณผ 53 3. ์ •๋ณด์˜ ์‚ฌ์‹ค์„ฑ ์ธ์‹ 55 4. ๊ณต์œ  ์˜๋„ 56 ์ œ 4 ์žฅ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ 58 ์ œ 1 ์ ˆ ๊ธฐ์ˆ  ํ†ต๊ณ„์น˜ ๋ฐ ์ƒ๊ด€๊ด€๊ณ„ ๊ฒ€์ฆ 58 ์ œ 2 ์ ˆ ๊ฐ€์„ค ๊ฒ€์ฆ 61 1. [์—ฐ๊ตฌ ๋ฌธ์ œ 1] ๊ฒ€์ฆ 61 2. [์—ฐ๊ตฌ ๋ฌธ์ œ 2] ๊ฒ€์ฆ 63 3. [์—ฐ๊ตฌ ๋ฌธ์ œ 3] ๊ฒ€์ฆ 64 4. [์—ฐ๊ตฌ ๋ฌธ์ œ 4] ๊ฒ€์ฆ 64 5. [์—ฐ๊ตฌ ๋ฌธ์ œ 5] ๊ฒ€์ฆ 65 6. [์—ฐ๊ตฌ ๋ฌธ์ œ 6] ๊ฒ€์ฆ 65 ์ œ 5 ์žฅ ์ข…ํ•ฉ ๋…ผ์˜ 69 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ ์š”์•ฝ ๋ฐ ๋…ผ์˜ 69 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ์˜ ํ•จ์˜ 70 ์ œ 3 ์ ˆ ์—ฐ๊ตฌ ํ•œ๊ณ„์  ๋ฐ ํ›„์† ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•œ ์ œ์–ธ 71 ์ฐธ๊ณ ๋ฌธํ—Œ 74 ๋ถ€๋ก 91 Abstract 105์„

    Scopolamine promotes neuroinflammation and delirium-like neuropsychiatric disorder in mice

    Get PDF
    Postoperative delirium is a common neuropsychiatric syndrome resulting a high postsurgical mortality rate and decline in postdischarge function. Extensive research has been performed on both human and animal delirium-like models due to their clinical significance, focusing on systematic inflammation and consequent neuroinflammation playing a key role in the pathogenesis of postoperative cognitive dysfunctions. Since animal models are widely utilized for pathophysiological study of neuropsychiatric disorders, this study aimed at examining the validity of the scopolamine-induced delirium-like mice model with respect to the neuroinflammatory hypothesis of delirium. Male C57BL/6 mice were treated with intraperitoneal scopolamine (2 mg/kg). Neurobehavioral tests were performed to evaluate the changes in cognitive functions, including learning and memory, and the level of anxiety after surgery or scopolamine treatment. The levels of pro-inflammatory cytokines (IL-1ฮฒ, IL-18, and TNF-ฮฑ) and inflammasome components (NLRP3, ASC, and caspase-1) in different brain regions were measured. Gene expression profiles were also examined using whole-genome RNA sequencing analyses to compare gene expression patterns of different mice models. Scopolamine treatment showed significant increase in the level of anxiety and impairments in memory and cognitive function associated with increased level of pro-inflammatory cytokines and NLRP3 inflammasome components. Genetic analysis confirmed the different expression patterns of genes involved in immune response and inflammation and those related with the development of the nervous system in both surgery and scopolamine-induced mice models. The scopolamine-induced delirium-like mice model successfully showed that analogous neuropsychiatric changes coincides with the neuroinflammatory hypothesis for pathogenesis of delirium.ope
    • โ€ฆ
    corecore