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Abstract 

 

Pressure-induced changes in carbon speciation and atomic 

structures of carbon-bearing silicate glasses and crystals in 

Earth's mantle up to 14 GPa: Insights from multi-nuclear 

solid-state NMR and Raman spectroscopy 

 

Eun Jeong Kim 

School of Earth and Environmental Sciences 

The Graduate School 

Seoul National University 

 

Mantle is the largest carbon reservoir in the Earth and the speciation 

of carbon in the Earth’s interior plays an important role in the geophysical 

and geochemical properties of silicate melts and overall distribution of 

carbon in the mantle. Due to its importance, previous researchers have 

reported the speciation and the solubility of carbon in silicate melts at high 

pressure up to 4 GPa. Yet the speciation of carbon in silicate melts and the 

effect of carbon species on silicate melts and crystals at high pressure above 

4 GPa up to 14 GPa is not fully understood due to the difficulties in 

synthesizing samples and the lack of suitable probes to detect carbon 

species. 

This dissertation is for a systematic exploration of pressure-induced 

speciation of carbon in silicate glasses and crystals at high pressure up to 14 

GPa using multi-nuclear (13C, 27Al, 29Si, 17O, and 7Li) solid-state nuclear 
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magnetic resonance (NMR) and Raman spectroscopy. The main objective of 

this thesis is probing and quantifying the carbon species in silicate melts 

and crystals at high pressure. The pressure-induced structural changes of 

alkali silicate melts at high pressure is also studied. 

The systematic protocols to characterize carbon-bearing fluid 

inclusions and other carbon-bearing species in enstatite synthesized with 

13C-enriched amorphous carbon were established using high-resolution 13C 

solid-state NMR and Raman spectroscopy. The Raman spectra revealed the 

presence of various molecular species in fluid inclusion, such as CO2, CO, 

CH4, H2O, and H2, and their heterogeneous distribution in carbon-bearing 

fluid inclusion. 13C MAS NMR spectra showed the presence of CO2, CO, and 

CO32- in enstatite. As the carbonate species is not observed in fluid 

inclusions by Raman spectroscopy, the relationship between 13C abundance 

and peak intensity in the 13C magic angle spinning (MAS) NMR was 

established to identify the phase of carbonate species in the carbon-bearing 

enstatite. The estimated carbonate species is ~28–45 ppm, which is much 

higher than the solubility of carbon species in enstatite (0.05–4.7 ppm). The 

current methods to characterize carbon-bearing species in enstatite using 

Raman and NMR spectroscopy can be used to provide quantitative analysis 

of carbon species in silicate crystals. 

The structural changes of carbon and its effect on the silicate network 

in binary sodium silicate and ternary sodium aluminosilicate melts at high 

pressure up to 8 GPa were investigated using multi-nuclear solid-state 

NMR. In binary sodium silicate melts, only carbonate species are observed, 

and the formation of bridging carbonates is observed above 6 GPa. In 

contrast, the presence of CO2, CO, and CO32- is observed in ternary sodium 
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aluminosilicate melts at high pressure up to 6 GPa, and the fraction of 

carbonate species gradually increases with increasing pressure. Among four 

carbonate species, the fraction of Al(CO3)Si increases the most with 

increasing pressure which may be related to the topological disorder of Al 

in 27Al 3QMAS NMR spectra for carbon-bearing sodium aluminosilicate 

melts. Based on the peak intensity in 13C MAS NMR spectra and the spin-

lattice relaxation time of CO2 in carbon-bearing sodium aluminosilicate 

melts, the total carbon contents gradually increase from ~1 wt% at 1.5 GPa 

to ~4 wt% at 6 GPa. The current results on the speciation of carbon in 

silicate melts above 4 GPa give insights into the carbon species and its 

contents in carbon-bearing silicate melts in the upper mantle. 

To identify the structural changes of carbon-free silicate melts at high 

pressure and the effect of cation mixing in those melts, multi-nuclear solid-

state NMR study on the Na-Li silicate glasses quenched from melts at high 

pressure up to 8 GPa was performed. 29Si MAS NMR spectra of Na-Li 

silicate glasses show a relatively constant ratio of highly coordinated Si at 

high pressure regardless of lithium content (XLi). 7Li MAS NMR spectra of 

Na-Li silicate glasses show continuous changes of peak position and widths 

with varying XLi and pressure. Based on the spin-spin relaxation of 7Li in 

Na-Li silicate glasses at high pressure, the cation disorder of Na and Li 

changes from random distribution to more chemically ordered structure 

with increasing pressure in XLi = 0.50 and 0.75. This indicates the pressure-

induced chemical order in mixed alkali cations in silicate melts at high 

pressure. 

The structural changes of carbon species in silicate melts at high 

pressure up to 14 GPa were investigated using Raman spectroscopy and 
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solid-state NMR. In carbon-bearing sodium aluminosilicate glasses, the 

fraction of bridging carbonates increases with increasing pressure up to 9.2 

GPa, which is generally consistent with previous theoretical calculations. 

Raman spectra of carbon-bearing sodium aluminosilicate crystals formed at 

14 GPa showed the presence of nano-diamonds in the sample and 13C MAS 

NMR spectra showed the presence of carbonate minerals and nano-

diamonds. In carbon-bearing sodium silicate melts at high pressure up to 14 

GPa, the fraction of bridging carbonates [Si(CO3)Si] increases up to ~60 % 

with increasing pressure up to 14 GPa. The increase of bridging carbonates 

with pressure may provide insight into the structural proxy of 

polymerization of carbon-bearing silicate melts at high pressure and 

immiscibility of carbonatite and silicate melts in the mantle. 

 

Keywords: carbon species, silicate melts, high pressure, solid-state nuclear 

magnetic resonance, Raman spectroscopy 
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Figure 1.1. (a) A photograph of 1100-ton multi-anvil press equipped in 

author’s laboratory, Seoul National University. (b) A plan view of the 

multi-anvil press (open square with label “b”) in Fig. 1.1a. A containment 

ring, three first-stage anvils (1st anvil) and assembled second-stage anvils 

(2nd anvil) are shown. (c) A section drawing of the multi-anvil press. Grey, 

violet, yellow, and green areas represent pistons, a containment ring, 

first-stage anvils, and second-stage anvils, respectively. The black arrows 

show the direction of force applied to pistons. (d) Photographs of an 

octahedral pressure medium and a second-stage anvil. OEL is referred 

to the octahedral edge lengths the pressure medium and TEL is an 

abbreviation of truncated edge lengths of the second-stage anvil. (e) A 

schematic diagram of an assembly set with straight heater (open square 

with label “e”) in Fig. 1.1c. 

Figure 2.1. (A) A stereoscopic micrograph image of one of the grains of 

carbon-bearing enstatite. The size of the grain is 80 μm (w) × 100 μm (h) 

and the fluid inclusions are 4 μm (w) × 10 μm (h) (indicated with red 

rectangles). (B) Raman spectra for carbon-bearing enstatite in the 

frequency range of 1000–4300 cm-1 and (C) that in the range of 1200–

1500 cm-1 and (D) 2000–2200 cm-1.  

Figure 2.2. 13C NMR spectra for carbon-bearing enstatite and stator and 

rotor backgrounds at 11 kHz of spinning speed (top), that at 14 kHz of 

spinning speed (middle), and rotor and stator background at 14 kHz 

(bottom). The asterisks and dotted arcs denote expected positions of 
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spinning side bands for background signal at 130 ppm. The spinning 

sideband of the spectrum for carbon-bearing enstatite at 14 kHz 

overlaps with a small peak at ~ -9 ppm. 

Figure 2.3. (A) Single point energy of C(OH)4 cluster with varying C–O 

bond length. A model C(OH)4 cluster is also shown in the inset. (B) 

NMR chemical shift of C(OH)4 cluster with varying C–O bond length. 

Figure 2.4. (Top) 13C MAS NMR spectrum for the mixtures of ADM-SiO2 with 

varying ADM/SiO2 ratio [XADM = 1/4 (25 wt%, 2750 ppm of 13C), 1/8 (12.5 

wt%, 1375 ppm of 13C), 1/16 (6.25 wt%, 688 ppm of 13C), 1/50 (2.0 wt%, 220 

ppm of 13C), 1/233 (0.43 wt%, 47 ppm of 13C), 1/310 (0.32 wt%, 35 ppm of 13C)]. 

(Bottom) Variation of peak intensity in the ADM-SiO2 mixture as a function of 

13C abundance (in ppm) calculated from nominal XADM ratio and peak area of 

carbon species in 13C MAS NMR spectra. Diamonds and circles refer to the 

amounts of 13C estimated from nominal XADM ratio with and without proton 

decoupling, respectively. Their peak areas were retrieved from 13C MAS NMR 

results for ADM-SiO2 mixtures. Rectangles refer to the amounts of 13C species 

in carbon-bearing enstatite estimated from 13C MAS NMR spectra for carbon-

bearing enstatite. 

Figure 2.A1. 13C MAS NMR spectrum for carbon-bearing enstatite under 

proton decoupling with an applied Lorentzian broadening factor of 40. 

Figure 2.A2. (A) 1H MAS NMR spectra for compressed amorphous carbon, 

amorphous carbon, and rotor-stator background. Asterisks denote 

spinning sidebands. (B) Expanded 1H MAS NMR spectra for the 

samples as labeled.  

Figure 2.A3. 13C MAS NMR spectra for ADM-SiO2 mixtures with varying 

XADM ratio with decoupling power of 33 kHz. 

Figure 2.A4. 13C NMR spectra for 1 M Na213CO3(aq), 1 M 
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(Na213CO3+NaHCO3)(aq), calcite, and natrite with an employed 

Lorentzian broadening factor of 10.  

Figure 2.A5. XRD patterns of enstatite-calcite mixture with varying Xcalcite 

from 0 to 1/32. Blue and red lines on the top of the figure refer to XRD 

patterns of enstatite and calcite, respectively. A red area shows the 

decrease of calcite intensity with decreasing Xcalcite in the sample.  
Figure 3.1. 27Al 3QMAS NMR spectra for carbon-bearing albite glasses 

quenched from melts at 1.5 and 6 GPa and for carbon-free albite melts 

at 1 atm and 8 GPa. 

Figure 3.2. (A) 29Si MAS NMR spectra for carbon-bearing NS3 (Na2O-3SiO2) 

glasses quenched from melts at 1 atm, 6, and 8 GPa in the range of -50 – 

-250 ppm. Inset shows 29Si MAS NMR spectra for carbon-bearing NS3 

melts at 1 atm, 6, and 8 GPa in the range of -60 – -130 ppm. (B) 29Si MAS 

NMR spectra for carbon-bearing albite glasses quenched from melts at 

1.5 and 6 GPa. 

Figure 3.3. 17O 3QMAS NMR spectrum for carbon-bearing NS3 melts at 6 

GPa. 

Figure 3.4. (A) Background-included and (B) background-subtracted 13C 

MAS NMR spectra for carbon-bearing albite melts at 1.5 and 6 GPa. The 

spectra are normalized with the weight of the samples. Spinning 

sidebands are marked with an asterisk. The numbers labeled on the 

right side of the spectra refer to the amount of input CO2 in the system. 

See section 3.2.2 for the measurement of background signal. 

Figure 3.5. (A) 13C MAS NMR spectra for carbon-bearing NS3 melts at 4, 6, 

and 8 GPa (blue) and background (black). (B) background-subtracted 

13C MAS NMR spectra for carbon-bearing NS3 melts at 4, 6, and 8 GPa. 
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Spinning sidebands are marked with an asterisk. The numbers labeled 

on the right side of the spectra refer to the amount of input CO2 in the 

system. See section 2.2 for the measurement of background signal 

Figure 3.6. Saturation-recovery of CO2 in the carbon-bearing albite melts at 

1.5 GPa and 6 GPa. Diamonds and circles refer to the normalized peak 

intensity of carbon-bearing albite glasses at 1.5 and 6 GPa, respectively, 

with varying delay time. Solid lines and dashed lines refer to calculated 

peak intensity, following the spin-lattice relaxation time equation. Error 

bars represent a 10% error. 

Figure 3.7. Carbon contents in the albite melts with increasing pressure. 

Black, blue, red, and violet closed circles refer to total carbon content 

and the amount of CO2, CO32-, and CO species in albite glasses 

calculated from 13C MAS NMR spectra, respectively. Open triangles 

and rectangles refer to data from Stolper et al. (1987) and Brooker et al. 

(1999), respectively. 

Figure 3.8. (Top) Simulation results for 13C MAS NMR spectra for 

carbonates in carbon-bearing albite melts with varying pressure at 1.5 

and 6 GPa. Green, red, blue, purple, and black lines correspond to 

[4]Si(CO3)[4]Si, [4]Si(CO3)[4]Al, [4]Al(CO3)[4]Al, free carbonates (Na··CO32-), 

and total simulation results, respectively. (Bottom) Variations in the 

CO32- ion population with pressure in carbon-bearing albite melts. Blue, 

red, and green circles refer to [4]Al(CO3)[4]Al, [4]Si(CO3)[4]Al, and 

[4]Si(CO3)[4]Si, respectively. Violet triangles denote free CO32- ions near 

the non-bridging oxygen in network polyhedra, charge-balancing with 

the Na+ ions. Open symbols refer to data from Brooker et al. (1999). 

Figure 3.S1. 27Al MAS NMR spectra for carbon-bearing albite glasses at 1.5 
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and 6 GPa and that for carbon-free albite glasses at 1 atm. 

Figure 3.S2. (Top) 29Si MAS NMR spectra and simulation results for carbon-bearing 

NS3 glasses with varying pressure up to 8 GPa. Red, green, and blue lines 

correspond to Q2, Q3, and Q4 species, respectively. (Bottom) Population of Si 

atom species for carbon-bearing NS3 glasses with varying pressure up to 8 

GPa. Red, green, and blue circles correspond to Q2, Q3, and Q4 species, 

respectively. 

Figure 3.S3. 17O MAS NMR spectrum for carbon-bearing NS3 glasses at 6 

GPa. 

Figure 3.S4. (Top) Simulation results for 13C MAS NMR spectra for carbon-

bearing NS3 glasses at high pressure up to 8 GPa. Violet and green lines 

correspond to free carbonates and bridging carbonates, respectively. 

(Bottom) The population of carbon species in carbon-bearing NS3 

glasses. Violet and green circles correspond to free carbonates and 

bridging carbonates, respectively. 

Figure 4.1. 29Si MAS NMR spectra of NLS3 glasses with XLi = 0.25 at 

different pressures 

Figure 4.2. 29Si MAS NMR spectra of NLS3 glasses with varying XLi (a) at 1 

atm and (b) at 6 GPa. 

Figure 4.3. (a) 7Li MAS NMR spectra of NLS3 glasses with varying XLi at 1 

atm. (b) 7Li MAS NMR spectra of NLS3 glasses with XLi = 0.25 and at 

different pressure up to 8 GPa. (c) 7Li MAS NMR spectra of NLS3 

glasses with varying XLi at 6 GPa. (d) FWHM of 7Li in NLS3 glasses 

with different XLi and at different pressures. (e) Peak position of 7Li in 

NLS3 glasses with varying XLi and pressure.  

Figure 4.4. (A) Evolution of the 7Li NMR spectra of NLS3 glasses with 

different XLi and at pressures up to 8 GPa. The black, blue, and red lines 
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represent the peak intensity of 7Li NMR spectra at 1 atm, 6 GPa, and 8 

GPa, respectively. (B) 7Li T2 curves at XLi = 0.25, 0.50, and 0.75 as 

functions of pressure up to 8 GPa. 

Figure 4.5. (A) 17O 3QMAS NMR spectra of NLS3 glasses with varying XLi 

and at different pressures up to 6 GPa. Contour lines are drawn at 5% 

increments from 13 to 93% of the relative intensity, with added lines at 

5%, 7%, and 10% to show low-intensity peaks better. (B) Total isotropic 

projection of the 17O 3QMAS NMR spectra of NLS3 glasses at different 

pressures and XLi values. 

Figure 4.6. (Top) Simulation for the total isotropic projection of the 17O 

3QMAS NMR spectra of NLS3 glasses at different XLi and pressures. 

(Bottom) The estimated oxygen fraction in NLS3 glasses as a function of 

pressure and XLi. 

Figure 4.S1. (Top) Simulation results of the 29Si MAS NMR spectra of NLS3 

glasses with varying XLi and at different pressure up to 8 GPa. The thin 

green, red, blue, and black lines correspond to Q2, Q3, Q4, and total 

simulation results, respectively. (Bottom) Variations in the Qn fraction 

with respect to pressure in the NLS3 glasses. The triangles, rectangles, 

and circles refer to XLi = 0.25, 0.50, and 0.75, respectively. The green, 

red, and blue colors correspond to Q2, Q3, and Q4, respectively. 

Figure 4.S2. 7Li MAS NMR spectra of NLS3 glasses with XLi = 0.25 at 14.1 T. 

Figure 4.S3. 17O MAS NMR spectra of NLS3 glasses with varying pressure 

and XLi at 9.4 T. 

Figure 4.S4. Raman spectra of NLS3 glasses with varying XLi and at 

different pressures up to 6 GPa. 

Figure 4.S5. Full-width at half-maximum (FWHM) in 7Li MAS NMR spectra 
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(blue) and those derived from T2 of 7Li NMR spectra (black). Triangle, 

square, and circles refer to XLi = 0.25, 0.50, and 0.75, respectively. 

Figure 5.1. Stereoscopic micrographs of (a) C-bearing aluminosilicate 

glasses at 9.2 GPa and (b) C-bearing aluminosilicate glasses and crystals 

at 14 GPa inside and (c) outside. (d) A stereoscopic micrograph of C-

bearing aluminosilicate crystals and glasses synthesized at 14 GPa. (e) 

BSE image of C-bearing aluminosilicate crystals and glasses 

synthesized at 14 GPa. (f) Close-up view of transparent particles (5‒15 

μm). (g) Close-up view of small white particles in fig. e. (h) BSE image 

of C-bearing albite glasses at 9.2 GPa. (i-l) EDS patterns of labelled 

particles in fig. f and h. 

Figure 5.2. Raman spectra for C-bearing aluminosilicate crystals and glasses 

at 14 GPa, C-bearing albite glasses at 9.2 GPa, and Na2CO3 at 1 atm. 

Inset images were obtained from C-bearing aluminosilicate crystals and 

glasses at 14 GPa (left: inside, right: outside). Asterisks refer to central 

spike in Raman spectra. 

Figure 5.3. 13C MAS NMR spectra for C-bearing albite glasses at high 

pressure up to 9.2 GPa. The data of 1.5 and 6 GPa are from Kim et al. 

(2018). The peak intensities are in the absolute value, corrected to the 

sample weight. The asterisks refer to spinning side bands. 

Figure 5.4. 13C MAS NMR spectra for C-bearing aluminosilicate crystals 

(NaAlSi2O6 + SiO2) at 14 GPa, C-bearing albite glasses at high pressure 

up to 9.2 GPa, and Na2CO3. The peak intensities are normalized to its 

highest height. Asterisks refer to spinning side bands. 
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Figure 5.5. (A) 27Al MAS and (B) 3QMAS NMR spectra for C-free albite 

glasses at 1 atm and C-bearing albite glasses at high pressure up to 9 

GPa.  

Figure 5.6. 29Si MAS NMR spectra for C-bearing aluminosilicate crystals 

(NaAlSi2O6 + SiO2) at 14 GPa, C-bearing albite glasses at high pressure 

up to 6 GPa. 

Figure 5.7. 13C MAS NMR spectra for C-bearing sodium trisilicate glasses 

quenched from melts at high pressure up to 14 GPa. 

Figure 5.8. 29Si MAS NMR spectra for C-bearing sodium trisilicate (NS3) 

glasses quenched from melts at high pressure up to 14 GPa. 

Figure 5.9. Carbon contents in the C-bearing albite glasses with increasing 

pressure up to 9.2 GPa. Black, blue, red, and violet closed circles 

correspond to total carbon, CO2 CO32-, and CO contents in albite glasses 

calculated from 13C MAS NMR spectra, respectively. Open triangle, 

rectangle, and diamonds correspond to previous data from Stolper et al. 

(1987), Brooker et al. (1999), and Guillot and Sator (2011), respectively. 
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Chapter 1. Introduction 

 

1.1. Introduction 

Geological processes originated from the Earth’s interior, such as 

volcanic eruptions and earthquakes, are related to the macroscopic 

properties of crystalline and amorphous silicates at high pressure, which 

depend on their microscopic structures. For example, the changes in 

coordination number of network-former cations and oxygen, and 

topological and chemical disorder of silicate melts at high pressure affects 

the viscosity of silicate melts at high pressure (Lee, 2005, 2010). The presence 

of volatile species, such as CO2, in silicate melts and crystals changes the 

viscosity and chemical composition of silicate melts, and the overall carbon 

flux between the Earth’s surface and interior (Ni and Keppler, 2013 and 

references therein). Therefore, it is important to understand the atomistic 

structure of earth materials at high pressure to understand macroscopic 

properties of silicate crystals and melts and diverse geological processes. 

The pressure-induced structural changes of silicate melts with or 

without the presence of volatile species is one of the importance processes 

in the Earth’s interior. CO2 is one of the most abundance volatiles in the 

magma (Hazen et al., 2012), and the presence of carbon species in the 

diverse earth environments affects the geochemical and geophysical 

processes. For example, burial of organic carbon in oceanic sediments and 

its subduction into the mantle by the subducting oceanic crust can change 

the fraction of O2 in the atmosphere (Duncan and Dasgupta, 2017; Ruhl et 

al., 2009), and oxidation of reduced carbon species in the mantle would 

affect the oxygen fugacity in the mantle (Nicholis and Rutherford, 2009; 
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Pawley et al., 1992; Stagno et al., 2013). The decomposition of carbonates 

within the subduction zone provides CO2 in the mantle, resulting in the 

volatile-induced formation of silicate melts and recycling of CO2 to the 

atmosphere by the volcanic eruption (Blundy et al., 2010; Galvez et al., 2016; 

Mann and Schmidt, 2015). The volatile-induced formation of silicate melts is 

one of the several causes to form a low velocity zone at the boundary of 

upper mantle-transition zone (~410 km depth) (Revenaugh and Sipkin, 

1994; Song et al., 2004). 

The structural changes of silicate melts at high pressure without 

volatile species is also important as their structural changes at high pressure 

give insights into the anomalous changes in the macroscopic properties of 

the corresponding liquids. For example, diffusivity of oxygen in silicate 

melts at high pressure showed the non-linear behavior with increasing 

pressure and this non-linearity is closely related to the fraction of [5]Al and 

[5]Si at high pressure (Poe et al., 1997). The changes of viscosity in silicate 

melts at high pressure is related to the decrease of non-bridging oxygen 

(NBO) in the silicate melts at high pressure (e.g., Lee, 2004, 2010; Lee et al., 

2003). In addition, the diffusivity of cations in silicate melts are closely 

related to the cation disorder in silicate melts (Ali et al., 1995; Gee and 

Eckert, 1996), resulting in the distribution of cations during the magma 

ocean (Lee et al., 2008a; Park and Lee, 2012, 2016).  

Revealing the effect of pressure on the speciation of carbon, the 

distribution of mixed-cations in silicate melts, and the relevant structural 

changes of silicate melts at high pressure is important to understand the 

thermodynamic and transport properties of silicate melts at high pressure. 

For example, the addition of carbon as CO2 in alkali aluminosilicate melts 
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affects the viscosity of silicate melts at constant pressure (Brearley and 

Montana, 1989; White and Montana, 1990), and the presence of carbonate 

species in silicate melts may cause the drastic decrease of viscosity in 

carbon-bearing silicate melts at high pressure (Kono et al., 2014). As the 

fraction of carbon species in silicate melts varies with increasing pressure 

(Brooker et al., 2001a), probing the speciation of carbon in carbon-bearing 

silicate melts at high pressure can provide insights into the changes in 

thermodynamic and transport properties of silicate melts, and shed light on 

the geochemical and geophysical processes in the Earth.  

Because of its importance, the solubility and the speciation of carbon 

in silicate melts at high pressure has been extensively studied at high 

pressure up to 4 GPa (e.g., Eggler and Kadik, 1979; Eggler and Rosenhauer, 

1978; Fine and Stolper, 1985; Kohn et al., 1991; Morizet et al., 2010; Mysen et 

al., 1975; Nowak et al., 2004). Previous studies revealed that the solubility of 

carbon increases with increasing the NBO/T ratio, proportion of SiO2 ratio, 

the fraction of Ca, Mg contents, and the pressure (e.g., Blank and Brooker, 

1994; Fine and Stolper, 1985; King and Holloway, 2002; Kohn et al., 1991; 

Morizet et al., 2010; Mysen et al., 2009; Nowak et al., 2004; Stolper et al., 

1987). However, due to the difficulties in synthesizing the sample above 4 

GPa and the lack of suitable probes to detect carbon species in silicate melts 

at high pressure above 4 GPa, experimental data on the carbon species and 

its contents in silicate melts at high pressure above 4 GPa has been limited. 

Therefore, in this study, I aim to elucidate the speciation of carbon in binary 

sodium silicate and ternary sodium aluminosilicate melts at high pressure 

up to 14 GPa. 

This thesis consists of six chapters including Introduction (this 
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chapter) and appendix. In chapter 2, protocols to probe carbon-bearing 

species and CO2 inclusion in the reaction product of amorphous carbon-

MgSiO3 enstatite at 1.5 GPa was studied using 13C solid-state NMR and 

Raman spectroscopy (Kim et al., 2016). In this study, information on the 

collective vibration of molecules of different isotopes in Raman spectra and 

element-specific information on the carbon species in silicate crystals in 13C 

NMR give complementary information on the carbon species in crystalline 

silicates, such as spatial distribution of carbon species and the total carbon 

contents. In addition, the calibration of carbon contents and 13C NMR 

spectra is reported. In chapter 3, the effect of pressure on the short-range 

structure and speciation of carbon in alkali silicate and aluminosilicate 

glasses and melts at high pressure up to 8 GPa was explored using multi-

nuclear solid-state NMR (Kim et al., 2018). The first experimental data of the 

speciation of carbon in carbon-bearing silicate glasses at high pressure is 

reported. The protocol to measure the carbon contents in carbon-bearing 

silicate glasses at high pressure is provided taking into consideration the 

pressure-induced changes in spin-lattice relaxation time of carbon species at 

high pressure. In chapter 4, the effect of pressure on the cation disorder and 

the relevant structural changes of silicate network in Na-Li silicate melts 

was studied with varying pressure and the ratio of Li/(Na+Li) (Kim et al., 

in preparation). The cation disorder of Li is estimated by the 7Li spin-spin 

relaxation time at high pressure up to 8 GPa. In chapter 5, the speciation of 

carbon in binary sodium silicate glasses and ternary sodium aluminosilicate 

melts and crystals at high pressure up to 14 GPa was studied using Raman 

spectroscopy and multi-nuclear solid-state NMR (Kim and Lee, in 

preparation). The presence of hexagonal diamonds was observed inside of 
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the sodium aluminosilicate crystals. As the Na2CO3 is used as a carbon 

reservoir, the transformation of carbonate into hexagonal diamonds 

indicates the changes in oxygen fugacity in the aluminosilicate crystals and 

glasses. The effect of carbon species in the structural changes of silicate 

melts at 14 GPa will shed light on understanding the formation of silicate 

melts and the presence of low velocity zone in upper mantle-transition zone 

boundaries. Finally, an abstract for a publication in Korean journal, 

publication lists, and presentation lists in domestic and international 

conferences are presented in the appendix. 

 

1.2. Estimation of carbon budget in the mantle 

Total carbon contents in the Earth is estimated as 2.1–9.3 × 1024 g 

(Dasgupta and Hirschmann, 2010; Kelemen and Manning, 2015). While the 

carbon content in the Earth’s surface including biosphere, hydrosphere, 

atmosphere, and soil is 4.1 × 1019 g of C (~0.004%–0.002% of total carbon 

contents), the amounts of carbon in the crust and mantle are 1.4 × 1022 g and 

~0.8–12.5 × 1023 g, respectively (Dasgupta and Hirschmann, 2010). As the 

carbon content in the crust and the mantle is 3–5 orders of magnitude higher 

than that in the Earth’s surface, the sudden increase in the influx of carbon 

from the mantle and/or crust would cause severe changes in the 

environments of the Earth’s surface. Due to its important, previous studies 

have focused on both the carbon budget and flux between the Earth’s 

surface and the mantle (e.g., Dasgupta and Hirschmann, 2010; Foley and 

Fischer, 2017; Kelemen and Manning, 2015; Ruhl and Kürschner, 2011; 

Sverjensky et al., 2014). 

The total carbon contents in the Earth is estimated from the carbon 
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contents in the meteorites and the partitioning coefficient of carbon between 

liquid metals and silicate liquids (Dasgupta, 2013). The average carbon 

contents in the carbonaceous meteorites are 2.7–4.4 wt% (Anders and 

Grevesse, 1989; Lodders, 2003; Lodders, 2010). The carbon contents in the 

bulk Earth is estimated as ~730 ppm (Marty, 2012; McDonough, 2003). The 

relatively low concentration of carbon in the current Earth compared with 

meteorites is due to the volatility of CO2 and CH4, which can be eliminated 

from the Earth during the early stage of Earth formation. It is estimated that 

the core contains 0.4–3.5 wt% of carbon, and the mantle contains ~14.5–50 

ppm of carbon (Dasgupta, 2013; McDonough, 2003). Based on the fraction of 

carbon in each reservoir, the estimated total carbon contents in the Earth are 

~3.5 × 1027 g of carbon in the core (with ~0.4 wt% of carbon in the core), and 

~0.4 × 1026 g of carbon in the mantle (with ~50 ppm of carbon in the mantle) 

(Dasgupta, 2013). Together with this rough estimation of total carbon 

contents in the Earth, experimental data have collected the carbon contents 

from basaltic rocks and volcanic gases. 

Estimation of carbon budget in the mantle needs an assumption that 

partitioning of CO2 is similar to that of noble gas, such as He, as the CO2 

content in the magma varies with the partial melting of the crystalline 

silicate mantle, crystal fractionation in the magma, and the degassing of 

gaseous CO2 from the magma (Dasgupta and Hirschmann, 2010; Kelemen 

and Manning, 2015). In addition, as the degassing process of CO2 is very 

efficient, the detection of CO2 contents from the fluid inclusion in the 

basaltic rocks may only indicates the lower bound of CO2 concentration in 

the primary magma (Wallace, 2005). The carbon budget in the mantle is 

estimated from basalts and simultaneously emitted fluids (e.g., Bureau et 
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al., 1998; Dixon, 1997), mantle-derived fluids such as trapped fluid 

inclusions in basalts (e.g., Aubaud et al., 2006), hydrothermal vent fluids 

(e.g., Sansone et al., 1998), and the ratio of CO2 over incompatible elements, 

such as CO2/He (e.g., Zhang and Zindler, 1993), CO2/Nb (Cartigny et al., 

2008; Saal et al., 2002), CO2/Ar (Cartigny et al., 2001; Tingle and Aines, 

1988), and CO2/Cl (Saal et al., 2002).  

The distribution of carbon in the mantle, estimated from the mid-

ocean-ridge-basalts (MORB) source, is heterogeneous. For example, the 

measured CO2 from depleted MORB mantle is 20–30 ppm (Hirschmann and 

Dasgupta, 2009; Saal et al., 2002) while that from enriched MORB is 300–

1300 ppm (Aubaud et al., 2006; Bureau et al., 1998; Dixon, 1997). Therefore, 

the estimation of total carbon contents in the mantle varies with the mixing 

ratio of the depleted and enriched mantle sources. Assuming that the 

carbon content in the whole mantle are only from depleted mantle, the 

estimated carbon content is 0.8–1.2 × 1023 g (Dasgupta and Hirschmann, 

2010). The carbon budget can be estimated as much as 2.7–12.5 × 1023 g 

when the carbon content in the whole mantle is composed of 40% from 

depleted mantle and 60% from the enriched mantle (Dasgupta and 

Hirschmann, 2010). 

 

1.3. Carbon flux between Earth’s surface and the mantle 

Carbon flux between Earth’s surface and the mantle is estimated from 

ingassing and outgassing of carbon species in the ocean, subduction zone, 

oceanic island, mid-ocean ridge, and continental lift zone (e.g., Aubaud et 

al., 2006; Bureau et al., 1998; Dasgupta, 2018; Dasgupta and Hirschmann, 

2010; Foley and Fischer, 2017; Kagoshima et al., 2015; Lee et al., 2016; Luth, 
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2003; Saal et al., 2002). Ingassing of carbon from the Earth’s surface to the 

mantle includes the precipitation of CaCO3 as sediments in the ocean and 

the transport of carbon through the oceanic crust, overlying sediments, and 

underlying mantle lithosphere. The estimated amount of CaCO3 

precipitated in the ocean is 2.0 × 1014 g of C/y and that of carbon species 

transported through the subduction zone is 4.0–6.6 × 1013 g of C/y 

(Dasgupta and Hirschmann, 2010; Kelemen and Manning, 2015). The major 

carbon species carried by the oceanic crust and mantle lithosphere are CO2 

in fluid inclusions and/or carbonate minerals within the crust, those carried 

by the overlying sediments are reduced carbon species, such as remains of 

organic carbons and precipitated carbonate minerals, and those carried by 

the mantle lithosphere beneath the oceanic crust are ophicarbonates which 

are composed of serpentine and carbonates (e.g., Dasgupta and 

Hirschmann, 2010; Duncan and Dasgupta, 2017; Kagoshima et al., 2015; 

Kelemen and Manning, 2015).  

Outgassing process occurs when the carbon-bearing oceanic crust 

goes into the mantle and the crust experiences the increase of temperature 

and pressure, resulting in the decomposition of carbonate minerals into CO2 

and the formation of silicate melts by the interaction between silicate 

minerals and volatile species, such as CO2 and H2O (Grotzinger et al., 2010). 

Those gaseous CO2 formed between the mantle wedge and the subducting 

slab can move along the boundary between mantle wedge and the 

subducting slab, incorporate into the mantle wedge, and return to the 

atmosphere by volcanic eruption while remnant carbonate minerals and 

reduced carbon species can be transported into the deeper mantle by the 

subducting slab. The estimated fraction of recycling CO2 to the atmosphere 
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through subduction zone varies from ~1% to 80% depending on the flux 

models (Bebout, 1995; Dasgupta and Hirschmann, 2010; Gorman et al., 2006; 

Johnston et al., 2011; Kelemen and Manning, 2015). 

Outgassing of carbon from the mantle to the Earth’s surface, such as 

atmosphere and hydrosphere, is estimated as 2.2–12.7 × 1013 g of C/y, 

including outgassing from oceanic island basalts (0.8–4.2 × 1013 g of C/y), 

mid-ocean ridge basalts (0.12–3.0 × 1013 g of C/y), arc volcanoes (1.8–3.7 × 

1013 g of C/y), and diffusion outgassing through oceanic crust (0.4–1.2 × 1013 

g of C/y) (Dasgupta and Hirschmann, 2010; Kelemen and Manning, 2015). 

Recent studies on the continental rift zones suggested that the carbon 

outgassing through the continental rift zone is also significant, as much as 

1.9 × 1013 g of C/y (Foley and Fischer, 2017; Lee et al., 2016).  

The outgassing process inevitably involves changes in speciation of 

carbon into silicate melts with varying pressure and temperature and the 

carbon carrying capacity of silicate melts is important to estimate the 

amount of carbon emitted through the subduction zone. For example, the 

solubility of CO2 and carbonates into silicate melts is much higher than that 

of graphite or hydrocarbon species at the same pressure and temperature 

conditions (e.g., Keppler et al., 2003; Mysen et al., 2011; Shcheka et al., 2006). 

Therefore, neutral to reduced carbon species are much easier to remain in 

the subducting crust and be carried into the deep mantle while CO2 and 

carbonates are moved with silicate melts formed above the subducting crust 

(e.g., Duncan and Dasgupta, 2017). 

While the current carbon flux between Earth’s surface and the mantle 

is balanced to move more carbon species into the mantle, sudden changes in 

volcanic activities can change the carbon flux between two carbon 
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reservoirs. For example, the carbon isotope data of long-change n-alkanes 

from waxes of land plants showed the sudden decrease of δ13C value (~ -8.5 

‰) within 10,000–20,000 years at the end of Triassic (Ruhl et al., 2011). The 

sudden changes of isotope value are thought to be related to the mass 

injection of CO2 from volcanic eruption in the Central Atlantic Magmatic 

Province (Ruhl et al., 2011), which erupted a volume of ~2-3 × 106 km3 of 

basaltic magma (Balckburn et al., 2013). The estimated carbon contents 

emitted by the eruption is 8000–9000 Gt of carbon (Ruhl et al., 2011). 

Together with the density of basaltic melts, the estimated fraction of carbon 

in the basaltic magma erupted in the Central Atlantic Magmatic Province is 

0.13–0.2 wt%. While the fraction of dissolved CO2 carried by the basaltic 

magma is relatively low compared with carbon carrying capacity of basaltic 

melts (~ several wt% of carbon in basaltic melts) (Ni and Keppler, 2013 and 

references therein), this implies that the flux of total magma and the total 

eruption time is important for estimating the total carbon contents 

outgassed by the volcanic eruption, resulting in the huge changes in carbon 

isotope values. Therefore, the flux of carbon species between Earth’s surface 

and the mantle should be considered as a crucial factor for controlling the 

distribution of carbon in the Earth’s surface and the mantle. 

 

1.4. The speciation of carbon in silicate crystals and glasses at high pressure 

Previous pioneering researchers have reported the speciation of 

carbon in silicate crystals and glasses at high pressure using Raman 

spectroscopy (e.g., Duncan and Dasgupta, 2017; Morizet et al., 2009; 

Mposkos and Kostopoulos, 2001; Mysen, 2013, 2017; Pawley et al., 1992; 

Rosso and Bodnar, 1995; Sandler et al., 2003; Seitz et al., 1996), FT-IR 
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spectroscopy (e.g., Behrens et al., 2004; Brooker et al., 2001a, b; Fine and 

Stolper, 1985; Kadik et al., 2004; King and Holloway, 2002; Morizet et al., 

2002; Mysen, 2018; Mysen et al., 1975; Pan et al., 1991; Stanley et al., 2012; 

Stolper et al., 1987), 13C solid-state NMR (e.g., Brooker et al., 1999; Kohn et 

al., 1991; Morizet et al., 2002; Morizet et al., 2017; Papenguth et al., 1989; Sen 

et al., 2013; Xue et al., 2018), in-situ Brillouin scattering spectroscopy 

(Murakami and Bass, 2011), and molecular dynamic simulations (Guillot 

and Sator, 2011; Moussallam et al., 2016; Sarda and Guillot, 2005; 

Vuilleumier et al., 2015). The carbon species detected varies with the 

spectroscopy methods. For example, FT-IR spectroscopy provides 

information on molecular CO2 and carbonate species which are detected at 

~2349 cm-1 and 1415 cm-1, respectively (Brooker et al., 2001b; Ni and 

Keppler, 2013) and the degeneration of antisymmetric stretching vibration 

of carbonates induces a split of carbonate peaks in IR spectra, showing the 

distortion of carbonate with varying composition (Brooker et al., 2001b; Ni 

and Keppler, 2013). Raman spectroscopy, on the other hand, provides 

information on the CO2, carbonate species, CH4, and sp2 and sp3 bonding in 

graphite and diamonds at ~1337 cm-1, ~1100 cm-1, ~2916 cm-1, ~1360 cm-1 

and 1560 cm-1, respectively (Ferrari, 2007; Ni and Keppler, 2013; Seitz et al., 

1996). The CO2 in Raman spectroscopy showed Fermi resonance doublet, 

showing the symmetric bending of ν1 and 2ν2 of 12CO2 at ~1385 cm-1 and 

~1285 cm-1, respectively (Rosso and Bodnar, 1995). The frequency difference 

of ν1 and 2ν2 of CO2 is used to measure the internal pressure of CO2 in fluid 

inclusion, giving the pressure and temperature condition of trapping of the 

fluid inclusion (Kim et al., 2016; Rosso and Bodnar, 1995; Seitz et al., 1996). 

In addition, isotropic composition of CO2 and CH4 can be identified by the 
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peak position in Raman spectra: 13CO2 at ~1360 and 1260 cm-1, and 12CH4 at 

2918 cm-1, 13CH4 at 2916 cm-1, respectively (e.g., Dang-Nhu et al., 1979; Kim 

et al., 2016; Seitz et al., 1996). The changes of chemical bonding of neural 

carbon species from sp2 to sp3 bonding can also be identified by the Raman 

spectroscopy (Ferrari and Robertson, 2001; Hanfland et al., 1989; Knight and 

White, 1989; Kuzmany et al., 2004; Lopez-Rios et al., 1996; Reich and 

Thomsen, 2004; Vidano and Fischbach, 1978). 13C NMR spectroscopy is only 

active for 13C nuclide in the sample and provides the quantitative 

information around carbon species. The peaks for CO2, carbonate species, 

CH4, and sp2 and sp3 bonding in graphite and diamonds are ~125 ppm, 

~160–171 ppm, ~-5 ppm, ~110–140 ppm and ~65 ppm, respectively (Kohn et 

al., 1991; Mysen, 2013; Ni and Keppler, 2013). The area of the NMR peaks 

are directly proportional to the abundance of carbon species in the bulk 

sample (Sandler et al., 2003) and the detection limit is estimated as several 

tens of ppm of 13C carbon species (Kim et al., 2016).  

Carbon in the mantle mostly exists as accessory mineral phases, such 

as graphite, diamond, and carbonate minerals, between grain boundaries of 

silicate minerals (Hazen and Schiffries, 2013; Keppler et al., 2003; Luth, 2003; 

Shcheka et al., 2006). Once those mineral phases of carbon dissolved into 

silicate melts, the speciation of carbon varies strongly with the composition 

of silicate melts and oxygen fugacity of the mantle and is independent on 

the total carbon content (Behrens and Gaillard, 2006; Ni and Keppler, 2013). 

In oxidized condition, the dominant carbon species in highly polymerized 

silicate melts, such as rhyolitic melts, is molecular CO2 weakly bound to the 

bridging oxygen (BO) in the silicate network, while only dissolved 

carbonate species is observed in depolymerized melts, such as basaltic and 
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peridotitic melts (e.g., Blank and Brooker, 1994; Brooker et al., 1999; Morizet 

et al., 2002). In reduced condition, the dominant carbon species in silicate 

melts are CO and CH4 (Mysen, 2013; Mysen and Richet, 2005b), and the 

solubility of those reduced carbon species generally 2–4 times lower than 

that of oxidized species (Mysen et al., 2011). 

The speciation of carbon in silicate melts is closely related to the 

solubility of carbon in the silicate melts. The formation of carbonates is 

favored in mafic and ultramafic melts (depolymerized melts) as the 

following equation: 

CO2 + O2- = CO32- 

where O2- stands for a non-bridging oxygen (NBO) atom in the silicate 

network and the solubility of carbon in silicate melts generally increases 

with increasing the fraction of NBO (Mysen, 2012; Ni and Keppler, 2013). 

The relative abundance of CO2/CO32- in silicate melts does not depend 

significantly on pressure up to 0.8 GPa (Behrens and Gaillard, 2006; Blank 

and Brooker, 1994; Nowak et al., 2003), and the CO2/CO32- ratio decreases 

with the further increase of pressure up to 3.5 GPa (e.g., Brooker et al., 

1999). However, the experimental data on the speciation of carbon above 4 

GPa has not been reported due to the difficulties in synthesizing sample 

above 4 GPa and the lack of suitable probe to detect carbon species at high 

pressure. Recent molecular dynamic simulations on the carbon species in 

rhyolitic melts at high pressure up to 15 GPa predicted that the fraction of 

CO2/(CO2+CO32-) in rhyolitic melt at 15 GPa would be ~27% (Guillot and 

Sator, 2011).  

The carbonate species in silicate melts can be divided into three: free 

carbonates charge-balancing with network modifying cations, such as Na+, 
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non-bridging carbonates which are linked to one non-bridging oxygen, such 

as Si(CO32-)···Na+ or Al(CO32-)···Na+, and bridging carbonates which are 

linked to two non-bridging oxygen, such as Al(CO3)Si (e.g., Brooker et al., 

2001b; Kohn et al., 1991; Tossell, 1995). While the dissolved CO2 seems 

similar to that of non-bridging carbonates, the dissolved CO2 has weak 

interaction with BO and non-bridging carbonates are linked to NBO. 

Sometimes, the dissolved CO2 which has very short CO2–BO distance (< 1.4 

Å) is classified as CO32- although it is linked to BO (e.g., Figure 21 in Ni and 

Keppler, 2013). Therefore, it is important to check the atomic structures of 

carbon species that the authors used. Identification of non-bridging 

carbonates from bridging carbonates has not been made in experimental 

spectroscopies and carbonates are usually categorized into free carbonates 

and bridging carbonates in 13C NMR (Brooker et al., 2001b; Brooker et al., 

1999; Xue et al., 2018). 

 

1.5. Pressure-induced structural changes of silicate melts at high pressure 

The structure of silicate melts is very different from that of crystalline 

silicate. For example, crystalline anorthite (CaAl2Si2O8) is a fully 

polymerized silicate, which has NBO/T ratio of 0, while CaAl2Si2O8 glasses 

quenched from melt at 1 atm shows significant amount of NBO by forming 

[5]Al in the system (Stebbins and Xu, 1997). The structural changes of silicate 

melts from crystalline silicate result in the increase of heat capacity and the 

entropy of the system, the decrease of viscosity of melts, and changes of 

diffusion of network modifying cations in the melts (Stebbins, 1995; 

Stebbins, 2016; Stebbins and Xu, 1997). 

The structure of silicate melts varies with composition, temperature, 
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and pressure. Among those variables, the pressure-induced structural 

changes of silicate melts are important to understand non-linear changes of 

viscosity and diffusivity of silicate melts at high pressure (Brearley and 

Montana, 1989; Poe et al., 1997; Suzuki, 2018; White and Montana, 1990). As 

glasses preserve the structure of silicate melts near the glass transition 

temperature (Tg), the structure of silicate melts at high pressure is often 

deduced from that of silicate glasses quenched from melts at high pressure 

(Mysen and Richet, 2005a; Stebbins, 2016). The densification of silicate melts 

at high pressure follows three steps. First, the topological rearrangement of 

glass network, such as changes in T-O-T angle (where T = Si and/or Al) and 

changes in T-O bond lengths, occurs below the threshold pressure at which 

the highly coordinated framework units are formed (Lee, 2010 and 

references therein). The increase of topological disorder is observed as the 

broadening of peak widths in silicate glasses at high pressure without the 

changes in coordination number (e.g., Allwardt et al., 2004; Kim et al., 2018; 

Lee et al., 2004). Above the threshold pressure, the formation of highly 

coordinated network-former and a decrease of NBO fraction control the 

overall densification of silicate melts, and the network modifying cations 

often changes its role from network modifier to charge balancing cations 

around highly coordinated cations (Allwardt et al., 2004; Lee, 2010; Lee et 

al., 2004; Lee et al., 2003; Wolf and McMillan, 1995; Xue et al., 1991). At 

higher pressure, oxygens with three Si frameworks are formed by the 

twisting of silicate network rings (Lee, 2010; Lee et al., 2008b) and this 

induces the further densification of silicate melts at high pressure. 

The structural changes of silicate melts at high pressure are related to 

the transport properties of silicate melts at high pressure. The diffusivity of 
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Si4+ and O2- increases with increasing the fraction of highly coordinated Al 

and Si in the silicate glasses (Poe et al., 1997), implying the lowering of 

viscosity due to the easier O2- transfer between NBO at high pressure. The 

fraction of NBO with the same SiO2 ratio at high pressure varies with the 

mixing of cations, implying the cation-composition dependence on the 

viscosity (Lee et al., 2008a). Therefore, understanding the structural changes 

of silicate melts at high pressure would give insights into the macroscopic 

properties of magma, such as viscosity and diffusivity (e.g., Allwardt et al., 

2003; Bottinga and Richet, 1995; Lee, 2011; Poe et al., 1997; Suzuki et al., 

2011; Xue et al., 1991). 

 

1.6. Introduction to multi-anvil press 

This part includes the study published in Journal of Mineralogical 

Society of Korea in 2018. A figure shown here is from Kim and Lee (2018). 

The high-pressure experimental apparatuses are divided into two 

categories: apparatuses generating hydrostatic pressure and those 

generating shear stress. Among those high-pressure apparatuses, 

apparatuses generating hydrostatic pressure include piston cylinder, multi-

anvil press, and diamond anvil cell (DAC). Multi-anvil press can generate 

the hydrostatic pressure ranging from 5 to 25 GPa using tungsten carbide 

cubes and the temperature up to 2300 °C, which can generate the pressure 

and temperature conditions of upper mantle to the boundary of transition 

zone and lower mantle. Whereas the sample volume of piston cylinder is 

125–180 mm3 and that of DAC is ~0.001 mm3, respectively, the volume of 

the sample chamber in multi-anvil press varies 2–140 mm3, which is useful 

to synthesize the ex-situ high pressure samples. The high-pressure glass 
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samples were synthesized by fusing the sample at the target pressure and 

then by quenching the sample with a turn off of electric power. The initial 

quench rate was estimated to > 500 °C/s. The high-pressure glass samples 

were synthesized by fusing the sample at the target pressure and then by 

quenching the sample with a turn off of electric power. The initial quench 

rate was estimated to > 500 °C/s. 

Multi-anvil press was invented by Bridgman in 1940s with 

tetrahedral shape press which can generate the pressure up to 10 GPa 

(Liebermann, 2011). Cubic anvil press was invented in 1950s for reducing 

the experimental failure on pressuring the tetrahedral cell (Liebermann, 

2011) and then multi-anvil press was developed in 1970s by Kawai (Kawai 

and Endo, 1970), applying six-split first-stage anvils and eight-split second-

stage anvils into a uniaxial press and generating hydrostatic pressure on 

samples through octahedral pressure-medium and the twelve-wings of 

pyrophyllite sticks (Figure 1.1). As the junction of pyrophyllites does affect 

the stability of high-pressure experiments (Schwarz, 2010), Walker module 

was developed in 1990 by simplifying pressure-medium structure, adding 

pyrophyllite wing to the octahedral structure (Walker et al., 1990).  

The pressure limit that can be generated by a multi-anvil press is 

determined by the limit of shear deformation of the materials of the second-

stage anvil. The most common materials used for second-stage anvil is 

tungsten carbide (WC) which can generate the pressure up to 30 GPa 

(Leinenweber et al., 2012; Yoneda et al., 1984). Sintered diamonds are 

recently used as second-stage anvil materials because they can generate the 

pressure up to 120 GPa (Ito, 2007; Shatskiy et al., 2011; Yamazaki et al., 

2018). Recent study reported the addition of two third-stage anvils with a 1- 
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Figure 1.1. (a) A photograph of 1100-ton multi-anvil press equipped in 

author’s laboratory, Seoul National University. (b) A plan view of the 

multi-anvil press (open square with label “b”) in Fig. 1.1a. A containment 

ring, three first-stage anvils (1st anvil) and assembled second-stage anvils 

(2nd anvil) are shown. (c) A section drawing of the multi-anvil press. Grey, 

violet, yellow, and green areas represent pistons, a containment ring, 

first-stage anvils, and second-stage anvils, respectively. The black arrows 

show the direction of force applied to pistons. (d) Photographs of an 

octahedral pressure medium and a second-stage anvil. OEL is referred 

to the octahedral edge lengths the pressure medium and TEL is an 

abbreviation of truncated edge lengths of the second-stage anvil. (e) A 

schematic diagram of an assembly set with straight heater (open square 

with label “e”) in Fig. 1.1c. This figure is from Kim and Lee (2018). 
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mm diameter in a uniaxial direction parallel to the outermost uniaxial press 

and achieved around 100 GPa of pressure by this method (Kunimoto et al., 

2008). 

As the multi-anvil press generate the pressure by using oil inside of 

the press, the calibration of oil pressure and the actual pressure generated 

on the sample is necessary. This oil load-pressure calibration process 

includes pressure loss between the containment ring and the first-stage 

anvils, pressure loss between first-stage anvils and second-stage anvils, 

press loss due to the frictional force between extruded pressure medium 

and the second anvils (Ito, 2007; Leinenweber et al., 2012). The load-pressure 

calibration varies with the truncated edge lengths of second-stage anvils 

(TEL) over the octahedral edge lengths of pressure medium (OEL), the 

volume of sample chamber, and the differences due to the temperature. The 

pressure-load calibration curve for 1100-ton multi-anvil press in Seoul 

National University is reported in Kim and Lee (2018). 
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Abstract 

Understanding the carbon speciation in earth materials is important 

to unravel the geochemical evolution of the earth’s atmosphere, 

composition of partial melts, and overall distribution of carbon in the deep 

mantle. In an effort to provide the systematic protocols to characterize 

carbon-bearing fluid inclusions and other carbon-bearing species using 

high-resolution 13C solid-state NMR, one of the element specific probe of 

local structure around carbon, we explore the atomic configurations around 

the carbon species formed during the reaction between 13C-enriched 

amorphous carbon and MgSiO3 enstatite synthesized at 1.5 GPa and 1400 °C 

using 13C MAS NMR spectroscopy and Raman spectroscopy. The Raman 

spectra for the fluid inclusion show the presence of multiple molecular 

species (e.g., CO2, CO, CH4, H2O, and H2) and reveal heterogeneous 
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distribution of these species within the inclusion. 13C MAS NMR results 

show that the sharp peak at 125.2 ppm is dominant. While the peak could be 

assigned to either molecular CO2 in the fluid phase or four-coordinated 

carbon ([4]C), the peak is likely due to fluid CO2, as revealed by Raman 

analyses of μm-size fluid inclusions in the sample. The peaks at 161.2, 170.9, 

and 173.3 ppm in the 13C NMR spectrum correspond to the carbonate ions 

(CO32-) and additional small peak at 184.5 ppm can be attributed to carbon 

monoxide. Based on the established relationship between 13C abundance 

and peak intensity in the 13C MAS NMR, the estimated 13C amounts of CO2, 

CO32-, and CO species are much larger than those estimated from carbon 

solubility in the crystals, thus, indicating that those carbon species are from 

external phases. The 13C NMR spectrum for amorphous carbon showed a 

peak shift from ~ 130 ppm to ~ 95 ppm after compression, thereby 

suggesting that the amorphous carbon underwent permanent pressure-

induced densification, characterized by the transition from sp2 to sp3 

hybridization and/or pressure-induced changes in sp2 carbon topology. 

While direct probing of carbon species in the crystalline lattice using NMR 

is challenging, the current results and method can be utilized to provide 

quantitative analysis of carbon-species in the fluid-inclusions in silicates, 

which is essential for understanding the deep carbon cycle and volcanic 

processes.  

 

2.1. Introduction 

Understanding the carbon speciation in earth materials is important 

to unravel the geochemical evolution of the earth’s atmosphere, 

composition of partial melts, and overall distribution of carbon in the deep 
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mantle (Blank and Brooker, 1994; Green, 1972; Keppler et al., 2003; Richet 

and Bottinga, 1984; Shcheka et al., 2006; Zhang and Zindler, 1993). The 

properties of carbon-bearing crystalline silicates and their precursor liquids 

are also influenced by the amount of CO2 present in these phases (Eggler 

and Kadik, 1979; Eggler and Rosenhauer, 1978). As the carbon-retention 

capacity of silicate melts and crystals depends heavily on pressure, 

decompression processes accompanied by eruption and upwelling of earth 

materials lead to the formation of exsolved CO2 inclusions (Blundy et al., 

2010; Eggler and Kadik, 1979; Lloyd et al., 2014; Parfitt and Wilson, 2008; 

Sides et al., 2014; Wallace, 2005).  

H2O and CO2 are the most abundant volatile components in the 

Earth’s interior. Additional species such as CH4, H2, and CO can be formed 

depending on total bulk chemistry of inclusion, fO2 condition, as well as 

temperature and pressure (e.g., Morizet et al., 2010; Mysen and Richet, 2005; 

Pawley et al., 1992). While the CO2 inclusions are not included in an 

estimate of carbon solubility into silicate crystals and melts, they can 

contribute to the total bulk carbon contents of magma chambers, thereby 

affecting their buoyancy and rising speed (Blundy et al., 2010; Burton et al., 

2013; Dixon and Clague, 2001; Gerlach et al., 2002; Kaminski and Jaupart, 

1997; Lloyd et al., 2014; Parfitt and Wilson, 2008; Rust and Cashman, 2011; 

Sugioka and Bursik, 1995). For example, the exsolved CO2 in Kilauea 

magma was estimated to be ~ 0.61 wt%, which is approximately 87% of the 

total CO2 emitted from the volcanic eruption, while that of dissolved (and 

thus structurally-bound) CO2 is ~ 0.09 wt% (Gerlach et al., 2002), indicating 

that the exsolved CO2 in the glasses is among the important carbon 

reservoirs.  
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Together with CO2 inclusions in the glasses, carbon species in 

crystalline silicates has been proposed as an additional carbon reservoir in 

the deep Earth (Green, 1972). Spectroscopic studies of vibrational density of 

states of species in fluid inclusion have provided useful information on the 

temperature-pressure conditions of the formation of the inclusion (Rosso 

and Bodnar, 1995; Seitz et al., 1996). In addition to the dissolved molecular 

CO2 inclusions in the silicate crystals, neutral carbon may dissolve into the 

interstitial site in the crystal and/or dissolve into cation vacancies (Freund, 

1981). Additionally, direct substitution of Si4+ with C4+ or with O2- has also 

been suggested (Fyfe, 1970; Sen et al., 2013). However, revealing the 

mechanistic details of carbon incorporation into the crystalline silicates is 

challenging (Keppler et al., 2003; Shcheka et al., 2006). 

Extensive previous studies using spectroscopic techniques such as 

Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), as 

well as nuclear magnetic resonance spectroscopy (NMR) have revealed the 

speciation of carbon in silicate glasses (Blank et al., 1993; Brooker et al., 1999; 

Fine and Stolper, 1985; Kadik et al., 2004; Kohn et al., 1991; Morizet et al., 

2002; Morizet et al., 2009, 2010; Mysen, 2013; Mysen et al., 1975; Pawley et 

al., 1992; Richet and Bottinga, 1984; Stolper et al., 1987). While the Raman 

and FTIR techniques provide information on the collective vibration, solid-

state NMR yields detailed, element-specific, and quantitative information 

on the environment of nuclides of interest in the diverse crystalline and 

non-crystalline earth materials (e.g., Cody and Alexander, 2005; Cody et al., 

2011; Feng et al., 2006; Kirkpatrick and Brow, 1995; Kirkpatrick et al., 1986; 

Lee, 2010; Papenguth et al., 1989; Phillips et al., 2000; Stebbins, 1995; 

Stebbins and Xue, 2014; Tangeman et al., 2001). Particularly, 13C solid-state 
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NMR has been used to determine the carbon speciation in synthetic silicate 

glasses with varying pressure and composition [e.g., Na-binary silicate 

glasses, Mg-binary silicate glasses, and CaO-MgO-Al2O3-SiO2 (CMAS) 

silicate glasses, etc.] (Brooker et al., 1999; Jones et al., 2005; Kohn et al., 1991; 

Kwak et al., 2010; Morizet et al., 2002; Morizet et al., 2010). In contrast, the 

speciation of carbon in crystalline silicates has not been fully explored with 

the 13C solid-state NMR techniques because carbon solubility into the 

crystals is often much lower than that into glasses and melts and NMR is 

one of the insensitive spectroscopic techniques. Additionally, the natural 

abundance of 13C is only 1.1%, and the 13C isotope enrichment is necessary. 

To the best of our knowledge, there is only a single 13C NMR study of the 

carbon species in crystalline oxides (anatase TiO2) where the sharp peak at 

126 ppm was observed. On the basis of the usual peak position of 

orthocarbonate species in organic solids (121.0 ppm) (Pretsch et al., 2009), 

the peak was assigned to four-coordinated carbon ([4]C) (Rockafellow et al., 

2009). However, the 126 ppm peak could also be due to the exsolved CO2 

species in the oxides (Herzfeld and Berger, 1980; Kohn et al., 1991). Despite 

the difficulty, 13C NMR can provide unique structural information around 

carbon species that is not accessible with other spectroscopic probes. For 

instance, the spinning sidebands patterns can be used to indicate whether 

CO2 is structurally-incorporated or exsolved in silicate networks: CO2 

molecule in the inclusion may not show spinning sidebands while 

structurally-bound CO2 can lead to the formation of spinning sideband 

patterns due to its large 13C chemical shift anisotropy (Herzfeld and Berger, 

1980; Kohn et al., 1991).  

Because the solubility of carbon into crystalline lattice is rather low (~ 
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0.1–5 ppm) and the amount carbon in fluid inclusion is also limited, direct 

probing of carbon species using NMR is challenging. While it is also 

currently difficult to detect the carbon signal, it would be useful to establish 

experimental protocols to further distinguish whether the observed NMR 

peaks are due to carbon species in the crystalline network or from the 

external phases (e.g., fluid inclusion, grain boundary etc.). Although solid-

state NMR is not among the most sensitive spectroscopic techniques, we 

have made recent progress in probing (and detecting) dilute amount of 

nuclear spins in the earth materials under the extreme conditions (high 

pressure) using NMR (Lee, 2010, 2011; Lee et al., 2004; Lee et al., 2012). 

Furthermore, progress has been made to detect dilute nuclear spins in 2-

dimensionally confined, 5 nm amorphous thin film (Lee and Ahn, 2014; Lee 

et al., 2009; Lee et al., 2010). These recent experimental achievements shed 

light on an opportunity to explore the dilute spins (such as 13C in the 

inclusion and in the crystal) using high-resolution solid-state NMR. As few 

attempts to detect carbon species in the fluid inclusion or crystalline silicates 

have been reported, experimental verification of these species with practical 

detection limit for 13C has been anticipated.  

MgSiO3 is the most abundant mineral composition in the mantle, 

which is likely to be the earth’s largest carbon reservoir (Jambon, 1994; 

Shcheka et al., 2006). Enstatite is one of the MgSiO3 phases stable in the crust 

and upper mantle. Here, we explore the atomic configuration around the 

carbon species formed during the reaction between 13C amorphous carbon 

and enstatite synthesized at 1.5 GPa and 1400 °C using 13C MAS NMR 

spectroscopy in order to test the utility of NMR technique to probe the 

carbon-bearing species in the reaction product and fluid inclusions. The 
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study also aims to provide the systematic protocols to characterize carbon-

bearing fluid inclusion using high-resolution 13C solid-state NMR. We also 

report the pressure-induced structural changes in the amorphous carbon 

that was used as a 13C-enriched carbon reservoir in the high-pressure 

experiments. While the potential result can be helpful to provide 

comprehensive atomistic insights into the deep carbon cycle in the Earth’s 

mantle, we also discuss the advantages and limitations of the NMR based 

strategy to detect 0.1–10 ppm of dissolved 13C in crystalline silicates.  

 

2.2. Experimental & computational methods 

2.2.1. Sample preparation 

The carbon-bearing enstatite samples for the spectroscopic analyses 

were synthesized by mixing MgSiO3 (initially synthesized at 1.5 GPa) and 

13C-enriched amorphous carbon at 1.5 GPa. The starting MgSiO3 enstatite 

was synthesized from a mixture of powdered SiO2 and MgO in a Pt capsule 

using piston-cylinder apparatus with a 0.5” assembly at the Geophysical 

Laboratory, Carnegie Institution of Washington. The synthesis experiment 

was performed at 1400 °C and 1.5 GPa for 48 h. Subsequently, the enstatite 

was mixed with 2.4 wt% of 13C-enriched (~ 99.7% enriched) amorphous 

carbon and H2O, and then loaded in a Pt capsule. H2O was added to 

promote the overall reaction and control the oxygen fugacity of the system 

[estimated oxygen fugacity was similar to that of C-CO (CCO) buffer (with 

estimated fO2 value of ~ -7.5), (Zhang and Duan, 2010). See section 2.3.1 for 

details]. We then ran the experiments at 1.5 GPa and 1400 °C for 48 h to 

produce carbon-bearing enstatite. We have synthesized two distinct batches 

of samples under the same P-T conditions to check reproducibility of the 
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carbon speciation in the synthesized samples. The formation of gas phases 

was observed when the capsule was opened after the experiments. This 

could be due to excess gas phases such as H2O, CO2 or CH4 (Mysen et al., 

2009; Zhang and Duan, 2010). The resulting products included clear carbon-

bearing enstatite and black aggregated amorphous carbon (used as initial 

carbon source). The latter, referred as compressed amorphous carbon, was 

handpicked and separated from the enstatite. The decrepitation experiment 

was performed to identify the stability of the observed carbon species and 

CO2 inclusion in the sample: the synthesized MgSiO3 grain [~ 80 μm (w) × 

100 μm (h)] with CO2 inclusions were heated at 750 °C for 10 min in a tube 

furnace as previous experimental studies often showed that the fluid 

inclusion in the crystal is not stable above 750 °C (Bodnar et al., 1989). 

 

2.2.2. Raman spectroscopy 

The Raman spectra for the carbon-bearing enstatite were collected on 

a micro Raman spectrometer at Seoul National University. Thin-sections for 

Raman analysis were made by fixing the enstatite particles in an epoxy 

resin. The enstatite crystals were polished using 1500 mesh diamond 

powder (8–10 µm) for 3 h and subsequently using 1 µm diamond paste for 1 

h. The spectra were collected under the following conditions: laser 

wavelength of 488 nm, exposure time of 10 s, and number of accumulations 

being 60 with grating groove density of 1800/500 L/mm. The spectral 

resolution is ~ 0.55–0.85 cm-1/pixel and the spectrometer slit width is 250 

µm. Typical spectral width is ~ 840 cm-1 (centered at 1400 cm-1) and ~ 780 

cm-1 (centered at 2250 cm-1), respectively. Beam diameter of 3.1 µm (using 

50× microscope objectives), laser power of 32.8 mW, and beam scattering of 
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1 mrad were used. An estimated reproducibility in recorded peak positions 

of the current spectra is less than ± 0.5 cm-1. 

 

2.2.3. NMR spectroscopy 

The 13C MAS NMR spectra were collected on a Varian 400 MHz 

solid-state NMR spectrometer (9.4 T, Seoul National University) at a Larmor 

frequency of 100.582 MHz for 13C using a 3.2 mm zirconia rotor in a Varian 

double-resonance probe. It may require longer relaxation delays to obtain 

the fully relaxed spectrum for the carbon-bearing enstatite. We therefore 

performed 13C MAS NMR experiments with varying relaxation delay times. 

The results showed negligible effect on the different relaxations of carbon 

peaks. Therefore, the recycle delay of 5 s was used to reduce the total NMR 

collection time. The magic-angle sample spinning speed of 14 kHz was 

employed. The current signal-to-noise ratio in the spectra was achieved by 

averaging nearly 86400 scans (~ 5 days). The spectra were referenced to 

solid-state adamantane (ADM, C10H16), whose resonance of left peak was 

located at 38.56 ppm relative to the more common reference, 

tetramethylsilane (TMS). Approximately 20 mg of carbon-bearing MgSiO3, 

1.7 mg of 13C-enriched uncompressed amorphous carbon, and 3.2 mg of 13C-

enriched compressed amorphous carbon were used in the 13C MAS NMR 

experiments. The background signals were collected under identical 

measurement conditions using an empty zirconia rotor. The background 

spectrum was subsequently subtracted from the 13C MAS NMR spectrum 

for each sample to yield the NMR spectrum free from any background 

carbon signals.  



44 

 

13C NMR spin-counting experiment was performed using mixtures of 

ADM and SiO2 (Sigma-Aldrich product no. 204358). We collected 13C MAS 

NMR spectra for the mixtures with varying ADM/SiO2 ratio [XADM = 1/4 

(25 wt%, 2750 ppm of 13C), 1/8 (12.5 wt%, 1375 ppm of 13C), 1/16 (6.25 wt%, 

688 ppm of 13C), 1/50 (2.0 wt%, 220 ppm of 13C), 1/233 (0.43 wt%, 47 ppm of 

13C), 1/310 (0.32 wt%, 35 ppm of 13C)]. The mixtures were ground in an 

agate mortar for 1 h. It is somewhat difficult to constrain the composition of 

the mixtures with low ADM concentration (e.g., the data for XADM=1/50, 

1/233, and 1/310). This is due to uneven mixing between ADM and SiO2 in 

the mortar stemming from the difference in surface adhesiveness of the 

ADM and SiO2 particles. Therefore, in order to minimize the ADM loss 

upon mixing in the agate mortar (i.e., to yield better calibration curve), a 

designed amount of ADM was located at the center of the rotor and SiO2 

powder was placed both on top and bottom of the rotor. The NMR 

collection conditions for the mixtures were identical to those for carbon-

bearing enstatite. 

As elemental analysis does not provide robust measurement of the 

carbon content in SiO2-ADM mixture used in the study primarily due to 

difference in volatilization between ADM and SiO2, the quantitative carbon 

content of the mixture with low carbon concentration was constrained using 

the calibration curve (between NMR peak intensity and carbon content) 

based on the mixture with higher concentration (see section 2.4.3 below). 

The NMR experiment under proton decoupling was also performed to 

improve the quality of 13C abundance and peak intensity calibration curve. 

Proton decoupling power was optimized using ADM standard. The spectra 

for the mixtures were collected at a decoupling power w1/2p of 33 kHz. 
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2.2.4. Quantum chemical calculations 

Quantum chemical calculations of NMR chemical shift of C(OH)4 

clusters were performed using Gaussian 03 in order to get insights into the 

13C NMR chemical shielding for [4]C with varying C-O bond lengths (Frisch 

et al., 2004). A model C(OH)4 cluster was optimized by varying the C-O 

bond lengths while maintaining the tetrahedral symmetry constraints at the 

Becke, three-parameters, Lee-Yang-Parr (B3LYP) level of theory with a 6-

311+G(2d) basis set. The NMR chemical shielding calculations of the C 

atoms in C(OH)4 cluster were calculated using the gauge-including atomic 

orbital (GIAO) method at the B3LYP level of theory with the 6-311G+(2d) 

and 6-31G(d) basis sets (Lee and Lee, 2009). The 13C NMR chemical shift of 

the C(OH)4 cluster was estimated by subtracting NMR chemical shielding of 

TMS (external reference used in the experiment) that was also calculated at 

the identical energy level of theory and basis sets. 

 

2.3. Results 

2.3.1. Probing of CO2 in fluid inclusions in carbon-bearing enstatite: 

Insights from Raman spectroscopy 

Figure 2.1 shows the optical micrograph image of the sample (Figure 

2.1a, grain size of approximately 80 µm (w) × 100 µm (h)] and Raman 

spectrum for the observed fluid inclusion [4 µm (w) × 10 µm (h)] (Figure 

2.1b, c, d). The Raman spectra for the fluid inclusion (Figure 2.1b) show the 

presence of multiple molecular species (e.g., CO2, CO, CH4, H2O, and H2) 

and reveal heterogeneous distribution of these species within the inclusion. 

The peaks at 1280 and 1380 cm-1 correspond to the symmetric stretching 

vibration (ν1) and the overtone of the symmetric bending (2ν2) vibrations in  
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Figure 2.1. (A) A stereoscopic micrograph image of one of the grains of 

carbon-bearing enstatite. The size of the grain is 80 μm (w) × 100 μm (h) 

and the fluid inclusions are 4 μm (w) × 10 μm (h) (indicated with red 

rectangles). (B) Raman spectra for carbon-bearing enstatite in the 

frequency range of 1000–4300 cm-1 and (C) that in the range of 1200–

1500 cm-1 and (D) 2000–2200 cm-1.  
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CO2 (Morizet et al., 2009), and those at 2100 cm-1 and 3000–3800 cm-1 are due 

to CO and H2O (Morizet et al., 2009; Mysen et al., 2011), respectively. The 

peaks at 2912 and 4150 cm-1 originate from CH4 and H2, respectively (Mysen 

et al., 2009).  

Figure 2.1c and d shows further details of characteristic of vibrational 

modes of CO2 and CO, respectively. The two peaks at 1360 cm-1 and 1385 

cm-1 in Figure 2.1c are characteristic of the overtone of the symmetric 

bending (2ν2) vibrations of 13CO2 and 12CO2 in the fluid inclusions while the 

two peaks at 1260 cm-1 and 1285 cm-1 correspond to the symmetric 

stretching (ν1) vibrations of 13CO2 and 12CO2, respectively (Ni and Keppler, 

2013). The peak at 1405 cm-1 represents the hot band vibration of the low-

lying vibration of ν2 at 667.38 cm-1 (Rosso and Bodnar, 1995). Figure 2.1d 

indicates the presence of minor but detectable 13CO and 12CO species in the 

fluid inclusion at 2090 cm-1 and 2140 cm-1, respectively (Morizet et al., 2009). 

These Raman features for CO and CO2 were not observed within the 

inclusion-free enstatite crystals. The coexistence of these fluid species can 

correspond to fO2 ranging from -7.14 to -10.88 (calculated using the GFluid 

code), similar to those with C-CO buffer (fO2 = ~ -7.5) (Zhang and Duan, 

2010). 

The internal pressure in the fluid inclusion have been estimated from 

the frequency difference in upper band and lower band of CO2 (i.e., ν1-2ν2) 

(Garrabos et al., 1989; Kobayashi et al., 2012; Rosso and Bodnar, 1995; Seitz 

et al., 1996; Wright and Wang, 1973). Alternatively, the peak position of ν1 

vibration of CH4 at room temperature has also been utilized to obtain 

internal pressure (Lin et al., 2007; Seitz et al., 1996). As we have not collected 

the Raman spectrum for the inclusion with varying temperature, taking into 
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consideration sources of uncertainty and potential complications in the 

previous calibration curve, the difference in CO2 bands (104.2–104.7 cm-1) 

may not be directly used to provide robust pressure conditions in the 

current study. In order to estimate the internal pressure of the fluid 

inclusion from the CH4 peak positions in the Raman spectrum, the exact 

composition of the inclusion needs to be known. As the chemical 

composition of the inclusion is currently not clear, a quantitative estimation 

of the internal pressure is not straightforward. Roughly, the current peak 

position of CH4 (2911.5–2912.2 cm-1) corresponds to the internal pressure of 

~ 100–200 bar (e.g. if XCH4 = ~ 0.1 in CH4–CO2 mixture). Further detailed 

study with in-situ high-temperature Raman analyses is necessary for robust 

estimation of internal pressure. 

While Raman spectroscopy may not be fully quantitative, previous 

extensive Raman studies of fluid inclusions in silicate glasses highlighted 

that quantitative estimation of carbon species concentration is indeed 

possible, once their respective peak intensity was calibrated with the Raman 

efficiency for each molecule established from the standard samples with 

controlled concentrations (Burke, 2001; Morizet et al., 2009). The method is 

not applied for the samples studied here due mainly to difficulties in 

establishing the Raman efficiency of the species with the spectrometer used 

in the current study (mostly due to lack of heating stage, standard samples 

with known concentrations of molecular species, and heterogeneous 

distribution of carbon-bearing species in the inclusion). Nevertheless, this 

earlier approach, combined with NMR, is potentially useful to provide 

quantitative information of fluid composition and species concentration. 
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2.3.2. Probing of carbon species and inclusion in carbon-bearing enstatite: 
13C MAS NMR results 

Figure 2 in Kim et al. (2016) shows the 13C MAS NMR spectrum for 

carbon-bearing enstatite. Because the 13C MAS NMR spectrum of the empty 

rotor shows the presence of a detectable amount of carbon background 

signal from the rotor and stator ranging from 100–170 ppm (Figure 2 

bottom, Kim et al., 2016), the background signal was subtracted from the 

collected spectrum (Figure 2 middle, Kim et al., 2016). The top spectrum in 

Figure 2 in Kim et al. (2016) shows the background-subtracted 13C MAS 

NMR spectrum for the sample. The background-subtracted spectrum shows 

multiple sharp peaks at 184.5, 173.3, 170.9, 161.2, and 125.2 ppm, which can 

be attributed to the distinct carbon species in enstatite. The sharp peak at 

125.2 ppm is prevalent. Based on the NMR chemical shift of the peak, it 

could be attributed to either molecular CO2 in fluid phase, structurally 

bound CO2 in silicate network, or [4]C (Herzfeld and Berger, 1980; Kohn et 

al., 1991; Rockafellow et al., 2009). While the origin of the peak at 125.2 ppm 

in carbon-bearing enstatite will be discussed, the peak is mostly due to 

molecular CO2 on the basis of its narrow peak width with negligible 

spinning sideband intensity and insights from the quantum chemical 

calculations (see discussion sections 2.4.1 and 2.4.2 below for further 

details). This assignment is also consistent with the aforementioned Raman 

results (Figure 2.1). 

The 161.2, 170.9, and 173.3 ppm peaks correspond to the carbonate 

ions (CO32-) on the basis of previous studies of carbonate species in the 

silicate glasses (e.g., Brooker et al., 1999; Kohn et al., 1991; Mysen et al., 

2011). Additionally, chemical shifts for carbonate minerals (e.g., calcite, 
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magnesite, vaterite, dolomite, lithium carbonate, sodium carbonates, and 

cerussite) also range from 166–171 ppm (Papenguth et al., 1989). Previous 

quantum simulations of 13C NMR chemical shift in aluminosilicate glasses 

showed that the distortion of CO32- cluster led to a decrease in the 13C NMR 

chemical shift (Tossell, 1995), as also suggested from an earlier NMR study 

(Brooker et al., 1999). The simulations also indicated that highly distorted 

carbonate ions with C-O bond length of 1.265 Å, which was shorter than the 

average bond lengths of the carbonate minerals (1.285 Å), have smaller 

NMR chemical shift (Tossell, 1995). The additional small peak at 184.5 ppm 

observed in the spectrum (Figure 2, Kim et al., 2016) can be attributed to 

carbon monoxide (Kohn et al., 1991; Tossell, 1995). Figure 3 in Kim et al. 

(2016) also shows the 13C MAS NMR spectra for carbon-bearing enstatite 

synthesized at 1.5 GPa and 1400 °C, and that annealed at 750 °C for 10 min. 

Upon annealing, the 13C MAS NMR spectrum for the annealed carbon-

bearing enstatite did not show the presence of carbon species (Figure 3 

bottom, Kim et al., 2016). This suggests that the carbon species in enstatite 

are not stable upon annealing at 750 °C.  

On the basis of the relationship between peak area and 13C 

abundance (see discussion 2.4.3), we should note that the amount of 13CO 

and 13CO32- are much larger than the reported solubility of carbon (including 

12C and 13C) into enstatite (~ 0.05–4.7 ppm) (Keppler et al., 2003; Shcheka et 

al., 2006) (see appendix 2.A1 for the previously estimated solubility of 

carbon species in crystalline silicates at high pressure). Therefore, the 

observed carbonates and CO species in the spectra are not likely due to 

carbon species in enstatite crystalline network, rather these stem from 

external reaction products formed during sample synthesis. 
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The Raman spectra show the presence of CH4 in the fluid inclusion 

(Figure 2.1b). Because the potential peak position for CH4 species somewhat 

overlaps with the spinning side bands of the probe background signal (at 14 

kHz), 13C MAS NMR spectra for the sample were collected with varying 

spinning speed (11 and 14 kHz). A small feature at ~ -9 ppm is observed in 

13C MAS NMR spectra at 11 kHz (Figure 2.2). Previous study of carbon-

bearing Na2O-4SiO2 glass synthesized at 1.5 GPa and 1400°C reported a 

sharp peak due to CH4 species at -5.4 ppm in the 13C MAS NMR (Mysen et 

al., 2011). Figure 2.A1 in appendix 2.A2 shows 13C MAS NMR spectrum for 

carbon-bearing enstatite under proton decoupling where any expected 

decrease in the peak width for the peak ~ -9 ppm is not shown, indicating 

that the carbon species responsible for -9 ppm peak does not have clear 

proximity toward hydrogen. 1H MAS NMR spectrum for carbon-bearing 

enstatite shows the presence of CH4 species at ~ 0.3 ppm (not shown here) 

(Pretsch et al., 2009). The result, therefore, indicates that the feature at ~ -9 

ppm in 13C MAS NMR spectra is mostly due to the probe background signal 

and the observed CH4 in the Raman spectrum is likely due to the 12C 

infiltrated from the graphite heater (Brooker et al., 1998; Cerfontain et al., 

1987).  

 

2.3.3. Pressure-induced structural changes of amorphous carbon: Insights 

from 13C MAS NMR 

Because we used 13C-enriched amorphous carbon as a carbon 

reservoir, the current NMR experiment for amorphous carbon can also 

provide insights into the effect of pressure on the structure of amorphous 

carbon. Figure 5a in Kim et al. (2016) shows the background-subtracted 13C  
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Figure 2.2. 13C NMR spectra for carbon-bearing enstatite and stator and 

rotor backgrounds at 11 kHz of spinning speed (top), that at 14 kHz of 

spinning speed (middle), and rotor and stator background at 14 kHz 

(bottom). The asterisks and dotted arcs denote expected positions of 

spinning side bands for background signal at 130 ppm. The spinning 

sideband of the spectrum for carbon-bearing enstatite at 14 kHz 

overlaps with a small peak at ~ -9 ppm.  
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MAS NMR spectra for the compressed and uncompressed 13C-enriched 

amorphous carbon. The 13C NMR spectrum for amorphous carbon shows a 

broad peak at ~ 130 ppm. After compression at 1.5 GPa and 1400 °C for 48 h, 

the spectrum for the compressed amorphous carbon shows a broad peak at 

~ 95 ppm. The observed pressure-induced changes in the peak position of 

amorphous carbon in the 13C NMR spectra (Figure 5, Kim et al., 2016) may 

stem from multiple distinct structural changes upon compression, which 

includes bonding transition from sp2 to sp3 states. This could also be due to 

incorporation of hydrogen into carbon stemming from H2O added during 

synthesis and the pressure-induced changes in network topology without 

changes in bonding states.  

As the peak position for the typical carbon species with sp2 and sp3 

bonding are ~ 138 ppm and ~ 68 ppm, respectively (Alam et al., 2002; Cho et 

al., 2008), this observation may indicate that the uncompressed amorphous 

carbon contains more sp2 hybridized carbon species, while the compressed 

amorphous carbon at 1.5 GPa has more sp3 hybridized carbon; amorphous 

carbon undergoes permanent pressure-induced densification, characterized 

by the transition from sp2 to sp3 hybridization. Alternatively, the previous 

studies have also shown that chemical shift and peak positions for sp2 

carbon varies with varying carbon network topology. Table 2.1 shows the 

13C NMR chemical shifts (and peak positions) of various carbon species in 

amorphous and crystalline carbon phases and allotropes. These phases have 

distinct network topology, yet consisting only of carbons with sp2 bonding 

orbitals. While NMR chemical shift for sp3-like carbon varies from 62 to 67.5 

ppm (Alam et al., 2003; Pan et al., 1991), those for sp2-like carbons also range 

from 102.3 to 149.7 ppm and are dependent on network topology; for  
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Table 2.1. 13C NMR chemical shift for various crystalline and amorphous 

carbon materials. 

Sample Carbon species 
Peak  

position 
(ppm) 

FWHM 
(ppm) 

B0 
(T) 

Spin 
rate 

(kHz) 
Ref.† 

Amorphous 
carbon 

(rf sputtering) 

sp2-like carbon 130 200 2.35 4.4 (1) 
sp3-like carbon 62 ~ 26.8    

Amorphous 
carbon 
(PLD) 

sp2-like carbon 137.8 41.3 9.4 15 (2) 
sp3-like carbon 67.5 49.8    

Carbon 
nanotubes single-walled nanotubes 

with 2.4 at% Rh/Pd 
124  9.4 11.7 (3) 

single-walled nanotubes 
(pure) 118.8  4.7  (4) 

single-walled nanotubes 
(with adsorbed CO) 123.8     

double-walled nanotubes 116.3     
multi-walled nanotubes 

(15 ± 5 walls) 106.1     

multi-walled nanotubes 
(60 ± 10 walls) 102.3     

Graphene graphene 123  8.46 9.4 (5) 

Fullerene 
black + C60 

C60 142.6 0.7 7.05 5 (6) 

C70 
129.9, 144.7, 
146.9, 149.7   6.6  

polyynic carbon chain ~ 70     

Carbon black aromatic C=C 126  6.35 5.3 (7) 

C=O 167     
aliphatic C-C 20     

† (1) Pan et al. (1991); (2) Alam et al. (2003); (3) Tang et al. (2000); (4) Abou-
Hamad et al. (2011); (5) Si and Samulski (2008); (6) Kanowski et al. (1997); (7) 
Jäger et al. (1999) 
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example, the chemical shift of carbon in carbon nanotubes decreases with 

increasing the number of walls (Abou-Hamad et al., 2011). The peak 

positions of aromatic C=C bonds in graphene and carbon black is 123–126 

ppm (Jäger et al., 1999; Si and Samulski, 2008). The chemical shift for 

fullerene C60 is 142.6 ppm and that for fullerene C70 shows multiple sharp 

peaks at 129.9 ppm, 144.7 ppm, 146.9 ppm and 149.7 ppm; all those 

crystallographically distinct carbon sites have varying symmetry and 

topology (Kanowski et al., 1997; Taylor et al., 1990). 

Therefore, while the observed peak shift in the 13C MAS NMR 

spectrum for the amorphous carbon (Figure 5, Kim et al., 2016) can certainly 

be due to changes in sp2 to sp3 hybridization that was also previously 

reported at higher pressure upon cold compression (Lin et al., 2011), it could 

also stem from the pressure-induced changes in carbon topology while 

maintaining sp2 bonding state as shown in Table 2.1. Further experimental 

and theoretical confirmations are necessary. Finally, while the observed 

shift may be due to the effect of residual hydrogen, taking into 

consideration negligible hydrogen content in the compressed amorphous 

carbon as evidenced by the 1H NMR spectra, the pressure-induced peak 

shift is not affected by the proton in the sample (see appendix 2.A3). 

We note that the NMR signal is comparable to that of background 

signal; Figure 5b and c in Kim et al. (2016) show the 13C MAS NMR spectra 

for 13C-enriched uncompressed and compressed amorphous carbon and 

those for rotor and stator backgrounds. The observed difference in signal-to-

noise ratio between the two spectra (uncompressed vs. compressed) are due 

to the absolute intensity differences in the two samples because of possible 

difference in spin-lattice relaxation times and/or the potential paramagnetic 
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interaction between unpaired electron and 13C nuclides in the amorphous 

carbons: roughly, the calibration curve between 13C NMR peak intensity and 

13C concentration based on the spin-counting experiment (see section 2.4.3 

below), the peak intensity of compressed amorphous carbon corresponds to 

only ~ 20% of 13C in the sample. It is currently difficult to distinguish the 

effect of paramagnetic interaction from the contribution from the spin-lattice 

relaxation times (T1) mostly because of difficulty in estimating T1 time for 

the compressed carbon. 

In order to yield the background-subtracted spectra, the intensity of 

the background signal was adjusted (~ 80%) by matching the sharp peak 

intensity at ~ 170 ppm. A decrease in the background intensity of the 13C 

MAS NMR spectra for the compressed and uncompressed amorphous 

carbon is likely due to the presence of the unpaired electrons in both 

samples [as expected from the presence of sp2 bonding (Cho et al., 2008)]. 

While the current result is the first-of-its-kind observation of the pressure-

induced permanent structural changes in amorphous carbon using 13C MAS 

NMR, the effect of paramagnetic interaction (between unpaired electron and 

13C nuclides) remains to be fully established. 

 

2.4. Discussion 

2.4.1. Origin of peak at 125.2 ppm in carbon-bearing enstatite 

The current 13C NMR spectrum shows a strong and sharp resonance 

peak at 125.2 ppm. The FWHM of the peak is approximately 0.6 ppm with 

an applied Gaussian broadening factor of 0.01. While the 13C NMR studies 

of carbon phases in the crystalline silicates have not been performed 

hitherto, previous studies on the 13C MAS NMR for carbon-bearing anatase 
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TiO2 proposed that the extremely sharp peak at 126 ppm can be attributed 

to [4]C in crystalline TiO2 (Rockafellow et al., 2009). Alternately, in the 

previous 13C NMR study of the carbon species in the sodium aluminosilicate 

glasses, the peak at ~125 ppm with the spinning sidebands was assigned to 

the dissolved molecular CO2 in the glass network (Kohn et al., 1991). The 

dissolved CO2 molecules bound to the crystalline/non-crystalline silicate 

networks would be subject to the low degree of freedom. This leads to a 

relatively large 13C NMR chemical shift anisotropy of ~ 260–270 ppm 

(Herzfeld and Berger, 1980), resulting in the visible spinning sidebands 

(Kohn et al., 1991). In contrast, the CO2 molecules in micro-fluid inclusions, 

which were not strongly bound to the networks, may not show spinning 

sidebands (Herzfeld and Berger, 1980; Kohn et al., 1991). If the CO2 is bound 

to the enstatite network, the spinning sidebands of the CO2 peak should 

appear at approximately 265 ppm and -15 ppm in the current 13C MAS 

NMR spectrum. However, the spinning sidebands for the CO2 peak were 

not observed in the current study. Therefore, the observed peak at 125.2 

ppm in the current 13C MAS NMR spectrum is likely to result from the 

fluid-phase CO2 molecule in the inclusion as also indicated by the presence 

of CO2 band in the Raman spectrum (Figure 2.1). While an experimental 

artificial signal (central spike) may overlap with the peak at 125.2 ppm in 

the previous pioneering study (Kohn et al., 1991), the current 13C NMR 

experiments were performed with the varying carrier frequency. The result 

confirms that the peak at 125.2 ppm is not due to the additional artifact 

signal. We also synthesized the sample twice using the identical 

experimental conditions in the piston cylinder to substantiate the 

reproducibility: the 13C MAS NMR spectra for both samples also showed a 
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sharp peak at 125.2 ppm. 

 

2.4.2. 13C NMR chemical shift for orthocarbonate species ([4]C): Insights 

from quantum chemical calculations 

A previous study suggested that the peak at ~ 120 ppm can be 

assigned to [4]C (Rockafellow et al., 2009). The peak position also 

corresponds to suggested peak position for molecular CO2 (e.g., Brooker et 

al., 1999; Kohn et al., 1991; Morizet et al., 2010; Mysen et al., 2011). In order 

to confirm these earlier peak assignments, theoretical confirmation is 

required. Here, we calculated the chemical shift of [4]C [C(OH)4 cluster] 

using quantum chemical calculations. The theoretical calculation of NMR 

chemical shielding tensor for the model C(OH)4 cluster shows the effect of 

the C-O bond length of [4]C cluster on the 13C chemical shift (Figure 2.3). The 

calculated 13C NMR chemical shift is also dependent on the energy level of 

theory and the basis sets used. Here the calculations were performed at the 

B3LYP level of theory with a 6-311+G(2d) basis set that reproduced 

experimental 13C chemical shifts for the known molecules relatively well 

(Kim and Lee, 2011; Lee and Lee, 2009). For example, the calculated NMR 

chemical shift for the CO2 molecule is 125.7 ppm at the B3LYP level of 

theory with a 6-311+G(2d) basis set (Kim and Lee, 2011). The chemical shift 

is consistent with the result from experimental 13C liquid-state static NMR 

spectrum of CO2 gas molecule (Ettinger et al., 1960). The calculated NMR 

chemical shift also varies with basis sets used. For instance, the shift of CO2 

molecule calculated at the B3LYP/6-31G(d) is 108.807 ppm (Kim and Lee, 

2011). 

Figure 2.3 shows that the effect of the C-O bond length on a single  
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Figure 2.3. (A) Single point energy of C(OH)4 cluster with varying C–O 

bond length. A model C(OH)4 cluster is also shown in the inset. (B) 

NMR chemical shift of C(OH)4 cluster with varying C–O bond length. 
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point energy and NMR chemical shift. The quantum chemical calculations 

of C(OH)4 cluster with an equilibrium C-O bond length of 1.388 Å 

[calculated at the B3LYP/6-311+G(2d)] show that the chemical shift is 

117.451 ppm. The calculated NMR chemical shift of C(OH)4 cluster 

gradually increases with increasing the C-O bond length. The 13C chemical 

shift increases from 121.2 ppm at 1.40 Å to 196.9 ppm at 1.60 Å. In the 

previous report, we also showed that the [4]C peak with a C-O bond length 

of 1.60 Å (if C substitutes Si in the chain silicate network) leads to a chemical 

shift of 254.6 ppm (Kim and Lee, 2011). 

If the C-O bond length of the [4]C cluster in the enstatite were ~ 1.388 

Å, the peak position of the [4]C species would be ~ 117.451 ppm. Therefore, 

taking into consideration the similarity between the chemical shifts for CO2 

and [4]C, it is difficult to assign the peak based only on the 13C chemical shift. 

In the current study, as we observed CO2-rich fluid inclusions confirmed by 

Raman spectroscopy (Figure 2.1), the peak at 125.2 ppm in the current 13C 

MAS NMR spectrum is likely to be the free CO2 molecule in enstatite. 

 

2.4.3. External vs. structurally-incorporated carbon species in the carbon-

bearing enstatite: Insights from quantitative 13C spin counting experiment 

using ADM-SiO2 mixture 

Calibration curve between 13C abundance and 13C MAS NMR peak 

intensity. In order to evaluate whether the observed 13C NMR peaks stem 

from the structurally-incorporated carbons in the enstatite or those in 

external phases, it is necessary to estimate the solubility of carbon in 

enstatite and to perform quantitative measurement of the amount of carbon 

species in carbon-bearing enstatite in 13C MAS NMR spectra (Figure 2, Kim 
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et al., 2016), and finally to compare the estimated amount of carbon in 

enstatite with the solubility of carbon in enstatite. A clear linear relationship 

between peak intensity and concentration was established for XADM=1/4, 

1/8 and 1/16. We then extrapolated the trend line obtained from the 

samples with these higher ADM concentration to the samples with lower 

ADM concentration. The NMR intensity data for the samples with the lower 

ADM concentration were then adjusted to match the extrapolated line. This 

allows us to estimate the carbon concentration in the carbon-poor sample. 

The estimated carbon contents from the calibration curve are 2.0 wt% (220 

ppm of 13C) for XADM=1/50 sample; 0.43 wt% (47 ppm of 13C) for XADM=1/233 

sample; and 0.32 wt% (35 ppm of 13C) for XADM=1/310 sample, respectively. 

We note again that the carbon content of the mixture with low carbon 

concentration was estimated using its peak intensity and established 

calibration curve for the mixtures with higher carbon concentration, while 

this may not be fully desirable. This is mainly because of the 

aforementioned difficulty in homogeneous mixing between a small amount 

of ADM and SiO2 and partly due to their differences in volatilization during 

elemental analysis (see section 2.2.3. for details). Nevertheless, NMR peak 

intensity does correspond to robust carbon content and thus allows for 

rigorous estimation of amount of carbon in the mixtures. 

Figure 2.4 top shows 13C MAS NMR spectra for ADM-SiO2 mixtures 

with varying XADM. The peak area in each spectrum decreases with 

decreasing XADM. Figure 2.A3 in appendix 2.A4 shows the 13C MAS NMR 

spectra for ADM-SiO2 mixtures with varying XADM ratio under proton 

decoupling. The spectra show that proton decoupling indeed improves 

signal-to-noise ratio while the peak intensity is conserved. We also note that  
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Figure 2.4. (Top) 13C MAS NMR spectrum for the mixtures of ADM-SiO2 

with varying ADM/SiO2 ratio [XADM = 1/4 (25 wt%, 2750 ppm of 13C), 

1/8 (12.5 wt%, 1375 ppm of 13C), 1/16 (6.25 wt%, 688 ppm of 13C), 1/50 

(2.0 wt%, 220 ppm of 13C), 1/233 (0.43 wt%, 47 ppm of 13C), 1/310 (0.32 

wt%, 35 ppm of 13C)]. (Bottom) Variation of peak intensity in the ADM-

SiO2 mixture as a function of 13C abundance (in ppm) calculated from 
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nominal XADM ratio and peak area of carbon species in 13C MAS NMR 

spectra. Diamonds and circles refer to the amounts of 13C estimated 

from nominal XADM ratio with and without proton decoupling, 

respectively. Their peak areas were retrieved from 13C MAS NMR 

results for ADM-SiO2 mixtures. Rectangles refer to the amounts of 13C 

species in carbon-bearing enstatite estimated from 13C MAS NMR 

spectra for carbon-bearing enstatite. 

 

the carbon species (including CO2, CO32-) that do not have hydrogen bonded 

to carbon may not undergo enhancement in signal-to-noise ratio further. 

Figure 2.4 bottom shows the relationship between the 13C MAS NMR peak 

intensity and the estimated 13C abundance in ADM-SiO2 mixtures. The 

linear correlation between the 13C abundance (X) in the ADM-SiO2 mixture 

and the normalized peak intensity (Y, normalized with respect to that of 

XADM=1/4.) in 13C MAS NMR spectra can be established: Y=0.0369X.  

Effect of spin-lattice relaxation time. While we used the ADM-SiO2 

mixtures as an analog for the carbon species in the compressed silicates, the 

spin-lattice relaxation times for ADM and carbon species in the compressed 

enstatite are different: the T1 for the latter is longer than that of the former. 

Because of the differences in spin-lattice relaxation times, the actual carbon 

concentration (particularly that of carbonate species) in the sample can be 

higher from those estimated here: T1 of ADM is ~ 1 s (Resing, 1969) and thus 

the current recycle delay of 5 s provides quantitative insight into the carbon 

content in the sample. As for the other carbon species, due to low spin 

density, the T1 for the CO2 has not been estimated. Nevertheless, the 

previous studies have shown that spin-lattice relaxation time of gas phase 
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CO2 varies from ~ 0.2 sec at an internal pressure of 10.3 bar, 16.34 sec at 

137.89 bar, and to ~ 22 sec at an internal pressure of 413.68 bar (Etesse et al., 

1992). While the T1 for CO2 varies with the density, the 13C MAS NMR 

experiment with 5 s and 40 s delay times does not lead to a noticeable 

difference in signal intensity. Therefore, the current results with 5 s 

relaxation delay provide moderately robust estimation of CO2 content in the 

glasses. As for the CO32- species, the estimated T1 values for Na2CO3 and 

CaCO3 are ~ 1729 and 6418 s, respectively. That for MgCO3 magnesite is ~ 

78 s (Moore et al., 2015). Thus, the calibration curve based on ADM may not 

provide robust and quantitative estimation of the carbonate content in the 

current sample, particularly. The predicted 13CO32- content is likely to be 

smaller than the actual content.  

Estimated carbon contents. The estimated minimum 13C abundance 

from 13C MAS NMR spectra for ADM-SiO2 mixture is ~ 35 ppm of 13C from 

the calibration curve based on 13C MAS NMR experiments. Based on the 

established calibration curve, we believe that the detection limit is ~ 5–10 

ppm for 13C species with the employed instrumentation and the 

experimental conditions in the current study (~ 5 days of signal averaging at 

9.4 T static field with a rf field strength of 66.7 kHz in the 3.2 mm rotor with 

full sample volume of ~ 19 mm3). Whereas the spin-lattice relaxation times, 

particularly carbonates species in the enstatite-amorphous carbon reaction 

products need to be estimated, because of the limited sample volume, it is 

currently challenging to measure T1. Nevertheless, based on the calibration 

curve, the estimated 13C amounts of CO2, CO32-, and CO species are ~ 142–

166 ppm, ~ 28–45 ppm (once calibrated with T1 effect, the concentration 

should be higher than the current value), and ~ 6–7 ppm, respectively. The 
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previously reported solubility of carbon species in enstatite is 0.05–4.7 ppm 

(Keppler et al., 2003; Shcheka et al., 2006); therefore, the estimated carbon 

contents from the NMR spectra indicate that those carbon species are from 

external phases. 

External crystalline carbonate phases. Characteristic vibrational 

frequencies for calcite and magnesite are expected to be at 1088 cm-1 and 

1095 cm-1, respectively. We note that there is also an expected peak shift 

toward higher frequency with increasing pressure. C-O asymmetric 

stretching vibration for bicarbonate species would show up at 1630 cm-1, if 

exists (Davis and Oliver, 1972; Wen and Brooker, 1995). The Raman spectra 

for the fluid inclusion in the carbon-bearing enstatite do not show the peak 

due to carbonate species. Therefore, the carbonate peak observed in the 13C 

NMR is not from the inclusion. In order to check the potential presence of 

carbonate phases in the grains, we also performed SEM analysis of the 

grains. The preliminary analysis does not show any evidence for the 

carbonate phases although we cannot discard the possibility of its potential 

presence (See appendix 2.A5 and 2.A6). 

 

2.4.4. Sources of 12C contamination 

In this study, 13C-enriched amorphous carbon (~ 99.7%) was used to 

synthesize the carbon-bearing enstatite and the sample was sealed in a Pt 

tube (a closed system); therefore, the presence of 12C was not expected. The 

Raman spectra for fluid-inclusion in enstatite, however, showed the 

presence of 12C species, which was not present inside the capsule during the 

sample preparation and welding. The presence of 12C thus indicates a 

potential contamination by infiltration of carbon from the graphite furnace 



66 

 

during the compression and heating in the piston cylinder (Balta et al., 2011; 

Brooker et al., 1998; Brooker et al., 1999; Ni and Keppler, 2013). Note that 

double Pt capsules were used to minimize the changes in fO2 in several 

previous synthesis of carbon-bearing silicates in the previous studies (Balta 

et al., 2011; Brooker et al., 1998; Ni and Keppler, 2013 and references 

therein). The 12C infiltrated from the graphite furnace may lead to the spatial 

heterogeneity in fO2: oxygen fugacity near the boundary of the Pt capsule 

may be low, resulting in the formation of 13CO species [via 13CO2 + 12C (from 

graphite furnace) = 13CO + 12CO] (Brooker et al., 1998; Cerfontain et al., 

1987). Despite the observed presence of 12C in the carbon-bearing enstatite 

(Figure 2.1), the 13C MAS NMR spectrum obtained from the sample shows 

only the 13C contribution in enstatite, taking into consideration the fact that 

the 13C is the only active isotope.  

 

2.5. Implications 

Here, we have reported the 13C MAS NMR spectrum for carbon-

bearing enstatite. The 13C MAS NMR spectrum for the carbon-bearing 

enstatite shows multiple peaks from different carbon environments: CO, 

CO32-, and molecular CO2. The Raman spectra for the observed fluid 

inclusion in the carbon-bearing enstatite show multiple molecular species 

(e.g., CO2, CO, CH4, H2O, and H2). The quantum chemical calculations of the 

C(OH)4 cluster show that 13C chemical shift of the cluster has strong C-O 

bond length dependence; with increasing C-O bond length from 1.40 Å to 

1.60 Å, 13C chemical shift increases from 121.2 ppm to 196.9 ppm. 

While the Raman spectrum of the observed fluid inclusions in the 

carbon-bearing enstatite can provide information on the collective vibration 
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of molecules of different isotopes (e.g., peaks of 13CO2 and 12CO2, and 13CO 

and 12CO), the 13C NMR spectrum can provide complementary and element-

specific information on the nature of carbon species in crystalline silicates, 

distinguishing the molecular CO2 in fluid phase and structurally bound CO2 

in silicate network. Taking into consideration the similarity between the 

chemical shifts of CO2 and [4]C, it is not straightforward to assign the peak 

solely based on the 13C NMR peak positions. Yet, we expect that the method 

could potentially probe the minor fraction of [4]C whose peak width is 

expected to be much larger than that of molecular CO2 due to its 

pronounced nuclear spin anisotropy. The current results suggest that the 13C 

MAS NMR technique, combined with Raman spectroscopy can be used as a 

tool for the detection of carbon species and inclusions in crystalline silicates. 

Whereas the 13C MAS NMR technique was utilized to probe carbon 

speciation in silicates at relatively low pressure (1.5 GPa in the current 

study), the method can also be utilized to analyze carbon species in carbon-

bearing silicate minerals at much higher pressure and additional carbon 

reservoirs in earth’s interior, such as metal carbides and carbonate minerals 

(Catalli and Williams, 2005; Hazen et al., 2013; Mikhail et al., 2011; 

Mookherjee, 2011; Mookherjee et al., 2011; Oganov et al., 2013; Rohrbach 

and Schmidt, 2011; Santillán et al., 2005; Seto et al., 2008). As for the latter, 

presence of crystalline silicon carbonate phase where silicon behaves as a 

metal cation in carbonates at 18–26 GPa was also reported (Santoro et al., 

2011). While the detailed structural characterization of these phases remains 

to be seen, future 13C solid-state NMR studies of these phases may reveal 

the detailed bonding nature of these complexes under compression. 

The solubility of carbon into (Mg,Fe)2SiO4 olivine increases from 0.09 
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ppm to 12.75 ppm as pressure increases from 1.5 GPa to 11 GPa and that 

into MgSiO3 bridgmanite at ~ 26 GPa is less than 0.05 ppm (Shcheka et al., 

2006). Due to relatively low carbon solubility, it is currently challenging to 

detect carbon species in these phases using the experimental conditions 

employed here. While the NMR data indeed provide complementary and 

unique insights into the speciation of carbon-bearing phases to vibrational 

spectroscopy, we fully acknowledged the fact that the current data also 

address the limitation of the NMR studies on quantitative estimation of ~ 

ppm scales of carbon dissolved in a crystalline lattice: 13C may not reveal the 

carbon species at concentration below 5–10 ppm using the current 

experimental protocols at the current stage. NMR experiments at high 

magnetic field with fast spinning probes lead to significant gain in signal 

intensity and may provide insights into the carbon solubility mechanism 

into the crystalline phases in Earth’s mantle. 
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Appendix 

2.A1. Solubility of carbon into crystalline silicates at high pressure up to 

25 GPa 

The solubility and detailed structure around carbon species in 

crystalline silicates are often difficult to probe. This is partly because the 

solubility of the carbon species is relatively low, on the order of 0.01 to 10 

ppm (Keppler et al., 2003; Shcheka et al., 2006), and suitable probes are 

limited. Furthermore, the solubility measurement is often complicated by 

several extrinsic factors including presence of excess carbon in the grain 

boundary; the resulting carbon solubility in silicate crystals varied from the 

order of 0.01 ppm to 2500 ppm (Freund et al., 1980; Keppler et al., 2003; 

Mathez et al., 1984; Shcheka et al., 2006; Tingle and Aines, 1988; Tsong and 

Knipping, 1986; Tsong et al., 1985) . 

Despite the challenge, previous efforts have provided some insights 

into carbon species in various silicate crystals at pressures up to 26 GPa 

(Keppler et al., 2003; Shcheka et al., 2006). The carbon solubility in the 

silicates does not show a great variation depending on the types and 

composition of the crystals. The estimated total carbon content in the Mg-

silicates apparently increases with increasing pressure, but the formation of 

Mg-perovskite phase leads to a reduction in the carbon solubility in silicate 

(Keppler et al., 2003; Shcheka et al., 2006). Table 2.A1 summarizes the 

estimated carbon solubility in the various silicate polymorphs in a pressure 

range of 1–26 GPa (Keppler et al., 2003; Shcheka et al., 2006). The solubility 

of carbon in enstatite at 1.5 GPa varies from 0.05 ppm to 4.7 ppm, which 

may reside from the carbon contents in the grain boundaries. 
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2.A2. The presence of 13CH4 in carbon-bearing enstatite by using proton 

decoupling 

Figure 2.A1 shows 13C MAS NMR spectrum for carbon-bearing 

enstatite with decoupling power of 33 kHz and spinning speed at 11 kHz. 

Any decrease in the peak width for the peak ~ -9 ppm in Fig. 3 in Kim et al. 

(2016) has not been observed. The result may indicate that the small feature 

at ~ -9 ppm is from background signal. 

 

 

2.A3. Effect of residual H in the pressure-induced carbon peak shifts in 

the amorphous carbon 

Protonation into carbon could also affect the observed change in peak 

position of amorphous carbon under compression. We collected 1H MAS 

NMR spectra for the compressed and uncompressed amorphous carbon in 

order to identify whether there would be any 1H reservoir and potential 

protonation of the sample. The spectra were collected on a Varian NMR 

system (9.4 T) at a Larmor frequency of 400.01 MHz (3.2 mm double-

resonance Varian probe). Single-pulse acquisition with a pulse length of 1.6 

μs (radio frequency tip angle of about 30° for solids) was used with a recycle 

delay of 5 s and spinning speeds of 14 kHz. The potential results would 

allow us to confirm whether the observed changes in the peak shift is due to 

residual proton from the H2O added during the sample synthesis. Figure 

2.A2 shows the 1H MAS NMR spectra for 13C-enriched uncompressed and 

compressed amorphous carbon and those for rotor and stator backgrounds. 

1H MAS NMR spectra for rotor and stator background show a broad peak at 

~ 7 ppm. The shoulder at ~ -1 ppm is observed for uncompressed 
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amorphous carbon. The assignment of the feature is not trivial, yet previous 

1H NMR study for the amorphous carbon under milling showed a broad 

feature near ~ -1 ppm, assigned to hydrogenated amorphous carbon 

(Shindo et al., 2011). No noticeable proton peak is observed for compressed 

amorphous carbon, suggesting the absence of proton reservoir in 

compressed amorphous carbon. The result confirms that the proton signal 

from rotor and stator background is far much greater than those from the 

amorphous carbon and there is no noticeable proton reservoir for the 

compressed carbon. Taking into consideration negligible H content in the 

compressed amorphous carbon, it is expected that 1H-13C cross-polarization 

NMR does not probe the H-C interaction within the amorphous carbon. 

Indeed, our preliminary 1H-13C cross-polarization NMR spectra for the 

sample and rotor showed that most of the signals are from the rotor and 

stator. The current results again confirm the pressure-induced peak shift 

were not affected by the proton in the sample. 

 

 

2.A4. Detection limit on 13C MAS NMR under proton decoupling 

Figure 2.A3 shows the 13C MAS NMR spectra for ADM-SiO2 mixtures 

with varying XADM ratio with decoupling power of 33 kHz. The spectra 

show that proton decoupling indeed improves signal-to-noise ratio and 13C 

MAS NMR spectrum for the sample with XADM =1/259, ~ 43 ppm can be 

obtained. See Figure 2.7 for the calibration results based on the decoupling 

experiments. 
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2.A5. The characteristics of the 13C peak width of various carbonate 

species 

Figure 2.A4 shows the 13C static NMR spectra of 1 M Na2CO3(aq) and 

1 M (Na213CO3+NaHCO3)(aq), and 13C MAS NMR spectra of calcite and 

natrite to explore the characteristics of their peak shape in the 13C NMR 

spectra. The spinning speed for calcite and natrite is 14.7 kHz. The FWHM 

of calcite and natrite peak in 13C MAS NMR spectra are 0.48 and 0.42 ppm 

with an employed Lorentzian broadening factor of 10, respectively. The 

FWHM of 1 M Na213CO3(aq) and 1 M (Na213CO3+NaHCO3)(aq) in 13C MAS 

NMR spectra are 0.48 and 0.48 ppm with an employed Lorentzian  

broadening factor of 10, respectively. The FWHM of carbonates peaks in the 

carbon-bearing enstatite at 161.2, 170.9, and 173.3 ppm are 0.29, 0.37, and 

0.35 ppm with a Lorentzian broadening factor of 10, respectively. Therefore, 

it is difficult to identify their phases (either solid or liquid) based only on 

their peak widths due to the similarity in FWHM of carbonate minerals and 

carbonate ions in aqueous solution. Although spectra for aqueous solution 

collected without spinning at the magic angle, we note that 13C liquid-state 

NMR under MAS may not reduce the FWHM of the carbonate species in 

aqueous solution. 

 

2.A6. Estimation of the detection limit of carbonate phase in the enstatite-

calcite mixture using conventional XRD 

In order to test the detectability of carbonate species in the silicate 

matrix, we collected XRD patterns from enstatite-calcite mixture with 

varying concentration of carbonate phase (on Rigaku MiniFlex600, using 

CuΚα X-rays, voltage of 40 kV, current of 15 mA, a 2θ range of 10°–60°, a 
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step width of 0.01°, and scan rate of 0.4 s/point). Figure 2.A5 shows the 

XRD patterns of enstatite-calcite mixture with varying Xcalcite from 0 to 1/32. 

The calcite (104) peak (red line at 29.4°) intensity can be seen up to 

Xcalcite=1/256 (~ 0.39 wt%) sample, which is the detection limit with the 

employed instrument and conditions used in the study. The estimated 

carbonate concentration is much smaller than the current detection limit of 

XRD. 
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Table 2.A1. Solubility of carbon species in crystalline silicates with varying 

composition, pressure, and temperature, as reported in previous studies. 

Composition Pressure 
(GPa) 

Temperature 
(°C) 

Duration 
(h) 

Solubility 
(wt ppm) Ref.* 

Enstatite 
(MgSiO3) 

1.5 
1.5 

900–1100 
900 

96–168 
96 

0.05(1)–0.19(4) 
3.0–4.7 

(1) 
(2)  

6 1100 5 0.38(3)–0.44(3) (1)  
16 1400 10 0.69(6)–0.80(6) 

 

Olivine 
[(Mg,Fe)2SiO4] 

1 
1.5 

1200 
900–1100 

34 
144–168 

Not detected 
<0.09–0.38(9) 

(1) 
 

1.5 1200 68 0.14(2)–0.25(2) 
 

 
2 1200 71 0.34(4) 

 
 

3.5 1200 71 0.29(4)–0.54(6) 
 

 
7 1200 10 3.27(29)–3.90(68) 

 
 

11 1200 10 11.57(34)–12.75(53) 
 

Diopside 
(CaMgSi2O6) 

1.5 
1.5 

900–1100 
900 

96–168 
168 

<0.01–0.16(2) 
0.4–0.5 

(1) 
(2)  

6 1100 8 1.45(7)–1.60(6) (1) 

Pyrope 
(Mg3Al2Si3O12) 

6 
6 

1300 
1300 

10 
10 

0.85(5)–0.87(5) 
1.9–2.1 

(1) 
(2)  

9 1300 10 0.83(6)–1.27(7) (1)  
10 1300 6 0.82(4)–0.96(5) 

 

Spinel 
(MgAl2O4) 

1.5 
1.5 

1100 
1100 

168 
168 

<0.02 
Not detected 

(1) 

Wadsleyite 
[(Mg,Fe)2SiO4] 

16 
17 

1400 
1400 

10 
4 

<0.04–0.04(1) 
<0.05 

(1) 

Ringwoodite 
[(Mg,Fe)2SiO4] 

21 
23 

1200 
1200 

10 
4 

0.04(1) 
<0.07–0.10(2) 

 

Ilmenite 
(MgSiO3) 25 1400 10 <0.08 (1) 

Bridgmanite 
(Perovskite) 

(MgSiO3) 

25 
26 

1400 
1400 

10 
3 

<0.07 
<0.05 (1) 

* (1) Shcheka et al. (2006); (2) Keppler et al. (2003)  
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Figure 2.A1. 13C MAS NMR spectrum for carbon-bearing enstatite under 

proton decoupling with an applied Lorentzian broadening factor of 40. 
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Figure 2.A2. (A) 1H MAS NMR spectra for compressed amorphous carbon, 

amorphous carbon, and rotor-stator background. Asterisks denote 

spinning sidebands. (B) Expanded 1H MAS NMR spectra for the 

samples as labeled.   
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Figure 2.A3. 13C MAS NMR spectra for ADM-SiO2 mixtures with varying 

XADM ratio with decoupling power of 33 kHz.  
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Figure 2.A4. 13C NMR spectra for 1 M Na213CO3 (aq), 1 M 

(Na213CO3+NaHCO3) (aq), calcite, and natrite with an employed 

Lorentzian broadening factor of 10.  
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Figure 2.A5. XRD patterns of enstatite-calcite mixture with varying Xcalcite 

from 0 to 1/32. Blue and red lines on the top of the figure refer to XRD 

patterns of enstatite and calcite, respectively. A red area shows the 

decrease of calcite intensity with decreasing Xcalcite in the sample. 
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Abstract 

Despite the pioneering efforts to explore the nature of carbon in 

carbon-bearing silicate melts under compression, experimental data for the 

speciation and the solubility of carbon in silicate melts above 4 GPa have not 

been reported. Here, we explore the speciation of carbon and pressure-

induced changes in network structures of carbon-bearing silicate (Na2O-

3SiO2, NS3) and sodium aluminosilicate (NaAlSi3O8, albite) glasses 

quenched from melts at high pressure up to 8 GPa using multi-nuclear 

solid-state NMR. The 27Al triple quantum (3Q) MAS NMR spectra for 

carbon-bearing albite melts revealed the pressure-induced increase in the 

topological disorder around 4 coordinated Al ([4]Al) without forming [5,6]Al. 

These structural changes are similar to those in volatile-free albite melts at 

high pressure, indicating that the addition of CO2 in silicate melts may not 

induce any additional increase in the topological disorder around Al at high 

pressure. 13C MAS NMR spectra for carbon-bearing albite melts show 

multiple carbonate species, including [4]Si(CO3)[4]Si, [4]Si(CO3)[4]Al, 

[4]Al(CO3)[4]Al, and free CO32-. The fraction of [4]Si(CO3)[4]Al increases with 
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increasing pressure, while those of other bridging carbonate species 

decrease, indicating that the addition of CO2 may enhance mixing of Si and 

Al at high pressure. A noticeable change is not observed for 29Si NMR 

spectra for the carbon-bearing albite glasses with varying pressure at 1.5 to 6 

GPa. These NMR results confirm that the densification mechanisms 

established for fluid-free, polymerized aluminosilicate melts can be applied 

to the carbon-bearing albite melts at high pressure. 

In contrast, the 29Si MAS NMR spectra for partially depolymerized, 

carbon-bearing NS3 glasses show that the fraction of [5,6]Si increases with 

increasing pressure at the expense of Q3 species ([4]Si species with one non-

bridging oxygen as the nearest neighbor). The pressure-induced increase in 

topological disorder around Si is evident from an increase in peak width of 

[4]Si with pressure. 17O NMR spectrum shows that the fraction of Na··O-[5]Si 

in carbon-bearing NS3 glasses is less than that of carbon-free NS3 glasses at 

6 GPa potentially due to the formation of bridging carbonate species. While 

its presence is not evident from the 17O NMR spectrum primarily due to low 

carbon concentration, 13C MAS NMR results imply the formation of 

bridging carbonates, [4]Si(CO3)[4]Si, above 6 GPa. The spin-lattice relaxation 

time (T1) of CO2 in albite melts increases with increasing pressure from 42 s 

(at 1.5 GPa) to 149 s (at 6 GPa). Taking the pressure-induced change in T1 of 

carbon species into consideration, total carbon content in carbon-bearing 

albite melts increases with pressure from ~1 wt% at 1.5 GPa to ~4.1 wt% at 6 

GPa. The results also reveal a noticeable drop in the peak intensity of free 

carbonates in carbon-bearing NS3 melts at 6 GPa, implying a potential non-

linear change in the carbon solubility with pressure. The current results of 

carbon speciation in the silicate melts above 4 GPa provide an improved 



96 

 

link among the atomic configurations around carbon species, their carbon 

contents, and isotope composition of carbon-bearing melts in the upper 

mantle. 

 

3.1. Introduction 

CO2 is among the most abundant volatile components in Earth’s 

interior, and understanding the nature of carbon (e.g., speciation, solubility) 

in silicate melts at high pressure is essential to unraveling the property 

changes in carbon-bearing silicate melts in the mantle. The presence of CO2 

molecule and/or other carbon-bearing species in silicate melts changes the 

stability field of silicate crystals (Mysen and Richet, 2005), which controls 

the composition of partial melts generated by decompressional melting 

beneath the mid-ocean ridge (e.g., Dasgupta and Hirschmann, 2006; 

Dasgupta et al., 2013; Eggler, 1976; Evans et al., 1999; Wallace, 2005). The 

addition of CO2 with H2O in peridotitic melts is expected to decrease the 

solidus, which may have contributed to the presence of a low-velocity zone 

in the asthenosphere (e.g., Dasgupta et al., 2004; Eggler, 1976; Evans et al., 

1999; Gu et al., 2005; Lee, 2010; Massuyeau et al., 2015; Song et al., 2004). The 

dissolved CO2 in silicate melts affects the viscosity of silicate melts: the 

viscosity of KAlSi3O8 melts shows non-linear behavior as the viscosity 

decreases with increasing CO2 content up to 5 wt% and then increases with 

more CO2 in the melts, perhaps because of the complex role of CO2 in 

silicate melts (White and Montana, 1990). In contrast, the viscosity of 

NaAlSi3O8 (albite) melts continuously decreases with increasing CO2 

contents in the silicate melts (Brearley and Montana, 1989).  
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Whereas the focus of the study is to reveal the effect of pressure on 

the speciation of carbon in silicate melts, carbon speciation has strong 

implications for carbon solubility in melts. The solubility of CO2 in the 

silicate melts up to ~ 3.5 GPa has been experimentally explored. Here, we 

briefly summarize the solubility of carbon in silicate melts below 3.5 GPa. 

The total solubility of carbon in basaltic melts linearly increases up to 0.5 

wt% with increasing pressure up to 0.2 GPa (Parfitt and Wilson, 2008). The 

solubility of carbon in the silicate melts tends to increase with increasing 

pressure, the ratio of non-bridging oxygen over tetrahedron (NBO/T), and 

the fraction of Mg and Ca, but it decreases with increasing temperature, the 

SiO2 content, and the Na content (e.g., Eggler and Kadik, 1979; Eggler and 

Rosenhauer, 1978; Fine and Stolper, 1985; Kohn et al., 1991; Morizet et al., 

2010; Mysen et al., 1975; Nowak et al., 2004). For instance, the total solubility 

of carbon species in synthesized NaAlSi4O10 melts increases up to 1.0 wt% at 

2.5 GPa (Fine and Stolper, 1985), while the solubility in albite melts 

increases up to 2.5 wt% at 3.5 GPa (Brooker et al., 1999). In the natural 

olivine nephelinite-composition melts, the solubility ranges up to 17.7 wt% 

with increasing pressure up to 3 GPa (Eggler and Kadik, 1979; Kohn et al., 

1991; Mysen et al., 1975). 

The mechanisms for dissolving CO2 and other carbon species (e.g., 

CO32-, CO, and CH4) into silicate melt are relatively well understood in the 

pressure range up to 3.5 GPa (Behrens et al., 2004; Blank and Brooker, 1994; 

Brooker et al., 1999; Kohn et al., 1991; Morizet et al., 2002; Morizet et al., 

2014a; Morizet et al., 2015; Mysen et al., 1976; Mysen et al., 2009; Mysen et 

al., 2011; Pan et al., 1991; Tossell, 1995). FTIR and Raman spectroscopies are 

extensively used to identify the speciation and exact structural information 
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of carbon in silicate glasses and melts (Brooker et al., 1999; Burke, 2001; 

Hacura et al., 1990; Morizet et al., 2009; Moussallam et al., 2016; Mysen et al., 

2009; Ni and Keppler, 2013; Pawley et al., 1992; Rosso and Bodnar, 1995; 

Seitz et al., 1996). Those studies found diverse molecular species 

(superscript mol), such as CO2mol and COmol, and other structurally bound 

species, such as bridging carbonate species and dissolved CO2 (a molecule 

weakly bound to the bridging oxygen in the silicate network). In addition, 

the information from these vibrational spectroscopies can be useful in 

inferring the pressure conditions and slight changes in the topology of 

carbon species with increasing pressure and temperature. For instance, the 

peak splitting in the main CO2 Raman peak (at 1337 cm-1, i.e., the Fermi 

resonance) in fluid inclusions provides the internal pressure of the fluid 

inclusion (Bakker, 2003; Bodnar, 2003; Rosso and Bodnar, 1995; Seitz et al., 

1996), and the gap between the two split carbonate peaks (at ~ 1500 cm-1) in 

the FTIR spectra can give insights into the distortion of carbonate species in 

the silicate glasses (Brooker et al., 1999; Morizet et al., 2002).  

NMR spectroscopy is complementary to the vibrational spectroscopy. 

It provides direct, element-specific, and quantitative information of atomic 

structures around nuclides of interest in silicate melts and glasses (e.g., 

Kirkpatrick and Brow, 1995; Kohn et al., 1991; Lee et al., 2001; Lee and 

Stebbins, 2003; Malfait et al., 2012; Papenguth et al., 1989; Park and Lee, 

2012; Phillips et al., 2000; Stebbins, 1995b; Stebbins and Xue, 2014; Xue et al., 

1989). 13C NMR in particular has been effective in identifying carbon species 

in silicate melts and glasses (Cody et al., 2011; Herzfeld and Berger, 1980; 

Kohn et al., 1991; Morizet et al., 2014b; Morizet et al., 2015; Mysen, 2012). 

Previous studies on 13C magic angle spinning (MAS) NMR have identified 
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CO2 (at ~ 125 ppm), CO32- (at ~ 160–170 ppm), and CO species (~ 184 ppm) 

in silicate glasses (Brooker et al., 1999; Feng et al., 2006; Kim et al., 2016; 

Kohn et al., 1991; Mysen, 2013; Tossell, 1995). The bridging carbonate ions 

that are linked to two framework cations, such as [4]Si(CO3)[4]Si, 

[4]Si(CO3)[4]Al, or [4]Al(CO3)[4]Al, and the free carbonate ions that are near the 

network-modifying cations were proposed from the compositional 

dependence of carbonate peaks in NMR spectra (Brooker et al., 1999). The 

presence of the molecular CH4 and CH3 functional groups that are bound to 

the silicon tetrahedron is characterized by peaks at -5.4 and -2.1 ppm, 

respectively (Mysen, 2012). Because of the large 13C chemical shift 

anisotropy of CO2 (Herzfeld and Berger, 1980), the presence of spinning side 

bands of CO2 in 13C MAS NMR spectra indicates whether CO2 is in a free-

gas phase, such as in fluid inclusions, or within the silicate network and 

bound to the bridging oxygen (Kim et al., 2016; Kohn et al., 1991) (see 

section 3.2.2 for details). 

On the basis of these experimental studies, two mechanisms for 

dissolving CO2 into silicate glasses (i.e., solubility mechanisms) have been 

proposed (Fine and Stolper, 1985; Kohn et al., 1991; Morizet et al., 2015; 

Tossell, 1995): CO2 dissolves as molecular CO2 weakly bound to the 

bridging oxygen (depolymerization of silicate melts) or as CO32- by 

transforming two non-bridging oxygen into bridging oxygen 

(polymerization of silicate melts) (Morizet et al., 2015; Tossell, 1995). The 

formation of bridging CO32- [such as [4]Si(CO3)[4]Si] in silicate melts may 

change the NBO/T in silicate melts, accounting for the observed changes in 

melt viscosity (e.g., Lee, 2011; Stebbins, 1995a). The formation of bridging 

carbonates, such as [4]Si(CO3)[4]Si and [4]Si(CO3)[4]Al, also affects the atomic 
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environments of Al and Si. 27Al triple quantum magic angle spinning 

(3QMAS) NMR has provided the details of Al coordination environments 

and their topological disorder (e.g., the increased dispersion of bond angle 

and length distributions) in carbon-free silicate glasses (e.g., Edén, 2015; 

Florian et al., 2007; Jaworski et al., 2012; Kim and Lee, 2013; Lee et al., 2016; 

Malfait et al., 2012; McMillan and Kirkpatrick, 1992; Neuville et al., 2008; 

Park and Lee, 2014; Stebbins et al., 2008). The changes in the coordination 

number of Al in silicate glasses are also observed with increasing pressure 

in the 27Al 3QMAS NMR spectra (Allwardt et al., 2007; Gaudio et al., 2015; 

Lee, 2010; Lee et al., 2004). The degree of polymerization of silicate melts 

decreases with increasing pressure above 5–8 GPa at constant melt 

composition (Lee, 2011). The 29Si MAS NMR studies at high pressure show 

the formation of highly coordinated Si in silicate glasses upon compression 

(Xue et al., 1991). Whether the network modification from the dissolved CO2 

in silicate glasses quenched from melts at high pressure can be seen in the 

27Al 3QMAS and 29Si MAS NMR spectra remains to be investigated. 

While experimental progress has been made in the carbon-bearing 

glasses and melts below 3.5 GPa, no experimental data for carbon-bearing 

silicate glasses above 3.5 GPa have been reported because the conventional 

piston-cylinder high-pressure apparatus is often operated below 4 GPa (e.g., 

Brooker et al., 1998; Brooker et al., 1999; Malfait et al., 2012; Morizet et al., 

2007; Morizet et al., 2015). Whereas the experimental data have not been 

available for the speciation of carbon in silicate melts above 4 GPa, 

theoretical calculations using molecular dynamics (MD) simulation for 

carbon-bearing silicate melts up to 15 GPa has predicted that the total 

solubility of CO2 increases with increasing pressure and is dependent on the 
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composition of silicate melts (Guillot and Sator, 2011; Vuilleumier et al., 

2015). For example, first-principle MD simulation has shown that the 

proportion of CO2 in kimberlite melts could reach up to ~ 4% at 12 GPa, 

while that in basaltic melts would be ~ 15% at the same pressure 

(Vuilleumier et al., 2015). MD simulation for carbon-bearing silicate melts at 

high pressure up to 15 GPa has shown that the fraction of CO2mol over CO2 

mol +CO32- in rhyolitic, mid-ocean ridge basalts and kimberlitic melts is in the 

range of 0.25–0.38 at 12 GPa (Guillot and Sator, 2011). The fraction of CO32- 

is not a simple linear increase with pressure, but it drastically increases 

above 5 GPa (Guillot and Sator, 2011). The results also showed that free 

carbonate ions are dominant species in carbon-bearing kimberlite melts 

(75.4%) and about 52% of carbonate ions in basaltic melts at 12 GPa would 

be bound to one non-bridging oxygen atom in the silicate network 

(Vuilleumier et al., 2015). Based on these studies, it has been predicted that 

the degree of polymerization is positively correlated with the concentration 

of carbonate ions (Guillot and Sator, 2011; Vuilleumier et al., 2015). The 

fraction of bridging carbonate ions increases with increasing NBO/T, 

resulting in decreasing NBO/T in the system (Vuilleumier et al., 2015). As 

the NBO/T in silicate melts tends to decrease with increasing pressure, 

regardless of the melt composition (Lee, 2011), the presence of carbonate 

ions in silicate melts facilitates the reduction of NBO with pressure. To 

identify the effect of carbon species in the silicate network at high pressure, 

we need direct information about the bonds and coordination of carbon 

species in the silicate glasses and melts. 

In this study, we explore the structures of silicate glasses quenched 

from melts at high pressure (topological disorder and coordination 
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environments of the framework cations) and speciation of carbon in silicate 

glasses quenched from melts at pressures up to 8 GPa in the sodium 

trisilicate binary system (Na2O-3SiO2, NS3) and the sodium aluminosilicate 

ternary system (NaAlSi3O8, albite), using high-resolution multi-nuclear (29Si, 

27Al, 17O, and 13C) solid-state NMR. We seek to reveal the pressure-induced 

structural changes of carbon species in silicate melts in the upper mantle (up 

to 240 km depth), such as the formation of bridging carbonates up to 8 GPa. 

We also explore the effect of pressure on the spin-lattice relation time (T1) of 

CO2 in albite melts and derive quantitative information about the speciation 

and connectivity of carbon in silicate melts. We report the first experimental 

results of detailed coordination environments of framework cations (Si and 

Al) at high pressure above 4 GPa up to 8 GPa. We then discuss the effect of 

the structural changes in thermodynamic properties (i.e., solubility, isotope 

fractionation) of carbon-bearing silicate melts.  

 

3.2. Experimental Methods 

3.2.1. Sample preparation 

Albite glass was synthesized from powdered Na2CO3, Al2O3, and 

SiO2. About 0.2 wt% of Co oxides was added to enhance the spin-lattice 

relaxation, allowing us to collect spectra with improved signal-to-noise ratio 

in the same experimental time. The Na2CO3, Al2O3, and SiO2 powders were 

dried overnight at 300 °C, and the weighted powders were mixed in an 

agate mortar. The mixture was decarbonated in a Pt crucible at 850 °C for 30 

min, fused at 1300 °C for 1 h at ambient pressure, and then quenched into 

glasses by dropping the Pt crucible into distilled water. Albite glasses at 1.5 

and 6 GPa were synthesized from two 13C-dopped stating materials, 
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prepared by adding powdered 99.7% enriched Na213CO3 (2.71 wt% and 

16.63 wt%, respectively), balanced with Al2O3 and SiO2 powders, into the 

pre-synthesized albite glass. The amount of Na213CO3 needed for saturation 

of 13CO2 in albite glass was estimated from the linear extrapolation of 

previous results (Brooker et al., 1999; Stolper et al., 1987). Because the 

carbon solubility in silicate melts has only been available up to 4 GPa, the 

amount of Na213CO3 in the starting oxide-carbonate mixture above 4 GPa 

needs to be assumed. Here, a factor of 2 was multiplied to the predicted 

solubility of 13CO2 in albite glasses at 6 GPa from the previous study to 

ensure that the system was saturated with the CO2. Although the presence 

of void space and/or fluid inclusion is not observed in the carbon-bearing 

albite glasses at 6 GPa, the calculated carbon contents in albite melts at 6 

GPa are similar to the predicted solubility of carbon in albite melts at 6 GPa 

(see section 3.3.5 for the estimation of carbon contents). After each of the 

starting materials was loaded into a Pt capsule and sealed, the samples were 

loaded into a piston cylinder and a multi-anvil apparatus at the Geophysical 

Laboratory with a 1/2-inch assembly and an 18/11 (octahedron edge 

length/truncated edge length of the anvils) assembly, respectively. The 

samples were fused at 1.5 GPa and 1400 °C in the piston-cylinder apparatus 

for 25 min and at 6 GPa and 1700 °C in the multi-anvil device for 30 min, 

and then quenched to glasses by turning off the power. The initial 

quenching rate was approximately 500 °C/s. The carbon-free albite glass 

sample at 8 GPa was previously synthesized (Lee et al., 2004). 

NS3 glasses were synthesized in the same manner as the synthesis of 

albite glasses using Na2CO3 and SiO2. The amount of Na2CO3 needed for 

saturation of 13CO2 in NS3 glass for 4, 6, and 8 GPa was estimated from the  
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Table 3.1. Experimental condition on carbon-bearing silicate glasses 

quenched from melts at high pressure. 

 Albite glass NS3 glass 

Pressure 1.5 GPa 6 GPa 4 GPa 6 GPa 8 GPa 

wt% of 
13CO2 

(Na2 13CO3) 

0.76 wt% 
(2.71 
wt%) 

4.66 wt%  
(16.63 
wt%) 

0.09 wt% 
(0.39 
wt%) 

0.18 wt% 
(0.75 
wt%) 

0.27 wt% 
(1.13 
wt%) 

T, time 1350 °C, 
25 min 

1700 °C, 
30 min 

1400 °C, 
30 min 

1400 °C, 
30 min 

1400 °C, 
30 min 

Apparatus Piston 
cylinder 

Multi-
anvil 
press 

Multi-
anvil 
press 

Multi-
anvil 
press 

Multi-
anvil 
press 

* The amount of Na2CO3 needed for saturation of 13CO2 in albite and NS3 
melts was estimated from previous study (Brooker et al., 1999; Mysen et 
al., 2009; Stolper et al., 1987), and the factor of 2 was multiplied. 

 

linear extrapolation of previous solubility data from melts formed in 

reduced conditions with an iron-wüstite buffer (IW, fO2 value of ~ -12) 

(Mysen et al., 2009). Note that carbon solubility into melts also depends on 

oxygen fugacity (fO2). For instance, the solubility of carbon in Na2O-4SiO2 

(NS4) melts in magnesite-hematite buffer (MH with estimated fO2 value of ~-

4) is reported to be twice larger than that in iron-wüstite buffer (Mysen et 

al., 2011). The estimated fO2 in the current experiment was similar to that of 

C-CO (CCO) buffer (with estimated fO2 value of ~-7.5) (Zhang and Duan, 

2010). Taking these into consideration, the amount of Na213CO3 in the 

starting NS3 glasses was calculated as a factor of 2 multiplied to the 

predicted solubility of carbon in NS3 glasses in reduced conditions (Mysen 

et al., 2009). 0.39, 0.75, and 1.13 wt% of Na213CO3 (corresponding to 0.09, 
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0.18, and 0.27 wt% of 13CO2, respectively) were added to a pre-synthesized 

glass for experiments at 4, 6, and 8 GPa, respectively. The presence of void 

space was observed in carbon-bearing NS3 glasses quenched from melts at 6 

GPa, suggesting that the NS3 glasses at 6 GPa is saturated with carbon 

under the current oxygen fugacity conditions. The samples were loaded into 

a multi-anvil device at the Geophysical Laboratory with the 18/11 

assembly. All the samples were fused at approximately 1400 °C for 30 min 

and then quenched to glasses. Table 3.1 shows experimental conditions on 

carbon-bearing silicate glasses quenched from melts at high pressure.  

17O-enriched NS3 glasses used for experiments at 6 GPa were 

synthesized in the same manner as the synthesis of NS3 glasses, using 

Na213CO3 and 17O-enriched SiO2 obtained from hydrolysis of 40% 17O water 

with SiCl4. The recovered samples were used for NMR experiments without 

grinding them into powder in order to avoid hydration and minimize the 

structural changes that might be associated with crushing and grinding. A 

previous study for 27Al NMR of albite glasses at high pressure showed a 

potential drop in melt pressure during rapid quenching of the melts 

(Gaudio et al., 2015). The pressure conditions of the current study could also 

be slightly lower, leading to less fraction of highly-coordinated network-

forming cations (e.g., [5,6]Al) and lowering the solubility of total carbon in 

the silicate melts at high pressure. The glasses quenched from melts at high 

pressure preserve pressure-induced structural transitions in super-cooled 

melts (e.g., Lee, 2010; Xue et al., 1991). Therefore, the solubility and 

speciation of carbon in the glasses could be somewhat different from those 

in the melts. See supplementary materials 3.S1 for the effect of quench on 

the solubility of CO2 in silicate melts and glasses. 
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Due to the difficulty in the sample synthesis of fluid-bearing silicate 

glasses at high pressure using multi-anvil press and the relatively long 

NMR data acquisition time for the ~ mg of sample (see, e.g., Lee, 2010 for 

the detailed review), it is challenging to get the sufficient spectral data. We 

have limited our study to 4, 6, and 8 GPa at which sufficient amount of 

sample can be synthesized in our largest sample assembly. Further study 

with more structural information at varying pressure conditions is 

desirable, but additional technical development and/or application of high-

field NMR are required for sufficient number of NMR data acquisition. 

 

3.2.2. NMR spectroscopy 

The recent breakthroughs in high-resolution, solid-state NMR 

including multiple quantum magic angle spinning (MQMAS) NMR allowed 

us to explore the effect of pressure on the speciation of carbon in silicate 

glasses quenched from melt at high pressure by detecting tens of ppm of the 

nuclide (particularly, quadrupolar nuclides) of interest from ~5–15 mg of a 

sample (Kelsey et al., 2009; Lee, 2010; Lee et al., 2012a; Lee et al., 2010; 

Stebbins and Xue, 2014). The 13C NMR study of carbon-bearing silicate 

glasses at high pressure has been challenging because of the relatively low 

natural abundance of 13C combined with small high-pressure sample and 

the relaxation time of carbon species under varying pressure conditions. 

NMR spectroscopy is sensitive only to 13C, whose natural abundance is only 

1.1%. Combined with the solubility of CO2 in silicate glasses (several wt%), 

the detectable carbon species in carbon-bearing silicate glasses would be at 

the level of hundreds of ppm. Therefore, samples should be enriched in 13C 

in order to see the atomic structure using the solid-state NMR. The 
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relaxation time for carbon species is relatively long; for example, the T1 for 

Na2CO3, CaCO3, and MgCO3 are ~ 1729 s, ~ 6418 s, and ~ 78 s, respectively 

(Moore et al., 2015). A long relaxation time for carbon species leads to time-

consuming experimental schedules if the experiment is to get high-

resolution NMR spectra from 13C MAS NMR experiments. The T1 of the 

nuclide of interest increases with increasing pressure, resulting in a signal 

decrease at high pressure under the same experimental conditions. Taking 

into consideration the T1 relaxation time and recycle delay time of previous 

13C MAS NMR experiments for C-bearing enstatite at 1.5 GPa, we used 5 s 

of recycle delay time for conventional 13C MAS NMR experiment (Kim et al., 

2016). In the current study, 13C MAS NMR spectra were collected on a 

Varian solid-state NMR 400 system (9.4 T) at a Larmor frequency of 100.582 

MHz using a 3.2 mm Varian double-resonance probe (Seoul National 

University, Korea). A radio frequency pulse length of 1.3 µs was used, 

which corresponds to a 30° tip angle. Sample spinning speeds of 11 kHz for 

albite glasses and 17 kHz for NS3 glasses were used. Scans of free-induction 

decay (FID) that ranged from approximately 120,000 scans to 86,400 scans (5 

to 7 days) were averaged to achieve the signal-to-noise ratio shown in the 

13C MAS NMR spectra. The spectra were referenced to solid adamantane 

(ADM), which is 38.6 ppm away from tetramethylsilane (TMS). We 

performed the identical 13C MAS NMR experiments on the empty rotor to 

check the intensity of carbon background signal in the spectra as a stator 

and a rotor of NMR probes have carbon background signals. The 

background signal from the rotor and stator was subtracted from the 

collected 13C spectra. 

27Al MAS NMR spectra were collect on the same NMR system at 



108 

 

Seoul National University at a Larmor frequency of 104.23 MHz using a 3.2 

mm Varian double-resonance probe. The 27Al 3QMAS NMR spectra were 

collected using a fast-amplitude modulation (FAM)-based shifted-echo 

pulse sequence (0.3 s relaxation delay – 3 µs pulse for 3Q excitation – t1 

delay – FAM pulse train with a 0.7 µs pulse – echo delay – 15 us soft pulse 

for echo reconversion – t2 acquisition) (Baltisberger et al., 1996; Lee et al., 

2009; Madhu et al., 1999). Collected for 28 hrs, 1,248 scans were averaged to 

achieve the current signal-to-noise ratio (with a minimum contour line of 

4%) in the 27Al 3QMAS NMR spectra. The 27Al NMR spectra were 

referenced to an external 0.1 M AlCl3 solution.  

A 17O 3QMAS NMR spectrum for NS3 glasses at 6 GPa was collected on 

a Varian solid-state NMR 400 system (9.4 T) at a Larmor frequency of 54.24 

MHz. The 17O 3QMAS NMR spectrum was collected using a FAM-based 

shifted-echo pulse sequence (3.3 µs pulse for 3Q excitation – t1 delay – FAM 

pulse train with a 1 µs pulse – echo delay – 11 µs soft pulse for echo 

reconversion – t2 acquisition) with a relaxation delay of 1 s. The 17O NMR 

spectrum was measured using tap water as the external reference. 

We collected 29Si MAS NMR spectra at 9.4 T (Varian NMR 

spectrometer) using a single-pulse sequence (1.9 µs, a 30° tip angle) with a 

relaxation delay of 30 s at a Larmor frequency of 79.49 MHz. Sample 

spinning speeds of 11 kHz and approximately 20,000 scans (7 days) of FID 

were averaged to achieve the signal-to-noise ratio shown in the 29Si MAS 

NMR spectra. The 29Si MAS NMR spectra were referenced to TMS. 
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3.3. Results 

3.3.1. 27Al 3QMAS NMR results: Pressure-induced topological disorder in 

Al in carbon-bearing albite glasses quenched from melts at high pressure 

up to 6 GPa 

Figure 3.1 presents the 27Al 3QMAS NMR spectra for carbon-bearing 

albite glasses quenched from melts at 1.5 GPa and 6 GPa, and those for 

carbon-free albite glasses quenched from melts at 1 atm and 8 GPa (See 

Figure 3.S1 for 27Al 1D MAS NMR spectra). Two Al-coordination 

environments—mostly [4]Al and a small fraction of [5]Al at 8 GPa—were 

resolved. These peak assignments are based on previous NMR studies on 

crystalline and glassy aluminosilicates (e.g., Baltisberger et al., 1996; Edén, 

2015; Kelsey et al., 2008; McMillan and Kirkpatrick, 1992; Neuville et al., 

2008; Toplis et al., 2000 and references therein).  

The formation of highly coordinated Al (e.g., [5, 6]Al) is not observed in 

carbon-bearing albite melts up to 6 GPa, while the peak width in the MAS 

dimension (y axis) increases from 60 ppm (~ 10–70 ppm) to 90 ppm (~ -20–

70 ppm) with increasing pressure. The peak width in the MAS dimension of 

[4]Al in the 3QMAS NMR spectra contains information about the 

magnitudes of quadrupolar interactions of Al and its topological disorder, 

such as changes in bond lengths and bond angles around Al environments 

and changes in isotropic chemical shifts (e.g., Edén, 2015; Lee, 2010; Park 

and Lee, 2012). Therefore, the increase in the peak width in the MAS 

dimension in the 27Al 3QMAS NMR data suggests the pressure-induced 

topological disorder of Al in albite melts, such as distortion in Al 

polyhedron and Al-O bond length changes. Previous studies of the albite 

glasses quenched from melts at 8 GPa have suggested the formation of five  
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Figure 3.1. 27Al 3QMAS NMR spectra for carbon-bearing albite glasses 

quenched from melts at 1.5 and 6 GPa and for carbon-free albite melts 

at 1 atm and 8 GPa.  
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coordinated Al in the system (Gaudio et al., 2015; Lee et al., 2004). The 

increases in the peak width in the MAS dimension of carbon-free albite 

melts and carbon-bearing albite melts seem to be identical, regardless of the 

presence of volatile species in the glass, indicating that the solubility of CO2 

in silicate melts may not result in any additional effect on the topological 

changes of Al in albite melts. See supplementary materials 3.S2 for the 

pressure-induced structural changes and the effect of carbon content on the 

structural evolution of Al. 

 

3.3.2. 29Si MAS NMR results: carbon-bearing Na2O-3SiO2 and albite 

glasses quenched from melts at high pressure 

Figure 3.2a shows the 29Si MAS NMR spectra of the carbon-bearing Na2O-

3SiO2 (sodium trisilicate, NS3) glass up to 8 GPa. In the 29Si MAS NMR 

spectra, peaks corresponding to the [4]Si, [5]Si, and [6]Si are observed at ~ -90, 

-150, and -200 ppm, respectively (Kirkpatrick et al., 1986; Stebbins, 1995b 

and references therein). The 29Si MAS NMR spectra for volatile-free NS3 

glasses quenched from melts at high pressure have not been available, the 

presence of highly coordinated Si has been indicated from the decrease in 

NBO in volatile-free NS3 glasses quenched from melts at high pressure up 

to 10 GPa (Lee, 2011; Lee et al., 2003). Those for volatile-free sodium 

disilicate (NS2) and sodium tetrasilicate (NS4) melts at high pressure also 

showed the presence of highly coordinated Si above 6 GPa with 1.0%–8.5% 

of [5,6]Si in the system (Xue et al., 1991).  

The changes in the distribution of Qn species in [4]Si in carbon-bearing 

silicate melts are also shown in carbon-bearing NS3 glasses quenched from 

melts at high pressure. The 29Si MAS NMR spectrum for carbon- bearing  
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Figure 3.2. (A) 29Si MAS NMR spectra for carbon-bearing NS3 (Na2O-3SiO2) 

glasses quenched from melts at 1 atm, 6, and 8 GPa in the range of -50 – 

-250 ppm. Inset shows 29Si MAS NMR spectra for carbon-bearing NS3 

melts at 1 atm, 6, and 8 GPa in the range of -60 – -130 ppm. (B) 29Si MAS 

NMR spectra for carbon-bearing albite glasses quenched from melts at 

1.5 and 6 GPa.  
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NS3 glasses at 1 atm shows a peak maximum at -91.4 ppm, with partially 

resolved peaks corresponding to Q3 (~ -91 ppm) and Q4 (~ -101 ppm) 

species (Maekawa et al., 1991). Those for NS3 glasses at 6 GPa and 8 GPa 

show that the peak maxima shift to a less negative frequency region, from -

91.4 ppm at 1 atm to -90.7 ppm and -90.4 ppm at 6 and 8 GPa, respectively. 

The observed peak shifts toward higher frequency may result from the 

pressure-induced distortion of Si tetrahedron with increasing pressure, such 

as increases in Si-O-Si angles and Si-O bond lengths. It has been shown that 

the 29Si MAS NMR peak positions of α-cristobalite and vitreous silica tend 

to decrease with increasing Si-O-Si angle (Mauri et al., 2000; Radeglia and 

Engelhardt, 1985) and that the chemical shift of silicate minerals decreases 

with increasing Si-O bond lengths (Skibsted et al., 1990). As also previously 

discussed in the carbon-free silicate glasses, the distribution of the bond 

angle and bond lengths of Si tetrahedron became wider with increasing 

pressure, indicating a pressure-induced increase in topological disorder 

(Xue et al., 1991), leading to an overall increase in the topological entropy 

with pressure (Lee, 2010; 2011) 

The peak widths of [4]Si are influenced by the disproportionation of 

Qn species (the changes in the Qn species into Qn-1+Qn+1) (Stebbins, 2016) and 

the pressure-induced changes in the Qn species (Xue et al., 1991). Although 

the assessment of the fraction of each Qn species is difficult due to peak 

overlap, the simulation results for 29Si MAS NMR spectra for carbon-bearing 

NS3 glasses provide insight into pressure-induced changes in Qn species 

(See supplementary materials 3.S3 and Figure 3.S2). The apparent increase 

of peak intensity at around -85 ppm (Q2 species) and -100 ppm (Q4 species) 
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with increasing pressure is observed in Figure 3.2a. This may be explained 

by the following mass balance equation: 

2Q3 = Q2 + Q4.      (1) 

The similar disproportionation reaction has also been observed in 

carbon-free NS2 and NS4 glasses at high pressure up to 10 GPa (Xue et al., 

1991; Xue et al., 1989). The changes in the fraction of Qn species in carbon-

baring silicate melts in the current study may also result from the formation 

of highly coordinated Si at high pressure. The proposed formation 

mechanism for highly coordinated Si is 

Q3 + Q4 = Q4* + [5]Si      (2) 

2Q3 + Q4 = 2Q4* + [6]Si,      (3) 

where Q4* is a SiO4 species with three [4]Si and one [5,6]Si (Wolf et al., 1990; 

Xue et al., 1991). As also evidenced from the formation of [5.6]Si in the carbon 

bearing silicate glasses at high pressure (Figure 3.2a), the formation of Q4* 

species in the glasses may contribute to the observed peak shift toward less 

negative frequency region (~1 ppm, Figure 3.2a) because a decrease in Si-O 

bond lengths and the reduction of Si-O-Si bond angle in Q4* is expected by 

the formation of [5,6]Si as the next-nearest neighbors. The trend is consistent 

with previous studies for carbon-free NS2 glasses (Xue et al., 1989).  

We note that the observed shift in 29Si NMR spectra for the glass 

studied here is somewhat smaller than that reported from nephelinite melts 

(alkali silicate glasses with varying types of non-network formers, such as K 

and Na) at pressures up to 300 MPa (Morizet et al., 2014a). Although the 

differences in melt composition and pressure condition between the current 

study and the earlier study prohibit direct comparison, we did not observe 

any noticeable change in the NMR peak position with pressure for NS3 
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glasses quenched from melts at high pressure up to 8 GPa. The observed 

difference between these studies may also be due to the water content in the 

nephelinite melts. 

Figure 3.2b shows the 29Si MAS NMR spectra for carbon-bearing 

albite glasses quenched from melts at 1.5 and 6 GPa. The spectra for carbon-

bearing albite melts show that only the [4]Si environment is present up to 6 

GPa: the 29Si NMR spectrum for carbon-bearing albite melts at 6 GPa is 

largely identical to that at 1.5 GPa (Figure 3.2b). Together with the pressure-

induced topological disorder of Al in albite melts (Figure 3.1), the absence of 

changes in the 29Si MAS NMR spectra for albite melts at 1.5 and 6 GPa 

suggests that the densification mechanisms in sodium aluminosilicate melts 

change the Al environments (including bond lengths and angles), rather 

than the Si environment, as is also well understood in carbon-free 

aluminosilicate melts (e.g., Lee, 2010; Lee et al., 2004; Yarger et al., 1995 and 

references therein). The results show that the densification mechanism for 

aluminosilicate melts at high pressure can also be applied to the carbon-

bearing aluminosilicate melts.  

 

3.3.3. 17O NMR results: oxygen environments in carbon-bearing Na2O-

3SiO2 glasses quenched from melts at high pressure 

Figure 3.3 shows the 17O 3QMAS NMR spectrum for carbon-bearing 

NS3 glasses at 6 GPa, which indicates the presence of Na··O-[4]Si, [4]Si-O-[4]Si, 

and Na··O-[5]Si (See Figure 3.S3 for 17O 1D MAS NMR spectrum). The 

feature is similar to that observed for carbon-free NS3 glasses (Lee, 2004). 

However, the observed peak intensity of Na··O-[5]Si in this study is twice 

smaller than that in previous study (Lee, 2004). This difference in NBO  
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Figure 3.3. 17O 3QMAS NMR spectrum for carbon-bearing NS3 melts at 6 

GPa.  
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(Na··O-[5]Si) is partly due to the difference in the magnetic field studied (9.4 

T NMR in this study and 7.1 T in the previous study) because fraction of the 

larger Cq sites (e.g. [4]Si-O-[4]Si) can be somewhat underestimated at lower 

magnetic field, and therefore NBO fraction can be overestimated. 

Furthermore, a decrease in Na··O-[5]Si in carbon-bearing NS3 glasses may be 

because the oxygen has been consumed to form bridging carbonate, 

prohibiting the formation of highly coordinated Si linked with non-bridging 

oxygen. Our preliminary quantum chemical calculation shows that peak 

position of 17O in carbonate–[4]Si is ~160 ppm in the MAS dimension of the 

spectra, consistent with the assignment in the previous experimental study 

(Morizet et al., 2017), but its presence is not clear. Note that it is challenging 

to detect a change in the oxygen site fraction of approximately 1 mol% in the 

oxygen environment from the 17O 3QMAS NMR spectra (Du and Stebbins, 

2005; Lee et al., 2016; Park and Lee, 2014). See section 3.4.3 for origin of the 

presence of bridging carbonate ions in NS3 glasses upon compression and 

3.S4 for the estimation of bridging oxygen with silicate and carbonates. 

 

3.3.4. 13C MAS NMR results of carbon-bearing albite glasses quenched 

from melts at high pressure 

Figure 3.4a shows the 13C MAS NMR spectra for carbon-bearing 

albite glasses quenched from melts at 1.5 and 6 GPa. Based on previous 13C 

MAS NMR studies for diverse carbon-bearing silicate glasses, the trends 

observed in the quantum chemical calculations, and the changes in peak 

shape with increasing Al contents, the peaks at ~125 ppm, 150–170 ppm, 

and 181–185 ppm can be assigned to CO2 bound to the silicate network, 

CO32-, and dissolved CO in an albite melt system, respectively (Feng et al., 
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2006; Jones et al., 2005; Kim et al., 2016; Kohn et al., 1991; Moore et al., 2015; 

Morizet et al., 2007; Morizet et al., 2010; Morizet et al., 2014a; Mysen et al., 

2011; Papenguth et al., 1989; Tossell, 1995). The background-subtracted 13C 

MAS NMR spectra in Figure 3.4b show at least four different peaks for CO32- 

species, the carbonate peaks at 171, 165, 160, and 155 ppm, assigned to the 

free carbonates, [4]Al(CO3)[4]Al, [4]Si(CO3)[4]Al, and [4]Si(CO3)[4]Si, respectively 

(Brooker et al., 1999) (See Figure 3.8 for deconvolution of NMR spectra). 

CO2 is the dominant species among the carbon species in carbon-bearing 

albite melts at high pressure. The fraction of CO2 and CO32- increases with 

increasing pressure, while that of CO decreases because of the thickness of 

the graphite heater compared with that of the sample and the increased 

strength of the carbon infiltration effect in the piston cylinder (1.5 GPa) 

compared to that in multi-anvil press (6 GPa). See section 3.4.5 for 

additional discussion. The spectra in Figure 3.4 also revealed the changes of 

carbonate species at different pressures. The fraction of [4]Si(CO3)[4]Al 

increases with increasing pressure, while those of [4]Si(CO3)[4]Si and 

[4]Al(CO3)[4]Al decrease slightly with increasing pressure. This indicates that 

an addition of CO2 results in an enhanced mixing between Si and Al at high 

pressure. See section 3.4.4 for detailed fractional changes of carbonate 

species with increasing pressure. 

The CO2 peak shows strong spinning side bands on each side (~ 240 

ppm and ~ 20 ppm) and relatively large 13C NMR chemical shift anisotropy 

(~ 260-270 ppm) (Ettinger et al., 1960; Kohn et al., 1991). The presence of 

spinning side bands of CO2 reflects that CO2 is bound to the silicate glass 

network and that the degree of freedom of CO2 decreases (Ettinger et al., 

1960; Herzfeld and Berger, 1980; Kohn et al., 1991). To identify the atomic  
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Figure 3.4. (A) Background-included and (B) background-subtracted 13C 

MAS NMR spectra for carbon-bearing albite melts at 1.5 and 6 GPa. The 

spectra are normalized with the weight of the samples. Spinning 

sidebands are marked with an asterisk. The numbers labeled on the 

right side of the spectra refer to the amount of input CO2 in the system. 

See section 2.2 for the measurement of background signal. 
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configuration of CO, it is necessary to confirm whether CO is structurally 

incorporated or exsolved in the silicate network, for which the spinning 

sidebands patterns and the FWHM of the peak can be used. For instance, 

structurally bound CO results in the emergence of strong spinning sideband 

patterns, as expected from its large 13C chemical shift anisotropy (335 ± 20 

ppm) (Gibson et al., 1977), while molecular CO, such as CO inclusion, may 

not show spinning sidebands (Kim et al., 2016). The expected positions of 

the spinning sidebands for CO in albite melts are at ~ 290 ppm and ~ 70 

ppm. Thus, the presence of the spinning side bands of CO in albite melts at 

1.5 GPa suggests its incorporation into the network. The incorporation of 

CO into the silicate network can also be confirmed by FWHM. A previous 

13C MAS NMR spectrum for carbon-bearing fluid inclusion in crystalline 

MgSiO3 at 1.5 GPa showed that the molecular CO in fluid inclusion has a 

sharp peak with FWHM of ~ 0.6 ppm (Kim et al., 2016), while CO in albite 

glasses quenched from melts at both 1.5 and 6 GPa (Figure 3.4b) has a 

relatively broad FWHM of ~ 5 ppm. The lack of sharp peak due to CO, 

therefore, indicates that carbon-bearing albite melts at 6 GPa do not have 

fluid inclusion with molecular CO. Although the detailed atomic 

configurations around the dissolved CO remain to be confirmed, based on 

the NMR characteristics (e.g., spinning side bands and FWHM) of the CO 

peak, the CO may have a moderate degree of interaction with nearby 

bridging oxygens. 

In order to have quantitative estimation of the carbon species 

fractions, the T1 relaxation time of CO should be considered in quantifying 

the carbon species in albite melts. The interaction between CO2 and the 

silicate network may also affect the decrease in peak intensity with 
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increasing pressure, such as that which occurs with an increase in T1 

relaxation time. These aspects were discussed in the following sections (e.g., 

see section 3.3.6 and 3.4.5 for the saturation-recovery experiments for CO2, 

quantification of carbon species in albite melts at high pressure, and the 

presence of CO in albite melts at high pressure). 

3.3.5. 13C MAS NMR results for carbon-bearing NS3 glasses quenched 

from melts at high pressure up to 8 GPa 

Figure 3.5 shows the 13C MAS NMR spectra for carbon-bearing NS3 

glasses quenched from melts at 4, 6, and 8 GPa. The observed peak at ~ 171 

ppm can be assigned to the free carbonates (Morizet et al., 2014a; Tossell, 

1995). The free carbonate peak shifts to lower frequency with increasing 

pressure, with the peak positions from 171.7 ppm at 4 GPa to 170.2 ppm at 8 

GPa, respectively. The peak shift of carbonates in scapolite (a solid-solution 

of Na4Al3Si9O24Cl and Ca4Al6Si6O24CO3) showed ~ 3 ppm peak shift to the 

lower frequencies when the planar carbonates were bent less than 3° to the 

(001) plane (Kohn et al., 1991; Sherriff et al., 1987). If the peak shift of 

carbonates in NS3 glasses is due to the bending of carbonate species upon 

compression, the bending of free carbonates in NS3 melts would be less 

than 3° with increasing pressure. The peak intensity of free carbonates 

shows non-linear changes with increasing pressure: the peak intensity of 

free carbonates decreases from 4 GPa to 6 GPa and then increases to 8 GPa 

(see Table 3.S1 for the simulation parameters and results). These aspects and 

its implications were discussed in the following sections (see section 3.4.6). 

In addition, the signal at ~ 161 ppm, the peak position for bridging 

carbonates [e.g., [4]Si(CO3)[4]Si], apparently increases with increasing 

pressure above 6 GPa. While this position is within the errors because of the  
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Figure 3.5. (A) 13C MAS NMR spectra for carbon-bearing NS3 melts at 4, 6, 

and 8 GPa (blue) and background (black). (B) background-subtracted 

13C MAS NMR spectra for carbon-bearing NS3 melts at 4, 6, and 8 GPa. 

Spinning sidebands are marked with an asterisk. The numbers labeled 

on the right side of the spectra refer to the amount of input CO2 in the 

system. See section 2.2 for the measurement of background signal. 
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peak overlap, these two phenomena—the peak shift of free carbonates 

toward low frequency and the manifestation of bridging carbonates at high 

pressure above 6 GPa—may be related to the pressure-induced distortion of 

carbonates and the formation of bridging oxygen with the silicate network 

in the carbon. See section 3.4.2 and 3.4.3 for peak assignment and 

supplementary materials 3.S5 for the simulation results. 

 

3.3.6. Quantitative measurements of the speciation of carbon in albite 

melts by 13C MAS NMR spectra using 13C spin-lattice (T1) relaxation 

results and analyses 

The initial 13CO2 contents in albite glasses are 0.76 and 4.66 wt% at 1.5 

and 6 GPa, respectively. Whereas the initial input of carbon in albite glasses 

quenched from melts at 6 GPa is approximately six times larger than that at 

1.5 GPa, the total peak intensity of carbon species in carbon-bearing albite 

melts (with a 5 s delay time) increases ~ 1.6 times from the sample at 1.5 

GPa to the sample at 6 GPa (Figure 3.4). This result may be due to a 

relatively small increase in the carbon solubility into the silicate melts at 

high pressure or primarily due to the pressure-induced changes in the spin-

lattice relaxation time. As for the latter, 13C MAS NMR spectroscopy is a 

quantitative analysis tool that is used when the relaxation delay time of the 

experimental conditions is sufficiently long (e.g., longer than three times the 

T1 relaxation time). As the delay time of 5 s was chosen from the 

experimental conditions for CO2 in fluid inclusion in enstatite at 1.5 GPa 

(Kim et al., 2016), calibration of peak intensity with the spin-lattice relation 

time (T1) is necessary. It has been observed that the T1 relaxation time of 

carbon species increases with increasing pressure partly due to an increase 
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in network rigidity with pressure, reducing the peak intensity with 

increasing pressure (Kim et al., 2016). Therefore, 13C saturation-recovery 

experiments were performed to determine whether the origin of the 

reduction of peak intensity is from the differences in the T1 relaxation time 

or from the lower solubility of carbon in albite glasses. 

Figure 3.6 shows the peak intensity of the 13C NMR signal (M) 

normalized with respect to the peak area of a fully relaxed spectrum (M0) 

with varying delay times (τ, time between p/2 pulse and p pulse in T1 

relaxation time measurement). The spin-lattice relaxation time can be 

described using the following equation (Abragam, 1961): 

   M / M0 = 1 - exp[-(τ/T1)]     (4) 

As shown in Figure 3.6, the 13C NMR peak intensities of CO2 for 

carbon-bearing albite glasses at 1.5 and 6 GPa were well fitted with 42 s and 

149 s of T1 relaxation time, respectively. From the calculated T1 relaxation 

time of CO2 for carbon-bearing albite glasses, the estimated normalized 

peak intensity of CO2 with respect to the fully relaxed maximum peak 

intensity is ~ 0.16 at 1.5 GPa. Because of the difference in T1, the estimated 

normalized peak intensity of CO2 at 6 GPa is estimated to be ~ 0.06 at 6 GPa, 

indicating that the peak intensity is largely underestimated. The difference 

in the intensity ratios of CO2 at 1.5 and 6 GPa is ~ 2.8 from the normalized 

peak intensity of CO2 with respect to the fully relaxed maximum peak 

intensity, and ~ 3.5 from the differences in the T1 relaxation time. The T1 

relaxation time for CO2 in albite glasses at 6 GPa is approximately three 

times longer than that at 1.5 GPa, so its peak intensity at 6 GPa is 

underestimated (~ 1/3 of the intensity at 1.5 GPa) when identical NMR 

acquisition condition (i.e., relaxation delay of 5 s) is used. Therefore, it is  



125 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Saturation-recovery of CO2 in the carbon-bearing albite melts at 

1.5 GPa and 6 GPa. Diamonds and circles refer to the normalized peak 

intensity of carbon-bearing albite glasses at 1.5 and 6 GPa, respectively, 

with varying delay time. Solid lines and dashed lines refer to calculated 

peak intensity, following the spin-lattice relaxation time equation. Error 

bars represent a 10% error.  
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essential to calibrate the intensity at different pressures by determining the 

effect of pressure on the estimated T1 relaxation time. 

Figure 3.7 illustrates the total carbon content and the relative amount 

of each carbon species (calibrated with difference in T1 relaxation time with 

pressure) in carbon-bearing albite melts with increasing pressure. Solubility 

data for carbon-bearing albite melts is available up to 3.5 GPa (Brooker et 

al., 1999; Stolper et al., 1987). We calculated the proportion of each carbon 

species in carbon-bearing albite melts from the peak area of each carbon 

species from the 13C MAS NMR spectra. The T1 for CO and CO32- species has 

not been measured because of their low S/N ratio and intensities. 

Nevertheless, we assumed similar changes in pressure-induced T1 

relaxation times for CO and CO32- (~ 3 times longer with increasing pressure 

from 1.5 to 6 GPa). 

Taking into consideration of the T1 relaxation time of CO2 and similar 

increases in the relaxation times for other carbon species, the estimated 

amount of CO2, CO32-, and CO at 1.5 GPa are 0.52, 0.34, and 0.14 wt%, 

respectively. The calibrated amount of CO2, CO32-, and CO at 6 GPa are 2.69, 

1.32, and 0.08 wt%, respectively. The total amount of carbon species in 

carbon-bearing albite glasses at 6 GPa is ~ 4.10 wt%. The calculated carbon 

contents in the current study are generally consistent with the previous 

studies (Brooker et al., 1999; Stolper et al., 1987). The current results may 

present a minimum solubility and thus the actual solubility of total carbon 

in albite melts up to 6 GPa is higher than 4 wt%. Note that without taking 

the T1 relaxation time of CO2 into consideration, the CO2 contents in albite 

melts at 6 GPa (marked as raw data in Figure 3.7) would be 0.95 wt%, and 

the total amount of carbon would be ~ 1.44 wt%, which is far below the  
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Figure 3.7. Carbon contents in the albite melts with increasing pressure. 

Black, blue, red, and violet closed circles refer to total carbon content 

and the amount of CO2, CO32-, and CO species in albite glasses 

calculated from 13C MAS NMR spectra, respectively. Open triangles 

and rectangles refer to data from Stolper et al. (1987) and Brooker et al. 

(1999), respectively.  
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input amount of carbon in the albite glasses at 6 GPa. Recent 13C NMR study 

presented a calibration curve between 13C abundance and 13C MAS NMR 

peak intensity of ADM-SiO2 mixture (Kim et al., 2016). Using this calibration 

curve, the calculated carbon contents in the carbon-bearing albite glasses is 

similar to the amount of 13C initially added in the starting silicates.  

Note again that the focus of the study is to explore the effect of 

pressure on carbon species in silicate melts and thus, quantitative estimation 

of the solubility may not be fully achievable based on current data alone. 

Nevertheless, the speciation of carbon and the abundance of each carbon 

species in silicate melts at high pressure has been successfully calculated by 

using 13C NMR. These structural data are critical for understanding the 

solubility and the dissolution mechanism of carbon in silicate melts above 4 

GPa. As the consideration the spinning sidebands does not affect the 

simulation results significantly (e.g., Lee and Ahn, 2014), the proportion of 

each carbon species in carbon-bearing albite glasses was calculated from the 

peak area of each carbon species without the consideration of the spinning 

sidebands. The estimated fractions of CO2, CO32-, and CO from the modified 

13C MAS NMR spectrum are 52, 34, and 14% at 1.5 GPa, and 66, 32, and 2% 

at 6 GPa, respectively, with a ± 10% error bar. Because the exact T1 times for 

CO and CO32- species are not available, the estimated fractions of carbon 

species may be subject to a larger uncertainty despite smaller uncertainty in 

the fitting results. Therefore, the proportions reported here are mainly for 

the semi-quantitative discussion. Despite the uncertainty, the trend of 

changes of carbonate species with increasing pressure is evident from the 

13C MAS NMR spectra. The fraction of CO2 in albite melts, taking T1 time 

into consideration, matches well with the theoretical results of the fraction 
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of CO2 (~ 60% among the carbon species) in rhyolite melts at 5 GPa that 

were calculated using the MD simulation (Guillot and Sator, 2011). Previous 

study showed that the fraction of CO32- to total carbon contents in albite 

glasses increased from 23–27% at 1.5 GPa to 27–34% at 3 GPa using IR 

spectroscopy (Stolper et al., 1987). However, the current results showed that 

the calibrated fraction of carbonates slightly decreases from ~34 % at 1.5 

GPa to ~32 % at 6 GPa. This is consistent with the result for the carbon-

bearing albite glasses using 13C NMR spectroscopy (Brooker et al., 1999). 

The observed difference between the IR result and the study may reside in 

the difference in analytical methods.  

 

3.4. Discussion 

3.4.1. 13C NMR peak assignment of bridging carbonate ions in carbon-

bearing albite and NS3 glasses 

The 13C NMR peak assignment of the carbonate groups in silicate 

glasses has been performed using the quantum chemical calculations and 

the experimental NMR study (Kohn et al., 1991; Morizet et al., 2014b; 

Tossell, 1995). We assigned the peaks at 165, 160, and 155 ppm to 

[4]Al(CO3)[4]Al, [4]Si(CO3)[4]Al, and [4]Si(CO3)[4]Si, respectively, based on the 

increase in the peak intensity at 165 ppm when the fraction of Al2O3 in the 

NaAlO2-SiO2 system increased (Brooker et al., 1999). A previous theoretical 

study based on the Hartree-Fock level of theory and the 6-31G* basis set 

suggested that [4]Al(CO3)[4]Al, [4]Si(CO3)[4]Si, and [4]Si(CO3)[4]Al would 

correspond to 168.4, 167.5, and 163.6 ppm, respectively (Tossell, 1995). 

Although the peak positions by simulations and experimental 

measurements are slightly different, the trends are in good agreement 
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(Morizet et al., 2015). The calculated chemical shifts for carbonate species 

linked to the silicate network can vary with the basis sets and the level of 

theory used for quantum chemical calculations (Frisch et al., 2004; Lee and 

Lee, 2009). Furthermore, the model clusters for the simulation did not 

include either network-modifying cations or charge-balancing cations 

(Tossell, 1995). The changes in the presence of charge-balancing cations 

would result in a shift in the peak position, which may explain the 

difference in the chemical shift values.  

The signal at ~ 161 ppm in 13C MAS NMR spectra for carbon-bearing 

NS3 glasses apparently increases with increasing pressure above 6 GPa 

(Figure 3.5). From the peak assignment of bridging carbonates in Na-

aluminosilicates, the [4]Si(CO3)[4]Si peak is shown at ~155 ppm. In Al-free 

NS3 glasses, the absence of Al and charge-balancing Na in this system may 

lead to an increase in chemical shifts of the bridging carbonates [4]Si(CO3)[4]Si 

in the system. The peak at ~ 161 ppm in 13C MAS NMR in NS3 glasses is 

likely to be due to [4]Si(CO3)[4]Si. 

 

3.4.2. 13C NMR peak assignment of free carbonate ions in carbon-bearing 

NS3 glasses 

The possible carbonate species in silicate melts are non-bridging 

carbonates, bridging carbonates, and free carbonate. The free carbonate is 

the carbonate ion that is charge-balancing with network-modifying cations, 

and that have no bridging oxygen in the carbon units linked with the silicate 

network (Brooker et al., 1999; Guillot and Sator, 2011; King and Holloway, 

2002; Nowak et al., 2004; Vuilleumier et al., 2015). The 13C chemical shift of 

the free carbonate in carbonate minerals ranges from ~ 166 to ~ 171 ppm 
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(Feng et al., 2006; Jones et al., 2005; Kwak et al., 2010; Moore et al., 2015; 

Papenguth et al., 1989).  

The 13C MAS NMR spectra for carbon-bearing NS3 glasses at high 

pressure up to 8 GPa (Figure 3.5) show the presence of a peak at ~ 171 ppm, 

indicating the presence of free carbonate ions in the glasses. The peak shift 

from 171.7 ppm at 4 GPa toward 170.2 ppm at 8 GPa is likely caused by the 

pressure-induced changes in the bending of free carbonates in NS3 glasses 

and/or the shortening of C-O bond lengths. The peak shift in free 

carbonates to the lower frequency has been interpreted as a distortion of 

carbonate species (Kohn et al., 1991; Sherriff et al., 1987). Reduction of the C-

O bond length from 1.310 Å to 1.265 Å changes the isotropic chemical shift 

of the free carbonates from 187.7 ppm to 170.5 ppm (Tossell, 1995). 

 

3.4.3. Origin of the presence of bridging carbonate ions in NS3 glasses upon 

compression 

As shown in Figure 3.5b, the peak intensity of [4]Si(CO3)[4]Si increases 

with increasing pressure. However, the presence of bridging carbonates in 

17O 3QMAS NMR spectrum is not clear in the spectra. Based on 13C NMR 

spectra for carbon-bearing NS3 glasses, a non-negligible fraction of carbon is 

expected to play a role as a bridging carbonates in NS3 glasses (Figure 3.S4). 

Therefore, the absence of clear spectroscopic evidence for the bridging 

carbonates in 17O NMR is mainly due to the low total carbon concentration, 

especially considering possible peak overlap.  

Note that the formation of bridging carbonates consumes the non-

bridging oxygen in the system, and the degree of polymerization of silicate 

melts would increase. This is consistent with the increase in Q4 species with 
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increasing pressure from 6 GPa to 8 GPa (Figure 3.2 and Figure 3.S2). In 

addition, as non-bridging oxygen is necessary to form the highly 

coordinated Si, it prohibits the formation of highly coordinated Si linked 

with non-bridging oxygen. Thus the formation of bridging carbonates 

accounts for the difference in the peak intensity decrease of Na··O-[5]Si in 

17O 3QMAS NMR spectrum in Figure 3.3 and that of carbon-free NS3 

glasses at 6 GPa (Lee, 2004).  

 

3.4.4. The speciation of carbonates in albite glasses quenched from melt at 

high pressure 

The carbon-bearing albite glasses quenched from melts at high 

pressure contain four distinct carbonate species, bridging carbonates 

[[4]Al(CO3)[4]Al, [4]Si(CO3)[4]Al, and [4]Si(CO3)[4]Si] and non-bridging 

carbonates (Figure 3.4b). Here, the fraction of each carbonate species was 

obtained by fitting the 13C MAS NMR spectra using four Gaussian functions 

representing [4]Al(CO3)[4]Al (165 ppm), [4]Si(CO3)[4]Al (160 ppm), 

[4]Si(CO3)[4]Si (155 ppm), and free carbonates (~ 171 ppm) (Figure 3.8). The 

peak widths of each peak were fixed with FWHM of ~ 6 ppm. Figure 3.8 

shows the CO32- ion population for various carbonate species as a function 

of pressure. Here, we assume no differential relaxation time for distinct 

carbonate species at constant pressure condition. Due to the overlaps of the 

observed peaks, the estimated proportion of each carbonate species is not 

unique. Therefore, the following description is intended only as a semi-

quantitative discussion. The uncertainty is estimated as 5% based on the 

simulation results with different factors (peak position and widths). The 

proportion of [4]Al(CO3)[4]Al, [4]Si(CO3)[4]Al, [4]Si(CO3)[4]Si, and non-bridging  
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Figure 3.8. (Top) Simulation results for 13C MAS NMR spectra for 

carbonates in carbon-bearing albite melts with varying pressure at 1.5 

and 6 GPa. Green, red, blue, purple, and black lines correspond to 

[4]Si(CO3)[4]Si, [4]Si(CO3)[4]Al, [4]Al(CO3)[4]Al, free carbonates 

(Na··CO32-), and total simulation results, respectively. (Bottom) 

Variations in the CO32- ion population with pressure in carbon-
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bearing albite melts. Blue, red, and green circles refer to 

[4]Al(CO3)[4]Al, [4]Si(CO3)[4]Al, and [4]Si(CO3)[4]Si, respectively. Violet 

triangles denote free CO32- ions near the non-bridging oxygen in 

network polyhedra, charge-balancing with the Na+ ions. Open 

symbols refer to data from Brooker et al. (1999). 

 

carbonates at 1.5 GPa are ~ 42 ± 5%, ~ 24 ± 5%, ~ 19 ± 5%, and ~ 15 ± 5%, 

respectively, while those at 6 GPa are ~ 38 ± 5%, ~ 35 ± 5%, ~ 18 ± 5%, and ~ 

10 ± 5%, respectively. Among the four distinct carbonate species, the 

fraction of [4]Si(CO3)[4]Al appears to increase with increasing pressure, while 

the fractions of the other carbonate species decrease with increasing 

pressure. The fractions of [4]Si(CO3)[4]Al and [4]Si(CO3)[4]Si from Brooker et al. 

(1999) at lower pressure conditions are generally consistent with the current 

data. 

Previous MD simulation has reported that the fraction of CO32- over 

total carbon species (CO2 + CO32-) in rhyolitic melts (Al/Si of ~ 0.21) would 

be 38% at 5 GPa and 48% at 8 GPa (Guillot and Sator, 2011), which is similar 

to the calculated fraction of total carbonates in albite glasses at 6 GPa (~ 

32%, in this study). While MD simulation reported the total carbon contents 

in silicate melts at high pressure up to 15 GPa (Guillot and Sator, 2011; 

Vuilleumier et al., 2015), the speciation of carbonate ions in rhyolitic melts 

was available only at 2 GPa (Guillot and Sator, 2011). About 40% of 

carbonate ions are involved in free carbonate bonds in rhyolitic melts at 2 

GPa and 1473 K (in MD simulation). Compared with the fraction of free 

carbonate species in albite glasses at 1.5 GPa (~ 15 ± 5%, in this study), the 

differences in the MD simulation and the 13C MAS NMR results may be due 
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to differences in the relaxation of each carbon species, the Al/Si ratio in the 

silicate system, the composition of cations. Further studies of relaxation of 

each carbonate species with varying compositions are needed to resolve the 

differences. The glasses studied here represent the structures of the super-

cooled liquids at the glass transition temperature that are much lower than 

that of liquids and partly the difference in temperature condition between 

glasses and melts. 

 

3.4.5. Presence of CO in albite glasses quenched from melts at high 

pressure 

Figure 3.4b shows the presence of CO and the spinning side bands 

for CO in carbon-bearing albite melts at 1.5 GPa (~ 290 ppm and ~ 70 ppm) 

(see section 3.3.4). The presence of CO in the system is thought to be due to 

carbon diffusion throughout the Pt capsule (Brooker et al., 1998; Lurn, 1989; 

Morizet et al., 2015), which reduces CO2 and CO32- to CO. Indeed, carbon 

infiltration from the graphite heater into Pt capsules was observed during 

the synthesis of CO2-bearing nephelinite-composition melts using 13C-

enriched Na2CO3 (99%) as a carbon reservoir (Brooker et al., 1998), as 

evidenced by a gradual decrease in 12CO from the Pt tube wall to the sample 

in the piston cylinder experiments (Brooker et al., 1998). Note that the 13C-

enriched Na2CO3 (99%) was also used to synthesize carbon-bearing albite 

melts at high pressure up to 6 GPa in this study. 13CO in albite glasses 

quenched from melts at 1.5 GPa is due to carbon diffused into the sample. In 

our previous study, the presence of 12CO and 13CO was observed in fluid 

inclusions in crystalline MgSiO3 by Raman spectroscopy (Kim et al., 2016). 

Preliminary Raman spectra for carbon-bearing albite glasses at 1.5 GPa 
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showed the presence of CH4. Because 13C-enriched Na213CO3 (99.7%) was 

used for the synthesis of carbon-bearing albite glasses, the sample was 

sealed in the Pt tube, and CH4 was not observed in 13C MAS NMR spectra, 

the presence of 12CH4 thus indicates a potential confamination by carbon 

infiltration from the graphite furnace. 

The observed peak shift of CO from 181 ppm at 1.5 GPa to 185 ppm at 6 

GPa (Figure 3.4b) suggests the pressure-induced structural changes of CO in 

albite melts, as the peak shift of carbonate in the 13C MAS NMR spectra 

indicates the distortion of carbonates (Kohn et al., 1991; Sherriff et al., 1987). 

As mentioned in section 3.3.4, CO in albite melts at 6 GPa appears to be 

bound to the silicate network. If the CO dissolves in the silicate network, the 

peak shift may indicate the pressure-induced structural changes in CO that 

is bound to the silicate network. Previous quantum chemical calculations for 

CO32- and C(OH)4 show that the increase of C-O bond lengths results in the 

increase of isotropic chemical shifts (Kim et al., 2016; Tossell, 1995). If the 

trend is similar in a CO molecule, the peak shift to the higher frequency 

region (positive frequency) of CO in albite glasses upon compression may 

indicate the decrease of the C-O bond length of dissolved CO in carbon-

bearing albite glasses with increasing pressure. 

 

3.4.6. Effect of carbon speciation on the properties and isotope 

composition in silicate melts at high pressure 

In this section, we further discuss the structural origins of the 

pressure-induced changes in carbon solubility in silicate melts at high 

pressure above 4 GPa and geochemical implications. Recent study 

suggested that the composition of partial melt formed from the subducting 
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oceanic crust and the pelitic sediments can be rhyolitic at 2–3 GPa (Duncan 

and Dasgupta, 2017). The recent field study showed that composition of 

melt inclusion in the subducted carbonate rock in Kokchetav massif (with 

the estimated peak pressure of 4.5–6.0 GPa) is reported to be granitic 

(Korsakov and Hermann, 2006). Furthermore, the high-pressure melting 

experiment of mineral assemblage relevant to basalts, together with clay 

minerals and CaCO3, confirmed the formation of rhyolitic melts containing 

up to 10% of CO2 at 2.5–5.0 GPa (Thomsen and Schmidt, 2008). Whereas the 

experimental confirmation at higher pressure may be necessary, the melt 

composition of the subducting oceanic crust containing CaCO3 and other 

clay minerals could be rhyolitic at the extended pressure condition. As the 

albite melts serve the model system for rhyolitic melts, the current results 

for the carbon-bearing albite melts formed at 6 GPa would, therefore, be 

useful to infer the carbon speciation and the carbon carrying capacity of 

rhyolitic melts formed by the partial melting of the oceanic crust with the 

politic sediments. 

 Earlier studies at low pressure showed that CO2 dissolves as 

bridging carbonate units like Si(CO3)Si and Al(CO3)Si into silicate network 

in depolymerized glasses and as molecular CO2 bound near the bridging 

oxygen, such as Si-O-Si, in polymerized melts (e.g., Eggler and Kadik, 1979; 

Fine and Stolper, 1985; Holloway and Blank, 1994; King and Holloway, 

2002; Morizet et al., 2002; Morizet et al., 2014b; Mysen, 2012; Mysen et al., 

1975; Mysen et al., 1976; Ni and Keppler, 2013). These observations are 

generally consistent with our high-pressure results. Unexpected differences 

include a decrease in peak intensity of free-carbonates in the NS3 melts at 6 

GPa. Note again that the reduction in solubility has also been inferred from 
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the formation of void in the Pt capsule of carbon-bearing NS3 glasses 

quenched from melt at 6 GPa (section 3.2.1). The origin of the observed void 

may be from the excess molecular carbon species, such as gas phase CO2. 

The presence of a void inside the Pt capsule is evident only in the carbon-

bearing NS3 melts at 6 GPa. The reduction in peak intensity may result from 

the discontinuous drop in the solubility of carbon in NS3 melts with 

increasing pressure and the formation of bridging carbonates at 6 GPa. The 

solubility of carbon in some depolymerized silicate melts may change non-

linearly with increasing pressure and show a potential drop in the 

solubility. This non-linear change in the carbon solubility needs to be taken 

into consideration in order to understand fluid-induced melting relations in 

mantle peridotite deep below mid-ocean ridge. 

The observed changes in the carbon species imply the complex 

changes in melt viscosity of fluid-bearing silicate melts at high pressure. As 

the melt viscosity largely depends on the degree of polymerization of 

silicate melts with the formation of Si(CO3)Si, it is important to identify the 

formation of bridging carbonates and its effect on the polymerization of 

silicate melts at high pressure. The extent of polymerization increases either 

by forming bridging Si-O-Si bond or by reducing the fraction of NBO 

species: as for the former, the formation of Si(CO3)Si may not be regarded as 

polymerization process because its formation of Si(CO3)Si bond in silicate 

melts does not form a Si-O-Si bond. On the other hand, the formation of 

Si(CO3)Si reduces NBO fraction, contributing to an overall increase in the 

network polymerization. Depending on pressure and composition, the 

fractions of diverse bridging carbonates may control the melt viscosity. 

Although the bond strength of the bridging carbonates (Si-O-C bonds) is 
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expected to be weaker than that of the Si-O-Si or Si-O-Al bonds, the fraction 

of Si-O-C bonds above a certain threshold value may lead to the increase in 

viscosity. Therefore, the formation of bridging carbonates in silicate melts 

can be used as a structural proxy for the increase in polymerization of 

silicate melts and the viscosity at an elevated pressure conditions. 

The estimated speciation of carbon in silicate melts in the current 

study allows us to infer the carbon isotope composition in the Earth interior. 

Recent experimental studies on the isotope fractionation of carbon between 

silicate melts and fluids have shown that the δ13C in CH4 and CO32- in the 

silicate melts is higher than that in the coexisting C-O-H fluids, and the 

differences in δ13C between reduced silicate melts and fluids decrease with 

increasing temperature (Mysen, 2016, 2017). These studies addressed the 

importance of carbon speciation in carbon isotope composition of melts, 

fluids, and thus mantle rocks. The electronic structures around an isotope of 

interest play a dominant role in determining the equilibrium isotope 

fractionation and thus the isotope composition of the melts, fluids, and 

minerals (e.g., Deines, 2004; Schauble et al., 2006; Seo et al., 2007). Each 

carbon species in the carbon-bearing silicate melts has unique atomic 

structures and configurations around carbon. For instance, the C-O bond 

lengths in bridging carbonates Si(CO3)Si, (C-O bond in Si-O-C), and free 

carbonates is 1.313 Å and 1.265 Å, respectively (Tossell, 1995), and bridging 

carbonates have two more covalence bonds with network forming cations. 

As also demonstrated in crystalline calcite, pressure-induced changes in 

atomic structures around C atom in the carbonate units result in a 

significant carbon isotope fractionation (Deines, 2004). Therefore, while 

further theoretical confirmation is necessary, the formation of bridging 
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carbonates and its strong interaction with silicate network at high pressure 

above 6 GPa may further contribute to the pressure-induced changes in 

isotope fractionation factors in the melts in the upper mantle. 

 

3.5. Conclusion 

We explore the speciation and the solubility of carbon in silicate 

melts and the related-structural changes of silicate networks in binary 

sodium silicate and ternary sodium aluminosilicate glasses quenched from 

melts at high pressure up to 8 GPa. The 13C MAS NMR spectra for carbon-

bearing albite melts provide quantitative information about the speciation 

of carbon in the silicate melts at high pressure by measuring the peak 

intensity for carbon species and taking into consideration the spin-lattice 

relaxation time. The calibrated fraction of CO2 in albite melts matches well 

with the theoretical results of the fraction of CO2 in rhyolite melts at 5 GPa. 

The fraction of [4]Si(CO3)[4]Al in carbon-bearing albite melts increases with 

increasing pressure. The spectral patterns of network-forming cations (Al 

and Si) in carbon-bearing silicate melts and those in volatile free silicate 

melts are rather similar. Therefore, the addition of CO2 in the studied melts 

does not lead to an additional change in the network structure in the 

carbon-bearing albite melts. The 29Si MAS NMR spectra for carbon-bearing 

NS3 melts show the increase of Q4 species with increasing pressure from 1 

atm to 8 GPa. The 13C MAS NMR spectra for carbon-bearing NS3 melts 

show the formation of bridging carbonates [4]Si(CO3)[4]Si, which can be used 

as a structural proxy for the increase in the polymerization of silicate melts 

at high pressure. The combination of high-resolution solid-state NMR and 

high-pressure synthesis using multi-anvil press could provide a powerful 
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tool for understanding the detailed structures around cations and anions in 

carbon-bearing silicate melts above 4 GPa and revealing the atomistic 

origins of the pressure-induced changes in melt properties in the upper 

mantle.  
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Appendix 

3.S1. Effect of quench on the solubility of carbon in silicate melts and 

glasses 

The solubility and speciation of carbon in the glasses could be 

somewhat different from those in the melts. Here, we briefly discussed the 

several factors that may contribute to potential changes in element solubility 

upon quenching of silicate melts. Quench-induced changes in atomic 

structures around carbon (and thus the carbon speciation) will affect the 

changes in carbon solubility during quenching. The atomic structure of 

glasses represents that of super-cooled liquids at the glass transition 

temperature (Tg) below which the melt structure is frozen at high pressure 

(e.g., Lee, 2010, 2011; Stebbins, 2016; Xue et al., 1991). The change in Qn 

species in silicate melts can indeed vary with Tg: the proportion of Q4 

species in Na2O-2SiO2 melts at 1 atm increases from 6.4 (at Tg of 450 °C) to 

7.9% (at 530 °C) (Stebbins, 1988). It is thus expected that above the melting 

temperature the fraction of Q4 species can also increase. Although the direct 

comparison of the structure of melts and glasses at high pressure is difficult, 

similar structural changes of melts during quenching would be expected. 

The MD simulation showed that the population of CO2 over total carbon in 

rhyolitic melts increases from 62 to 84% with increasing temperature from 

1473 to 2273 K while the fraction of NBO in silicate network increases from 

6.7 to 11.7% (Guillot and Sator, 2011), leading to the changes in the carbon 

solubility. The MD simulation for basaltic melts predicted that the solubility 

of carbon at 8 GPa varies ~ 5% with increasing temperature from 1673 to 

2273 K (Guillot and Sator, 2011). The temperature drop during melt-quench 

would affect overall solubility. Taking these into consideration, while the 
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changes in speciation and solubility during quenching are expected, the 

changes during quenching with the given temperature window are not 

significant. The trend observed in the quenched glasses can therefore reflect 

those in the silicate melts at high pressure. 

 

3.S2. The pressure-induced structural changes and the effect of carbon 

content on the structural evolution of Al 

Previous studies on the carbon-free Na-silicate and Na-

aluminosilicate glasses with increasing pressure up to 10 GPa addressed the 

effect of pressure on the changes in the degree of polymerization and Al 

coordination environment at high pressure (Lee et al., 2004; Lee et al., 2003; 

Lee et al., 2012b). The degree of polymerization (XNBO) at 1 atm plays an 

important role in the formation of highly coordinated Al in oxide melts: the 

formation of highly coordinated Al increases with increasing NBO/T of 

aluminosilicate glasses and the Al content in the silicate melts at 1 atm 

(Kelsey et al., 2009; Lee, 2010; Lee et al., 2004a; Navrotsky, 1995; Yarger et 

al., 1995). Therefore, the current experimental results for the carbon-bearing 

silicate melts at high pressure allow us to explore the pressure-induced 

structural changes and the effect of carbon content on the structural 

evolution, separately. 

 

3.S3. The changes of Qn species in NS3 glasses quenched from melts at 

high pressure and the effect of Co on the relaxation time of Qn species 

Figure 3.S2 presents the simulation results for the 29Si MAS NMR 

spectra for carbon-bearing NS3 glasses quenched from melts at high 

pressure. Each peak is modeled with the Gaussian functions. There is a 
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moderate degree of uncertainty associated with the fitting results due to 

severe overlaps. The peak position of Q2, Q3, and Q4 species were well 

constrained to -78 – -80 ppm, -90 – -92 ppm, -102.5 – -104.5 ppm, 

respectively. The peak widths of Q2, Q3, and Q4 species were also relatively 

well-constrained from 11.4 ppm to 11.7 ppm. The simulation of the 

spectrum with such constraints may reduce the overall quality of the fit. 

However, the purpose of the simulation is to provide a general trend of 

changes in Qn species with varying pressure. Taking into the consideration 

the uncertainties of peak position and widths of Qn species with varying 

pressure, we obtained the following simulation results from 29Si MAS NMR 

spectra for carbon-bearing NS3 glasses at high pressure up to 8 GPa. The 

fraction of Q2 and Q4 species slightly increases from 2 to 5%, and from 28 to 

29%, respectively, while that of Q3 species decreases from 70 to 66% with 

increasing pressure.  

For the simulation, here we assume that the relaxation times of Qn 

species are identical. We note that in sodium silicate glasses, no differential 

relaxation has been reported with varying concentrations of paramagnetic 

elements (Sen and Stebbins, 1994). Therefore, the presence of Co does not 

induce differential relaxation between Q3 and Q4 species in carbon-bearing 

NS3 glasses. 

 

3.S4. The estimation of bridging oxygen with silicate and carbonates 

The calculated mol% of input amount of CO2 in NS3 glasses at 6 GPa 

is 1.7 mol%. As 17O-enriched SiO2 (40% enriched) was used as an oxygen 

reservoir in the carbon-bearing NS3 glasses, ~ 0.7–1.4 mol% of bridging 

oxygen with silicate and carbonate is expected to be observed in the 17O 
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3QMAS NMR spectrum. This change in carbonate species in the oxygen 

environment is not trivial to detect. 

 

3.S5. The speciation of carbonates in NS3 glasses quenched from melts at 

high pressure 

The carbon-bearing NS3 glasses quenched from melts at high 

pressure contain two carbonate species, bridging carbonates [[4]Si(CO3)[4]Si] 

and free carbonates (Figure 3.S4). As the NS3 glasses only has Si as a 

network former cation, the fraction of each carbonate species was obtained 

by fitting the 13C MAS NMR spectra using two Gaussian functions 

representing [4]Si(CO3)[4]Si, and free carbonates. The peak position and 

widths of Gaussian functions were determined by the previous peak 

assignment used in Figure 3.8. As for the low signal-to-noise ratio of the 

spectra, we should mention that the estimated fraction of carbonate species 

in carbon-bearing NS3 glasses has intrinsic uncertainty. Pronounced peak 

overlap among species also makes it difficult to provide fully quantitative 

spectral analyses. Therefore, the proportions of each carbonate species 

reported here are for the semi-quantitative discussion only. 

Detailed information of the fitting parameters for 13C MAS NMR 

spectra is given in Table 3.S1. The peak intensity of free carbonates 

decreases from 94 C atom/g × 10-23 at 4 GPa to 85 C atom/g × 10-23 at 6 GPa, 

and then increases to 160 C atom/g × 10-23 at 8 GPa, while that of bridging 

carbonate increases with increasing pressure from 33 C atom/g × 10-23 at 4 

GPa to 73 C atom/g × 10-23 at 8 GPa. The fraction of bridging carbonates 

slightly increases from 26 % at 4 GPa to 31% at 8 GPa. 
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Table 3.S1. Simulation parameters and results for 13C MAS NMR spectra for 

carbon-bearing NS3 glasses quenched from melts at high pressure up to 

8 GPa. 

Pressure 
(GPa) 

Free 
carbonate 

Bridging 
carbonate 

Free  
carbonate  Bridging 

carbonate 

 Fraction 
(%)* 

Fraction 
(%)* 

Intensity (C 
atom/g × 10-23) 

Peak position 
(ppm)a 

Intensity (C 
atom/g × 10-23)a,b 

4 74.0 ± 5.0 26.0 ± 5.0 94 171.3 ± 0.3  33 

6 72.0 ± 5.0 28.0 ± 5.0 85 171.3 ± 0.3  33 

8 68.7 ± 5.0 31.3 ± 5.0 160 170.6 ± 0.3   73 
* The uncertainty of 5% was estimated from the uncertainty in NMR 
processing condition, difference between experimental and fitted spectra, 
and possible artifacts resulting from fixed fitting parameters. 
a The FWHM is set to 4 ppm. 
b The FWHM and the peak position for bridging carbonates is set to 8.2 ppm 
and 160.0 ppm, respectively. 
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Figure 3.S1. 27Al MAS NMR spectra for carbon-bearing albite glasses at 1.5 

and 6 GPa and that for carbon-free albite glasses at 1 atm. 
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Figure 3.S2. (Top) 29Si MAS NMR spectra and simulation results for carbon-

bearing NS3 glasses with varying pressure up to 8 GPa. Red, green, and 

blue lines correspond to Q2, Q3, and Q4 species, respectively. (Bottom) 

Population of Si atom species for carbon-bearing NS3 glasses with 

varying pressure up to 8 GPa. Red, green, and blue circles correspond 

to Q2, Q3, and Q4 species, respectively.  
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Figure 3.S3. 17O MAS NMR spectrum for carbon-bearing NS3 glasses at 6 GPa. 
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Figure 3.S4. (Top) Simulation results for 13C MAS NMR spectra for carbon-

bearing NS3 glasses at high pressure up to 8 GPa. Violet and green lines 

correspond to free carbonates and bridging carbonates, respectively. 

(Bottom) The population of carbon species in carbon-bearing NS3 

glasses. Violet and green circles correspond to free carbonates and 

bridging carbonates, respectively. 
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Chapter 4. Effect of chemical disorder on structural 

changes in Na-Li silicate glasses quenched from melts at 

high pressure 

 

Eun Jeong Kim, Yong Hyun Kim, and Sung Ken Lee 

 

 This study is currently ongoing, and thus the part of results and 

their discussion are presented here. 

 

Abstract 

Despite the importance of the mixed-cation effect on the structural 

changes of silicate glasses quenched from high-pressure melts, that of Na-Li 

silicate glasses quenched from melts at high pressures has not yet been 

studied. In this study, we explore the mixed-cation effect on the chemical 

disorder and structural changes of Na-Li trisilicate (NLS3) glasses at high 

pressures up to 8 GPa using solid-state nuclear magnetic resonance (NMR) 

and Raman spectroscopy. While the 29Si magic angle spinning (MAS) NMR 

spectra of the NLS3 glasses show a relatively constant ratio of highly-

coordinated Si at high pressures (>6 GPa), regardless of the lithium content 

(XLi), the 17O 3 quantum MAS NMR spectra show changes in (Na,Li)-O-Si 

with increasing XLi and pressure. The 7Li MAS NMR spectra of the NLS3 

glasses show continuous changes of the peak position and widths with 

varying pressures and XLi. The spin-spin relaxation time (T2) of the NLS3 

glasses changes with increasing pressure and XLi: The increase of T2 with 

increasing pressure indicates that the cation disorder changes from a 
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random distribution to a chemical order above 6 GPa (XLi = 0.25) and with 

increasing pressure from 1 atm to 6 GPa (XLi = 0.50 and 0.75). According to 

the T2 values of 7Li in 7Li NMR, together with the 29Si MAS NMR spectra, 

the cation diffusion in mixed-alkali glasses with cations of different radii is 

interrupted at high pressures due to changes in the cation disorder and 

connectivity of the silicate network. 

 

Keywords: chemical disorder, high pressure, glass structure, solid-state 

NMR 

 

4.1. Introduction 

Unveiling the cation disorder and structural changes in mixed-

alkali silicate glasses is key to understanding the transport properties of 

silicate glasses, such as ion diffusion within silicate glasses. The structure of 

mixed-cation silicate glasses also provides insights into composition-

induced complex changes in the properties of diverse technologically 

important multicomponent silicate glasses and natural melts in the Earth’s 

interior. Among those mixed-alkali silicate glasses, mixed Li-Na silicate 

glasses and their end members have been widely used for solid electrolytes 

in batteries (Chen and Du, 2015; Masquelier and Croguennec, 2013; Ravaine, 

1980; Tuller et al., 1980) due to the high diffusion rate of Li (Chen and Du, 

2015; Masquelier and Croguennec, 2013; Tuller et al., 1980) and partly, to the 

absence of a grain boundary (Ravaine, 1980). Alkali silicate glasses are also 

used as substrates for ion implantation in semiconductor device fabrication 

(Snoeks et al., 1996) and as dielectric applications by the electric field-

induced softening (McLaren et al., 2017; Pinter et al., 2018). Although Li is 
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minor element in magma, the Li content in silicate melts gives insight into 

the fractionation process of the magma (Herd et al., 2005) with the 

compatibility of Li in hydrous fluids in basaltic magma and its 

incompatibility in pyroxene minerals. Due to its compatibility, the 

concentration of Li tends to increase in partial melts (Marschall et al., 2017). 

The distribution of Li in these silicate melts, formed during the partial 

melting, is important to understand the fractionation process of the silicate 

melt itself and the diffusion of network-modifying cations at high pressure. 

The “mixed-cation effect” in silicate melts represents considerable 

changes in the transport properties of melts with intermediate compositions 

as compared to those of end-members (Habasaki et al., 1996; Kjeldsen et al., 

2014; Le Losq and Neuville, 2013; Moynihan et al., 1976; Rouse et al., 1978; 

Sen et al., 1996). The mixed-cation effect depends on the degree of cation 

intermixing as cation hopping from one site to another is more difficult 

between dissimilar pairs (e.g., Na-Li) than between similar pairs (e.g., Na-

Na) (Sen et al., 1996; Xu and Stebbins, 1995). The proportion of dissimilar 

pairs depends on the degree of cation disorder; for instance, chemically 

ordered glasses contain the most abundant dissimilar pairs while phase-

separated glasses have the least dissimilar pairs (Lee et al., 2003b). Previous 

studies have also reported that mixed-cation silicate glasses with different 

cation radii may have a greater tendency to relax toward the super-cooled 

liquid state than the silicate glasses containing a single type of network-

modifying cations (Phillips, 1996; Welch et al., 2013; Yu et al., 2018; Yu et al., 

2015). This is because the mixing of two cations with different radii results 

in local stress around the cations, and cation diffusion is enhanced in the 

mixed-cation glasses to reduce this local stress, hence result in changes to 
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the transport properties of the glasses at ambient temperatures. 

Previous studies have investigated the structure of silicate melts 

and the mixed-cation effect in various oxide glasses quenched from these 

melts using theoretical calculations, such as molecular dynamic simulations 

(Cormack and Du, 2001; Habasaki and Hiwatari, 2003), and experimental 

techniques, such as X-ray scattering (Cormier and Cuello, 2013; Greaves, 

1998; Lee et al., 2007), X-ray absorption spectroscopy (Greaves, 1998), 

neutron diffraction (Cormier et al., 2010; Cormier and Cuello, 2013), and 

high-resolution solid-state nuclear magnetic resonance (NMR) (Behrends 

and Eckert, 2011; Florian et al., 1996; Kaneko et al., 2017; Lee and Stebbins, 

2006; Minami et al., 2014; Neuville et al., 2008; Ollier et al., 2004; Park and 

Lee, 2016; Schneider et al., 2013; Tsuchida et al., 2012; Tsuchida et al., 2010; 

Vessal and Greaves, 1992). Of these experimental techniques, high-

resolution 17O NMR yields specific information on the degree of cation 

disorder by proving the proportion of cation distribution around non-

bridging oxygens (NBOs) and bridging oxygens (BOs). Previous studies on 

17O NMR have analyzed the effects of the ionic radius and cation field 

strength on the degree of cation disorder in various mixed-cation silicate 

glasses, such as Na-Ba (Lee et al., 2003b; Park and Lee, 2016), Na-Ca (Lee 

and Stebbins, 2003; Lee and Sung, 2008), Na-K (Florian et al., 1996), Mg-Ca 

(Allwardt and Stebbins, 2004), Ba-Ca (Stebbins et al., 1997), and Li-K silicate 

glasses (Balasubramanian and Rao, 1995). (See Table 1 in Park and Lee 

(2016) for previous studies on the distribution of various mixed-cations in 

silicate glasses.) However, 17O NMR studies on Na-Li silicate glasses were 

not undertaken due to the similar isotropic chemical shifts of the Na-O-Si 

and Li-O-Si peak positions (e.g., Na-O-Si in Na2Si2O5 glass with δiso of 39 
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ppm and Li-O-Si in Li2Si2O5 glass with δiso of ~42 ppm) (Lee and Stebbins, 

2003; Maekawa et al., 1996; Park and Lee, 2016). 

Due to the shortcomings of 17O NMR in analyzing Na-Li silicate 

systems, the distribution of Na and Li cations in Na-Li silicate glasses at 1 

atm was studied using diverse NMR techniques in 7Li NMR (Ali et al., 1995; 

Gee and Eckert, 1996; Gee et al., 1997). The peak intensities in the NMR 

spectra are related to the interactions between similar and dissimilar pairs, 

which indicate the chemical disorder of these cations, such as chemical 

order, random distribution, and phase separation (e.g., Lee et al., 2010a). 

Based on a comparison between the estimated NMR peak intensity and the 

experimental results, it was deduced that the mixing of Na and Li cations in 

Na-Li silicate glasses is likely to be random at 1 atm (Gee et al., 1997). While 

the Li K-edge X-ray scattering spectra have been used to study the Li 

configuration in Li-bearing alkali borate glasses at high pressures up to 5 

GPa (Lee et al., 2007) and the 7Li and 23Na spin-spin relaxation time for Li 

and Na metal, respectively, have been reported up to 0.7 GPa (Hultzsch and 

Barnes, 1962), the distribution of Li in Na-Li silicate glasses and other glass 

systems has not been studied at high pressure using NMR and other 

spectroscopic methods. 

Structural changes affecting the transport properties of silicate melts 

include the formation of highly coordinated network-forming cations, 

decrease in the fraction of NBO, and chemical disorder of network-

modifying cations, such as the mixed-cation effect. For instance, the 

formation of [5]Si in silicate melts at high pressure is suggested to be a major 

factor controlling viscous flow in silicate melts (Angell et al., 1982; Poe et al., 

1997; Stebbins, 2016; Xue et al., 1991); further, the continuous transition 
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between [5]Si or [5]Al and [4,6]Si or [4,6]Al may promote the diffusion of 

network-modifying cations around network-forming cations (Xue et al., 

1991) and the fraction of [5]Si and [5]Al is closely related to the O2- diffusivity 

at high pressure (Poe et al., 1997). Furthermore, the reduction of NBO with 

increasing pressure is suggested as a possible mechanism for changing in 

the melt viscosity at high pressures (Lee, 2010; Lee et al., 2008a). 

The other factor, the chemical disorder of network-modifying 

cations, also affects the transport properties. The distribution of cations in 

silicate glasses seems to be systematic with varying the difference between 

cation radii. For instance, cations with the same valence states but different 

ionic radii (under 0.4 Å) seem to be distributed randomly in ternary silicate 

glasses, such as Na-Li, Na-K, Ca-Mg, and Ca-Ba (Allwardt and Stebbins, 

2004; Dupree et al., 1990; Florian et al., 1996; Stebbins et al., 1997), while 

those with different valence states and a large difference in ionic radii (up to 

0.6 Å) seem to have a preference to form dissimilar pairs (Allwardt et al., 

2003; Lee et al., 2003b; Lee and Stebbins, 2003). 

The degree of chemical disorder in the alkaline-earth elements in 

silicate glasses changes with increasing pressure and with different cation 

field strengths. Previous research has reported a preference for dissimilar 

pairs in Na-Ca silicate glasses at 1 atm based on the fractions of Na-O-[4]Si 

and (Ca,Na)-O-[4]Si (Lee and Stebbins, 2003), and the fraction of Na-O-[4]Si 

decreases more than that of (Ca,Na)-O-[4]Si at high pressures up to 8 GPa, as 

cations with higher cation field strengths are more stable with highly 

coordinated networks (Lee et al., 2008a), leading to a pressure-induced 

chemical disorder in the network-modifying cations in silicate melts (Lee et 

al., 2008a). In addition, previous studies on binary alkali silicate glasses at 
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high pressures show that the fractions of [5]Si and [6]Si increase as the cation 

radius increases from 1.02 Å (Na+) to 1.38 Å (K+) in binary Na-tetrasilicate 

and K-tetrasilicate glasses quenched from melts at high pressures up to 12 

GPa (Xue et al., 1991). While the experimental results have revealed the 

effect of the cation field strength in mixed-cation effects and the effect of the 

cation radius in binary alkali silicate glasses at high pressures, experimental 

verification of the pressure-induced changes to the chemical disorder with 

different cation radii remains to be explored.  

In this study, we aim to identify the effect of the cation radius on 

the mixing of cations in mixed-alkali silicate glasses quenched from melts at 

high pressures and the relevant changes in silicon and oxygen environments 

using solid-state NMR and Raman spectroscopy. Particularly, we report the 

first 7Li magic angle spinning (MAS) and 7Li spin-echo NMR spectra for 

glasses under compression of up to 8 GPa. The comparison of the 7Li NMR 

and 17O 3 quantum (3Q) MAS NMR spectra was also reported to explain the 

structural changes of the silicate network with varying Li content. 

  

4.2. Experimental methods 

4.2.1. Sample preparation 

Na-Li silicate glasses of different Li content [(Na2O)1–x·(Li2O)x·3SiO2, 

NLS3], with XLi = Li2O/(Na2O + Li2O) of 0.25, 0.50, and 0.75, were 

synthesized from powdered Na2CO3, Li2CO3, and SiO2. About 0.2 wt.% of 

Co oxide was added to enhance the spin-lattice relaxation. The Na2CO3, 

Li2CO3, and SiO2 powders were dried overnight at 300 °C and the weighed 

powders were mixed by grinding them in an agate mortar. The mixtures 

were decarbonated in a Pt crucible at 750–850 °C for 1 h, fused at 1000–
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1300 °C for 30 min at ambient pressure, and then quenched into glasses by 

plugging the bottom of the crucible into distilled water. The glasses were 

visually transparent and exhibited constant extinction in cross-polarized 

light. The starting materials of the glasses were loaded into a multi-anvil 

apparatus with a 14/8 (octahedron edge length/truncated edge length of 

the anvils) “G2” assembly. The samples were fused at approximately 1723–

1923 K for 5 min and quenched into glasses at pressures of 6 and 8 GPa. 

Note that the structure of the glasses quenched from the melts represents 

that of the super-cooled liquids near the glass-transition temperature (Tg) 

(e.g., Stebbins, 2016); therefore, the structure of the glasses is often studied 

to understand the characteristics of silicate melts in ambient- and high-

pressure conditions. The initial quench rate was estimated to be larger than 

500 °C/s. The volumes of the sample chambers of the 14/8 G2 assembly are 

typically about 30 mm3. The 17O-enriched NLS3 glasses used for the 

experiments at 6 GPa were fabricated using the same procedure as that used 

for synthesizing the NLS3 glasses. In this case, the Na2CO3, Li2CO3, and 17O-

enriched SiO2 acquired from the hydrolysis of 40% 17O water with SiCl4 

were used as the starting materials. The X-ray powder diffraction and 29Si 

MAS NMR spectra of the glasses at 1 atm and high pressures do not show 

any evidence for the presence of crystalline impurities. 

 

4.2.2. NMR spectroscopy 

The 7Li, 29Si MAS, and 17O 3QMAS NMR spectra were collected on a 

Varian solid-state NMR 400 system (9.4 T) at Larmor frequencies of 155.46 

MHz for 7Li, 79.47 MHz for 29Si, and 54.23 MHz for 17O nuclides. The 7Li 

MAS NMR spectra were collected using a 3.2-mm Varian double-resonance 
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probe at a spinning speed of 15 kHz. A single-pulse sequence with an 

approximate 30° pulse (0.5 µs) and a recycle delay of 1 s were used to collect 

the 7Li MAS NMR spectra. The spectra were referenced to a 1 M LiCl 

solution. While the typical 90° pulse lengths were 9–12 µs for 7Li (Gee and 

Eckert, 1996), separate nutation NMR experiments were also performed to 

verify the 360° pulse lengths of the NLS3 glasses; the measured 90° and 180° 

pulses are 3 and 6 µs, respectively. The 7Li spin-spin relaxation experiments 

were performed using a spin-echo pulse sequence [90°-t1-180°-t2] with a 5-s 

recycle delay to pin down the distribution of Li in the NLS3 glasses. 29Si 

MAS NMR spectra were collected using a 3.2-mm Varian double-resonance 

probe at a spinning speed of 11 kHz. A single-pulse sequence with a 30° 

pulse (1.2 µs) and delay time of 30 s was used. Tetramethylsilane (TMS) was 

used as the external reference. The 17O MAS and 3QMAS NMR spectra were 

collected using a 3.2-mm Varian double-resonance probe at a spinning 

speed of 15 kHz. The 17O MAS NMR spectra were collected using a single-

pulse sequence with an approximate 30° pulse (1.2 µs) and a recycle delay of 

1 s. The 17O 3QMAS NMR spectra were obtained using a fast-amplitude 

modulation (FAM)-based shifted-echo pulse sequence with a relaxation 

delay of 1 s – 3.3 µs pulse for 3Q excitation – t1 delay – FAM pulse train 

with a 1 µs pulse – echo delay – 11 µs soft pulse for echo reconversion – t2 

acquisition. 

 

4.3. Results 

4.3.1. Structural changes in Si in NLS3 glasses: Insights from 29Si MAS 

NMR 

Figure 4.1 shows the 29Si MAS NMR spectra of the XLi = 0.25 glass  
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Figure 4.1. 29Si MAS NMR spectra of NLS3 glasses with XLi = 0.25 at 

different pressures.  
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Table 4.1. The estimated fractions of [5]Si and [6]Si in Na-Li trisilicate glasses 

quenched from melts at high pressures. The fractions are estimated 

from the peak areas in the 29Si MAS NMR spectra. 

XLi Pressure [5]Si [6]Si 

0.25 1 atm < 0.05 < 0.05 

 6 GPa 3.2 2.7 

 8 GPa 5 7.4 

0.50 1 atm < 0.05 < 0.05 

 6 GPa 3.1 2.6 

0.75 1 atm <0.05 <0.05 

 6 GPa 2.5 2.5 

 

 

with increasing pressures up to 8 GPa. [4]Si is dominant at 1 atm and the Q3 

and Q4 species of the silicate melts are partially resolved at 1 atm (~–90 ppm 

for Q3 species and ~–100 ppm for Q4 species). The peak for [4]Si becomes 

unresolved and asymmetric above 6 GPa and the peak maximum of [4]Si 

shifts towards higher frequencies (less negative chemical shift) with an 

increase in pressure from –91.8 ppm at 1 atm to –90.6 ppm at 8 GPa. The 

spectra at high pressure also show the presence of 4-, 5-, and 6-coordinated 

Si. Particularly, the fraction of the highly coordinated Si (e.g., [5,6]Si) 

increases with increasing pressure and the estimated fraction of [5,6]Si in 

NLS3 glasses at 6 GPa is comparable to that in the sodium trisilicate (NS3) 

glasses at 6 GPa (Kelsey et al., 2009; Lee, 2004; Lee et al., 2003a). Table 4.1 

lists the estimated fractions of [5,6]Si in the NLS3 glasses.  
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Figure 4.2a shows the 29Si MAS NMR spectra of the NLS3 glasses 

with varying XLi at 1 atm in the chemical shift range of –50 to –150 ppm. The 

peak intensity of the Q2 and Q4 species in the NLS3 melts at 1 atm increases 

with increasing XLi. The increase in the Q2 and Q4 species with increasing 

XLi is due to the disproportionation of the silicate melts with an increase in 

the cation field strength (Maekawa et al., 1991; Stebbins, 2016). For example, 

the fractionation of the Qn species in M2O-SiO2 is ideally identical regardless 

of the network-modifying cation (M), but the fractions of the Q2 and Q4 

species in the M2O-4SiO2 glasses increase with increasing cation field 

strength, from potassium to lithium (Maekawa et al., 1991). Therefore, the 

systematic increase in the Q2 and Q4 species over the Q3 species with 

increasing XLi at 1 atm is due to the larger field strength of Li+ (~1.83) than 

that of Na+ (~0.96). See the supplementary information for simulation 

results on the estimated fractions of Qn species at 1 atm (Table 4.S1 and 

Figure 4.S1). 

Figure 4.2b shows the 29Si MAS NMR spectra of the NLS3 glasses 

with varying XLi at 6 GPa. The spectra show the presence of highly 

coordinated Si in the NLS3 glasses for all compositions at 6 GPa. The 

fraction of [5,6]Si in the NLS3 glasses is estimated from the peak intensity of 

the 29Si MAS NMR spectra. Though the changes are within a defined error 

margin, the [5,6]Si fraction seems to decrease with increasing XLi from 0.25 to 

0.75 (Table 4.1). The estimated fraction of [5,6]Si in NLS3 glasses is 5.0%–5.9%, 

which is consistent with the reported fraction of [5,6]Si in sodium trisilicate 

glasses at 6 GPa (~4.6%) (Kelsey et al., 2009) and with the trend reported for 

Na- and K-tetrasilicate glasses and Na-trisilicate glasses at high pressures 

(Kelsey et al., 2009; Lee et al., 2004, 2006; Lee et al., 2003a; Xue et al., 1991). 
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Figure 4.2. 29Si MAS NMR spectra of NLS3 glasses with varying XLi (a) at 1 

atm and (b) at 6 GPa.  
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4.3.2. Structure of Li+ in NLS3 glasses quenched from melts at high 

pressures: Insights from 7Li MAS NMR results 

Figures 4.3a and b show the 7Li MAS NMR spectra of NLS3 glasses 

with varying XLi (from 0.25 to 0.75) at 1 atm and at 6 GPa, respectively. The 

peak shape in the 7Li MAS NMR spectra is Lorentzian broadening, which 

may indicate a moderately high mobility for Li+. While an earlier pioneering 

study reported that the peak shift is negligible with varying XLi (from XLi = 

0.2 to 1) in Na-Li disilicate glasses (Ali et al., 1995), we observed small 

changes of the peak position with varying XLi. The peak maxima shift 

towards lower frequencies (the more negative region), from 0.3 ppm to 0.1 

ppm, with an increase in XLi from 0.25 to 0.75 at 1 atm, and from 0.3 ppm to 

-0.1ppm with increasing XLi from 0.25 to 0.75 at 6 GPa, respectively. The 

degree of peak shift slightly increases with increasing pressure from 1 atm 

to 6 GPa. Peak position and the isotropic chemical shift (δiso) of 7Li generally 

decrease with an increase in the coordination number of 7Li and the distance 

between 7Li and oxygen (Li-O distance) (Alam et al., 2012; Park and Lee, 

2016; Stebbins, 1998; Xu et al., 2007). This trend is also observed in 6Li (Xu 

and Stebbins, 1995), 23Na (Tsuchida et al., 2010), and 109Ag NMR 

experiments (Tsuchida et al., 2012). Therefore, the peak shift to lower 

frequencies (negative frequency region) in 7Li MAS NMR spectra for NLS3 

glasses at 1 atm and at 6 GPa indicates that the average coordination 

number of Li and/or the Li-O distance in mixed Na-Li silicate glasses may 

increase with increasing XLi. 

Figure 4.3c shows the 7Li MAS NMR spectra of NLS3 glasses with XLi 

= 0.25 at different pressures up to 8 GPa. The peak maxima of 7Li in NLS3 

glasses with XLi = 0.25 slightly shifts to lower frequencies from 0.3 ppm at 1  
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Figure 4.3. (a) 7Li MAS NMR spectra of NLS3 glasses with varying XLi at 1 

atm. (b) 7Li MAS NMR spectra of NLS3 glasses with XLi = 0.25 and at 

different pressure up to 8 GPa. (c) 7Li MAS NMR spectra of NLS3 

glasses with varying XLi at 6 GPa. (d) FWHM of 7Li in NLS3 glasses 

with different XLi and at different pressures. (e) Peak position of 7Li in 

NLS3 glasses with varying XLi and pressure.  
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Table 4.2. Peak maxima in the 7Li MAS NMR spectra of Na-Li trisilicate 

glasses with different compositions and at different pressures. 

XLi 

Pressure     
0.25 0.50 0.75 

1 atm 0.31 0.24 0.12 

6 GPa 0.27 0.12 -0.08 

8 GPa 0.24   

 

atm to 0.2 ppm at 8 GPa, while the peak widths remain constant (~2.1 ppm). 

The observed changes in the peak shift in NLS3 glasses with XLi = 0.25 at 

different pressures from 1 atm to 8 GPa are similar to those in NLS3 glasses 

with varying XLi from 0.25 to 0.50 at 1 atm (see Fig. 4.3e and Table 4.2 for 

changes in the peak maxima in the 7Li MAS NMR spectra of NLS3 glasses of 

different compositions and at different pressures). The rather small but 

systematic and continuous changes of the peak position with increasing 

pressure indicates that the distribution of Na and Li in the NLS3 glasses 

prefers substantial mixing rather than the phase separation at high pressure 

as the phase-separated glasses would show abrupt changes of the peak 

position with increasing Li content (Ali et al., 1995; Gee and Eckert, 1996; 

Gee et al., 1997). 

While a possible solutions for obtaining the 7Li MAS NMR spectra at 

a higher resolution is to conduct NMR experiments in high magnetic fields, 

which reduces quadrupolar broadening and increases the split of nuclear 

spin states (Levitt, 2005), the 7Li MAS NMR spectra of NLS3 glasses 

obtained at 14.1 T showed little difference in the peak position and width 

when compared with the values obtained at 9.4 T (Figure 4.S2) as the 
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quadrupolar coupling constant (Cq) for 7Li is relatively small (-3.7 × 10-2 Q) 

(Park and Lee, 2016) and the effect of the field on the quadrupolar nuclide is 

negligible for 7Li. 

The full-width at half-maximum (FWHM) of the 7Li MAS NMR 

spectra increases from 2.2 ppm to 4.8 ppm with increasing XLi from 0.25 to 

0.75 at 1 atm (Figure 4.3d). While the FWHM of NLS3 glasses with XLi = 0.25 

is relatively constant with varying pressure up to 8 GPa (~ 2.1 ppm), the 

FWHM of NLS3 glasses with XLi = 0.50 and 0.75 decreases with increasing 

pressure from 1 atm to 6 GPa for NLS3 glasses. The peak width of the 7Li 

MAS NMR spectra is controlled by the temperature-related Li mobility, 

such as the increased Li mobility due to spinning-induced heating during 

magic angle spinning (Dodd et al., 2000; Elbayed et al., 2005; Kim and Lee, 

2013; Park and Lee, 2016), and dipolar interactions between 7Li nuclides 

with varying Li content (MacKenzie and Meinhold, 1994; Yap and Elliott, 

1995). As the experimental conditions (e.g., temperature of the NMR probe 

and the spinning speed) are identical for all NLS3 glasses at 1 atm and at 

high pressure, the changes in the peak widths are related to the dipolar 

interactions between 7Li nuclides in NLS3 glasses. The magnitude of the 

dipolar coupling increases with decreasing the distance between lithium 

cations (Yap and Elliott, 1995). As the increase of Li content induces the 

decrease of the Li-Li distance, the observed increase in the peak width with 

increasing XLi evidently shows the decrease in the distance between Li 

cations. The reduction of the peak width with increasing pressure is first 

reported in this study. This might be related to the increase in the distance 

between Li cations, such as changes in the cation mixing behavior from 

random to chemically ordered.  
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4.3.3. Distribution of 7Li in NLS3 glasses: Insights from spin-spin 

relaxation of 7Li in NLS3 glasses  

Figure 4.4a shows the 7Li NMR spectra of NLS3 glasses with XLi in 

the range of 0.25–0.75 with increasing echo time (τ). Increasing the lithium 

content at the same pressure decreases the time required for the dephasing 

of transverse magnetization by approximately six times (e.g., from 6.5 ms 

for XLi = 0.25 at 1 atm to 1.1 ms for XLi = 0.75 at 1 atm).  

Figure 4.4b shows the calculated 7Li spin-spin relaxation time (T2) 

curves of NLS3 glasses with varying XLi and pressures up to 8 GPa; the 

integrated peak areas in Figure 4a were used to calculate the T2 time. The 

total peak area in the 7Li NMR signals is normalized with respect to the 

peak area of a fully relaxed spectrum (M/M0). The 7Li peak intensity is 

simulated by the following equation: 

M/M0 = 1 – exp[-(τ/T2)] 

where T2 is the spin-spin relaxation time constant. See Table 4.3 for a 

simulation parameter. The T2 time of 7Li depends on the interactions 

between the Li cations, such as Li-Li distances (Ali et al., 1995; Gee et al., 

1997). The average Li-Li distance varies with Li content, cation disorder, and 

pressure. The increase in XLi decreases the Li-Li distance, resulting in the 

decrease in the T2 time. When XLi is identical, the distribution of Li cations 

can affect the T2 time. The distribution of cations can be divided into three 

types: chemical order (preference to form Na-Li dissimilar pairs), random 

distribution, and phase separation (preference to form Na-Na and Li-Li 

similar pairs). The distributions of cations vary continuously from one 

another, and the extent of cation distribution can be parameterized by Qm, 

which is used to describe Al avoidance, from Qm = -1 (phase separation), Qm  
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Figure 4.4. (A) Evolution of the 7Li NMR spectra of NLS3 glasses with 

different XLi and at pressures up to 8 GPa. The black, blue, and red lines 

represent the peak intensity of 7Li NMR spectra at 1 atm, 6 GPa, and 8 

GPa, respectively. (B) 7Li T2 curves at XLi = 0.25, 0.50, and 0.75 as a 

function of pressure up to 8 GPa.  
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Table 4.3. A simulation parameter for the integrated peak area of the 

recovered 7Li NMR signal with respect to the echo time (τ). 

XLi Pressure T2 (ms) 

0.25 1 atm 6.50 ± 0.20 

 6 GPa 4.30 ± 0.20 

 8 GPa 3.94 ± 0.20 

0.50 1 atm 2.20 ± 0.20 

 6 GPa 3.00 ± 0.20 

0.75 1 atm 1.15 ± 0.20 

 6 GPa 1.40 ± 0.20 

 

= 0 (random distribution), to Qm = 1 (chemical order).(Lee et al., 2010b) The 

average Li-Li distance is the longest in chemical order (Qm = 1) and is the 

shortest in phase separation (Qm = -1). Therefore, the T2 time for 7Li 

decreases in the order of chemical order, random distribution, and phase 

separation at 1 atm at the same XLi value. The increase in pressure also 

affects the T2 time. The free volume in glass reduces with increasing 

pressure, which in turn reduces the Li-Li distance. The T2 of 7Li decreases 

with the reduction of the Li-Li distance when there is no change in the 

cation distribution and Li content. The observed changes in the T2 with 

increasing pressure show nonsystematic changes with increasing XLi. The T2 

in the NLS3 glasses (XLi = 0.25) decreases with increasing pressure and the 

degree of T2 decrease reduce at pressures above 6 GPa. The slope of T2 for 

XLi = 0.25 at 6–8 GPa decreases less than that at 1 atm–6 GPa. The changes in 

the T2 decrease at XLi = 0.25 may be related to the decrease of the free 

volume reduction with increasing pressure as the second-order derivatives 
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of the volume over pressure is positive. Whereas, the T2 at XLi = 0.50 and 

0.75 increases with increasing pressure from 1 atm to 6 GPa and the degree 

of the increase of the T2 time is higher for XLi = 0.50. As the pressure increase 

would result in the reduction of the Li-Li distance when the cation disorder 

does not change, the increase of T2 with increasing pressure indicates the 

changes in cation disorder upon compression. As the distribution of Na and 

Li in the Na-Li silicate glasses at 1 atm is random (Ali et al., 1995; Gee et al., 

1997), the increase in the spin-spin relaxation time with respect to pressure 

for XLi = 0.50 and 0.75 may indicate the reduction of Li-Li pairs and/or the 

increase of the Li-Li distance, which means the cation disorder changes from 

random to chemical order. Further MD simulations on the distribution of Li 

and Na in Na-Li silicate glasses is needed to confirm the variations in T2 

with varying pressure and chemical disorder of cations 

The presence of inhomogeneity can be also obtained by the 

comparison with FWHM in MAS NMR spectra and calculated FWHM from 

T2. The FWHM can be estimated from T2 with 1/πT2 (in Hz) when the 

nuclide of interest decays homogenously (Levitt, 2005). Generally, the peak 

width in MAS NMR spectra is broader than the calculated FWHM from T2 

due to the inhomogeneous broadening. The broadening is due to the 

inhomogeneity of magnetic field by the volume of the sample, errors from 

the apparatus, and/or susceptibility effects (Levitt, 2005). As the 7Li MAS 

NMR experiments and the 7Li spin-echo experiments were performed in the 

same NMR instrument, we assume that the changes between the FWHM 

from MAS NMR spectra and that calculated from T2 are from the 

macroscopic property changes in magnetic field in the sample. Figure 4.S5 

shows the changes of FWHM in 7Li MAS NMR spectra and that calculated 
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from T2. Though the slope of FWHM with respect to pressure changes non-

linearly with varying XLi, the differences between FWHM in 7Li MAS NMR 

spectra and that calculated from T2 decrease with increasing pressure 

regardless of XLi. As the experiments were performed in the same NMR 

apparatus, the reduction of peak widths gap indicates the reduction of 

inhomogeneous decays of Li in NLS3 glasses, and this may be related to the 

changes in Li environments, such as the changes in distribution of Li and 

Na from random distribution to chemical ordering. 

This 7Li NMR data may provide insights into the distribution of 

mixed cations at high pressure with respect to the cation field strength. A 

previous study on the effect of pressure on the mixed Na-Ca silicate glasses 

at high pressure showed the effect of cation charge on the distribution of Na 

and Ca (Lee et al., 2008a). The cation radii (r) of Na and Ca are similar (~ 1.0 

Å) but the charge (Z) is different; therefore, Ca2+ has a higher cation field 

strength (Z/r2). The 17O 3QMAS NMR spectra for Na-Ca silicate glasses 

showed the presence of Na-NBO and (Na,Ca)-NBO at 1 atm (Lee et al., 

2008a). The cation with a higher cation field strength is more stable with 

highly coordinated Si, resulting in the drastic decrease of Na-NBO and 

negligible changes of the fraction of (Na,Ca)-NBO with increasing pressure 

from 1 atm to 6 GPa (Lee et al., 2008a). The decrease of Na-NBO over 

(Na,Ca)-NBO indicates that the distribution of mixed cations changes 

toward more cation ordering with increasing pressure. Assuming that the 

pressure-induced cation disorder shows a systematic change with respect to 

the cation field strength, the fractions of Na-NBO would decrease and that 

of (Na,Li)-NBO would increase, as shown in (Na,Ca)-trisilicate glasses at 

high pressure (Lee et al., 2008b). The increase of (Na,Li)-NBO at high 
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pressure is also related to the chemical ordering of Na and Li at high 

pressure. The increase of Na-Li dissimilar pairs at the same pressure would 

increase the Li-Li distance, resulting in the increase of T2 of 7Li at high 

pressure. 

 

4.3.4. Fraction of non-bridging oxygen in NLS3 glasses at high pressures: 

Insights from 17O 3QMAS NMR results 

Figure 4.S3 represents the 17O MAS NMR spectra of NLS3 glass with 

varying XLi and pressure up to 6 GPa. The spectra indicate the partially 

resolved Si-O-Si (BO) as well as (Na,Li)-O-Si [(Na,Li)-NBO, at around 30 

ppm]. The peak assignment is based on the previous 17O NMR studies on 

crystalline and amorphous Na and Li silicates (Maekawa et al., 1996; 

Maekawa et al., 1991; Park and Lee, 2016). The peak widths of both NBO 

and BO in the 17O MAS NMR spectra increase with increasing pressure. The 

peak maxima of (Na,Li)-NBO at 1 atm are ~27 ppm regardless of XLi. As the 

isotropic chemical shifts (δiso) of Li-NBO [Li-O-Si in Li2Si2O5 with δiso of ~42 

ppm] and Na-NBO [Na-O-Si in Na2Si2O5 glass with δiso of 39 ppm] are 

similar, it is difficult to distinguish Li-NBO from Na-NBO and (Na,Li)-NBO 

here. The peak for (Na,Li)-NBO shifts to a higher frequency (positive 

frequency) with increasing pressure up to 6 GPa; the peak maxima shifts 

from 27 ppm to 32 ppm (XLi = 0.25) and from 27 ppm to 34 ppm (XLi = 0.50) 

with increasing pressure from 1 atm to 6 GPa, respectively. This may be 

related to the formation of new oxygen sites such as (Na,Li)-O-[5,6]Si (Lee, 

2004; Lee et al., 2003a). However, due to the peak overlap and similar peak 

positions among different NBO and BO sites in MAS NMR spectra, it is 

hard to obtain quantitative information on the presence of oxygens linked to  
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Figure 4.5. (A) 17O 3QMAS NMR spectra of NLS3 glasses with varying XLi 

and at different pressures up to 6 GPa. Contour lines are drawn at 5% 

increments from 13 to 93% of the relative intensity, with added lines at 

5%, 7%, and 10% to show low-intensity peaks better.  
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Figure 4.5. (B) Total isotropic projection of the 17O 3QMAS NMR spectra of 

NLS3 glasses at different pressures and XLi values. 

 

 [5,6]Si, such as [4]Si-O-[5,6]Si and (Na,Li)-O-[5,6]Si, in the 17O MAS NMR spectra. 

Figure 4.5a shows the 17O 3QMAS NMR spectra of NLS3 glasses 

quenched from melts at high pressures from 1 atm to 6 GPa and with 

varying XLi from 0.25 to 0.75. While a distinction between Li-NBO and Na-

NBO is still difficult in the 17O 3QMAS NMR spectra, four peaks 

corresponding to (Na,Li)-O-[4]Si (~–25 ppm at 1 atm in the isotropic 

dimension and ~30 ppm at 1 atm in the MAS dimension), (Na,Li)-O-[5,6]Si 

(~–36 ppm in the isotropic dimension and ~53 ppm in the MAS dimension 

at 6 GPa), [4]Si-O-[4]Si (~–44 ppm at 1 atm in the isotropic dimension), and 

[4]Si-O-[5,6]Si (~–63 ppm at 6 GPa in the isotropic dimension) are well 

resolved. The peaks corresponding to the NBOs and BOs shift to a lower 

frequency region (negative chemical shift, more shielded) in the isotropic 
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dimension and to a higher frequency region in the MAS dimension with 

increasing pressure. The increase in δiso of [4]Si-O-[4]Si is observed with 

increasing pressure from 1 atm to 6 GPa, probably due to an increase in Si-O 

distance (Lee et al., 2003a). The 17O δiso of the NBO for NLS3 glass at 6 GPa is 

larger than that at 1 atm, implying decreasing (Na,Li)-O distance or the 

increasing average number of Na and Li around the NBO. The (Na,Li)-O-

[4]Si and (Na,Li)-O-[5,6]Si for NLS3 glass at 6 GPa are both more shielded 

(negative frequency) than (Na,Li)-O-[4]Si for NLS3 glasses at 1 atm, which 

can be attributed to the increase in the Si-O distance for (Na,Li)-O-[5,6]Si (Lee 

et al., 2003a). Figure 4.5b shows the total isotropic projection of the 17O 

3QMAS NMR spectra of NLS3 glasses. As mentioned earlier, the peaks of 

(Na,Li)-O-Si and Si-O-Si shift to lower frequency regions in the isotropic 

dimension. The peak shifts of the NLS3 glasses from 1 atm to 6 GPa for both 

NBO and BO are ~–3 ppm for XLi = 0.25 and ~–4 ppm for XLi = 0.50, 

respectively. While the isotropic projection of the 17O 3QMAS NMR spectra 

for the NLS3 glasses at 1 atm shows almost identical peak widths and 

shape; an apparent increase in the peak width is observed in the isotropic 

dimension at 6 GPa and the peak width broadening in XLi = 0.50 is larger 

than that in XLi = 0.25 at 6 GPa. Furthermore, [4]Si-O-[4]Si in NLS3 glass with 

XLi = 0.50 showed a pressure-induced increase in peak asymmetry. Previous 

theoretical calculations on bridging oxygen clusters with Na+ and Li+ 

reported that the quadrupolar coupling constant (Cq) of the Na-containing 

bridging oxygen (Na-BO) cluster is higher than that of the Li-BO cluster and 

the quadrupolar asymmetry constant (ηq) of Na-BO cluster is lower than 

that of Li-BO cluster (Vermillion et al., 1998). The difference is negligible 

when Na-BO or Li-BO distance is larger than 2.5 Å (Vermillion et al., 1998). 
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Therefore, based on the theoretical calculation data, the observed changes in 

the peak widths and symmetry with increasing pressure and XLi may be 

related to the decrease in distance between (Na,Li) and bridging oxygen and 

changes in Cq and η with respect to Na and Li. 

Figure 4.6 (a) shows the fraction of oxygen clusters in the NLS3 glasses with 

varying XLi and at different pressures. These values are estimated from the 

isotropic projection of the 17O 3QMAS NMR spectra. The fractions of 

different oxygen environments are simulated using four Gaussian functions 

representing (Na,Li)-O-[4]Si, (Na,Li)-O-[5,6]Si, [4]Si-O-[4]Si, and [4]Si-O-[5,6]Si. 

The peak position and width of each peak during spectral simulation are 

based on previous 17O NMR studies (Lee et al., 2008a; Park and Lee, 2016) 

and those shown in the current 17O 3QMAS NMR spectra. The simulation of 

the isotropic projection of the 17O 3QMAS NMR spectra gives quantitative 

information on the oxygen clusters in the system. For the trisilicate glasses, 

the expected NBO fraction [i.e., NBO/(NBO + BO)] is 29% and the 

calculated fraction of NBO in NLS3 glasses at 1 atm is ~28%–30%, similar to 

the nominal NBO ratio.  

Figure 4.6 (b) shows the estimated fractions of different oxygen 

environments with respect to pressure and XLi. The fraction of the BO is 

almost identical with varying XLi. As the pressure increases, the fractions of 

[4]Si-O-[4]Si and (Na,Li)-O-[4]Si decrease and the fractions of [4]Si-O-[5,6]Si and 

(Na,Li)-O-[5,6]Si increase. The estimated fraction of [4]Si-O-[4]Si at 6 GPa is 

~50%–60% and that of (Na,Li)-O-[4]Si is ~20%–23%. Previous quantum 

chemical calculations on the energy differences of oxygen clusters showed 

that the fraction of [4]Si-O-[4]Si decreases and that of [5,6]Si-O-[4]Si increases 

with increasing the chemical disorder of cations, and the distribution 



194 

 

 

 
Figure 4.6. (Top) Simulation for the total isotropic projection of the 17O 

3QMAS NMR spectra of NLS3 glasses at different XLi and pressures. 

(Bottom) The estimated oxygen fraction in NLS3 glasses as a function of 

pressure and XLi.  
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of network polyhedra in sodium trisilicate glasses at 10 GPa is not 

completely random but favors formation of oxygen linking dissimilar Si 

pairs such as [5,6]Si-O-[4]Si (Lee et al., 2003a). The estimated oxygen cluster 

fractions in the NLS3 glasses is similar to those obtained in sodium 

trisilicate glasses at 10 GPa (Lee et al., 2003a), indicating chemically ordered 

silicate network polyhedra in NLS3 glasses at high pressure. Therefore, not 

only the cations but also the silicate network polyhedra seem to become 

chemically ordered upon compression. 

 

4.3.5. Distribution of mixed cations of different ionic radii in silicate melts 

at high pressures 

Previous molecular dynamic simulations suggested that the smaller 

the cation radius, the higher the number of diffusion channels formed for 

network-modifying cations at 1 atm (Habasaki and Hiwatari, 2003; 

Habasaki et al., 1996). The segregation of the Q2 species can generate the 

diffusion channels for cations, and the degree of disproportionation of Q3 

into Q2 and Q4 increases with increasing the cation field strength (Maekawa 

et al., 1991). The observed diffusion channels in the MD simulation is 

relevant to the disproportionation of silicate glasses with respect to cation 

radius. In addition, the formation of [5]Si in the silicate melts is suggested as 

an activated complex for cation diffusion, which may increase the diffusion 

of network modifying cations (Xue et al., 1991) and oxygens (Poe et al., 

1997). The presence of [5]Si is observed in all NLS3 glasses (Fig. 4.2). 

Therefore, the diffusion of both network-modifying cations and oxygens 

would be less difficult at high pressures. 

Based on the T2 time of 7Li (Fig. 4.3), the distribution of Li in NLS3 
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glasses changes from random distribution to chemical order with increasing 

pressure. As the cation field strength of Li+ is higher than that of Na+, this is 

consistent with the previous experimental data on the (Na,Ca)-silicate 

glasses at high pressure (Lee et al., 2008a), showing the preference of oxygen 

clusters with dissimilar cation pairs and indicating the increase of chemical 

ordering in network modifying cations at high pressure. Moreover, the 

estimated fraction of [4]Si-O-[4]Si and (Na,Li)-O-[4]Si is similar to those 

calculated for chemically ordered silicon network polyhedra (Lee et al., 

2003a). Together with the chemical ordering of network modifying cations, 

the ordering of network former polyhedra results in the reduction of the 

activity coefficient of silica, resulting in the changes to the composition of 

partial melts at high pressure (Lee et al., 2003a). 

 

4.4. Conclusion 

 In this study, we explored the effect of pressure on the cation 

mixing and the structural changes of NLS3 melts at high pressures up to 8 

GPa using solid-state NMR and Raman spectroscopy. The 29Si MAS NMR 

spectra of the NLS3 glasses indicate the presence of 4-, 5-, and 6-coordinated 

Si at high pressures above 6 GPa, regardless of XLi. The total fraction of 

highly coordinated Si decreased with increasing XLi in the melts at 6 GPa. 

The 7Li MAS NMR spectra of NLS3 glasses shows that the peak position 

gradually shifts to a lower frequency (negative region) with increasing 

pressure in all NLS3 glasses. The spin-spin relaxation time of the NLS3 

glasses with XLi = 0.25 underwent a continuous decrease with an increase in 

pressure, while the degree of the slope increased above 6 GPa. However, the 

T2 of the NLS3 glasses with XLi = 0.50 and 0.75 increased with increasing 
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pressure from 1 atm to 6 GPa, indicating a cation disorder change from 

random distribution at 1 atm to chemical order at 6 GPa. The 17O 3QMAS 

NMR spectra showed the various oxygen sites in the NLS3 glasses, and the 

estimated oxygen cluster fraction based on the isotropic projection of the 17O 

3QMAS NMR spectra implies that the network former polyhedra becomes 

chemically ordered with increasing pressure. Based on the T2 of 7Li in the 7Li 

NMR and 29Si MAS NMR spectra, it is deduced that the diffusion of cations 

with smaller radii would be interrupted at high pressures due to changes in 

cation disorder and changes to the silicate network. 
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Appendix 

4.S1. Simulation results of the 29Si MAS NMR spectra of NLS3 glasses 

Table 4.S1 and Figure 4.S1 show the simulation results of the 

estimated fractions of the Qn species. Note that it is difficult to obtain 

quantitative information on the changes in the Qn species with respect to 

pressure due to the pressure-induced shifting of the peak positions of the Si 

environments in NLS3 glasses at high pressures. For example, a previous 

study reported that the peak position for the Q4 species in the wadeite-type 

K2Si4O9 mineral, which contains [4]Si-O-[6]Si bonds, shifted to -96 ppm, a shift 

of ~10 ppm from the general peak position for the Q4 species (Maekawa et 

al., 1991). As the pressure-induced distortion of the network polyhedra and 

the changes of the Si-O bond lengths induce the peak broadening of silicate 

glasses at high pressure as well, the simulation results for the 29Si MAS 

NMR spectra of NLS3 glasses quenched from melts at high pressure are not 

unique. Therefore, here we report the simulation results for NLS3 glasses at 

1 atm which can be used for quantitative discussion. 

The proportion of Qn species varies with the NBO/T ratio, Tg, and the 

cation field strength (see Stebbins (2016) and the references therein). In 

glasses with the same NBO/T ratio, the increase in the Q2 and Q4 species 

due to consumption of the Q3 species is related to a disproportionation 

reaction, which generally takes place upon an increase in the Tg and/or at 

higher field strengths (the charge over the square of the ionic radius) of the 

modifier cations (Larson et al., 2006; Maekawa et al., 1991; Stebbins, 2016; 

Xue et al., 1989), and the increase of cation field strengths may enhance the 

disproportionation (Maekawa et al., 1991; Stebbins, 2016; Voigt et al., 2005). 

The simulation results for the NLS3 glasses at 1 atm are in good agreement 
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with previous studies on binary Na- and Li-silicate glasses (Maekawa et al., 

1991; Stebbins, 2016; Voigt et al., 2005). The simulated fraction of the Q2 

species in NLS3 glasses with XLi = 0.25 at 1 atm is 1.1% and that of the Q4 

species is 33.1%, while those of the Q2 and Q4 species in NLS3 glasses with 

XLi = 0.75 are 7.3% and 35.6%, respectively. 

 

4.S2. The structural role of cations in silicate melts at high pressures: 

Insights from Raman spectroscopy 

The Raman spectra of the Na-Li trisilicate glasses were collected on 

a micro Raman spectrometer at the Seoul National University. Raman 

analysis was conducted on chunks of the samples. The spectra were 

collected using the following conditions: laser wavelength of 488 nm, 

exposure time of 4 s, 120 accumulation runs, and a grating groove density of 

1800/500 L/mm. The spectral resolution was ~0.55–0.85 cm–1/pixel and the 

spectrometer slit width was 250 µm. The typical spectral width was ~940 

cm–1 (centered at 600 cm–1) and ~890 cm–1 (centered at 900 cm–1). A beam 

diameter of 3.1 µm (using 50× microscope objectives), laser power of 24 

mW, and beam scattering of 1 mrad were used. The estimated 

reproducibility of the recorded peak positions in the spectra was less than 

0.5 cm–1. 

Although the Raman spectra do not provide quantitative information 

on the structural changes of materials of interest, the changes observed in 

the vibrational modes indeed provide qualitative information on the 

structural changes. Figure 4.S4 shows the Raman spectra of NLS3 glasses 

quenched from melts at high pressures with varying XLi and significant 

changes have been observed in NLS3 glasses with varying XLi and pressure. 
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Generally, the vibrational modes between 200–600 cm–1 are assigned to the 

Si-O-Si bending vibrations of the Qn species and those between 900–1200 

cm–1 are assigned to the symmetric Si-O vibrations of the Qn species (Xue et 

al., 1991). The Raman spectra of NLS3 glasses at 1 atm with varying XLi are 

generally consistent with those of Li trisilicate and Na silicate glasses (Hass, 

1970; Matson et al., 1983; McMillan et al., 1989; Seuthe et al., 2013; Wolf et 

al., 1990; Xue et al., 1991). A broad peak near 430 cm–1 is related to the Si-O-

Si bending vibrations of the Q4 species (Matson et al., 1983; Xue et al., 1991). 

The vibrational modes near ~540 cm–1 correspond to the Si-O-Si bending of 

the Q3 species and the shoulder peak at ~600 cm–1 is due to Si-O-Si bending 

vibrations with a narrow Si-O-Si angle associated with the Q2 species or 

three-membered Si tetrahedral rings (Wolf et al., 1990; Xue et al., 1991). The 

vibrational band near ~780 cm–1 may correspond to the vibrational motion 

of Si within a Si tetrahedron (McMillan, 1984; Xue et al., 1991). The peak at 

~950 cm–1 corresponds to the symmetric Si-O stretching vibrations of the Q2 

species. The NLS3 glasses at 1 atm show a strong high frequency peak at 

~1090 cm–1, attributable to the symmetric Si-O vibrations of the Q3 species 

(Xue et al., 1991). The shoulder peak at ~1150 cm–1 observed in the Raman 

spectra of the NLS3 melts at 1 atm is assigned to the symmetric Si-O 

stretching vibrations of the Q4 species (Hehlen and Neuville, 2015). See 

Table 4.S2 for additional details on the Raman modes corresponding to 

binary Na- and Li-silicate glasses and SiO2 glasses. 

While the relative peak intensities of the Q2 and Q4 species increase 

with an increase in XLi at 1 atm, only the relative peak intensities of the 

stretching vibrational mode of the Q2 with respect to that of the Q3 increases 

with increasing XLi. This is similar to that obtained from the 29Si MAS NMR 
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spectra (Fig. 4.2a and Fig. 4.S1), showing the increase of Q2 species with 

respect to Q3 species in the NLS3 glasses at 1 atm with increasing XLi. The 

changes in the relative intensities of the Q2 and Q4 species in bending and 

stretching vibrational modes change with increasing pressure. In the NLS3 

glasses at 6 GPa, only the changes in the bending vibrations of the Q4 and Q3 

species at ~400–550 cm–1 were observed and those in the stretching vibration 

are negligible for all Qn species. Therefore, we assumed that the changes in 

the bending vibration in NLS3 glasses is more observable than those in the 

stretching vibration with increasing pressure. 

 

4. S3. The relationship between Li-Li distance and T2 time in 7Li NMR 

spectra 

Solid-state NMR provides element-specific information on the short-

range structure of nuclides of interest. The information of specific dissimilar 

pairs can be obtained using double resonance NMR experiments. The 

interaction between dissimilar pairs can be measured by the second 

moment M2, which affects the decrease of the peak intensity in spin-echo 

double resonance experiments in NMR and can be described as follows: 

M2, IS = 4/15 * γi2 γs2ħS(S+1)Σ(1/ris6) 

Here, γi and γi denote the gyromagnetic ratio of the nuclide i and s, ħ is the 

Plank constant divided by 2π (h/2π), S is the spin number of the nuclide S, 

and ris is the distance between the i and s nuclides. The second moment 

varies with the distance between the two nuclides ris. The overall intensity 

in the NMR spin-echo experiment can be explained as follows: 

S/S0 = 1 – f{1 – exp[-M2(2τ)2/2]} 

where f indicates the efficiency of the 7Li π pulse, 2τ represents the time to 
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acquire an echo pulse, and M2 is the second moment in the spin-echo 

experiments. Therefore, the estimation of ris based on the changes to S/S0 in 

the spin-echo experiments would give insights into the distribution of Li 

and Na in Na-Li silicate glasses at high pressures, up to 8 GPa. 

The spin-echo NMR experiments measures the spin-spin relaxation 

time (T2) of nuclides of interest. Here, the information of one specific 

nuclide, such as the distance between Li cations can be obtained from the T2 

relaxation time with following second moment values of the nuclide of 

interests (Yap and Elliott, 1995): 

M2, II = 12/25 * γi4 ħI(I+1)Σ(1/rii6) 

Here, rii represent the distance between similar pairs, such as i-i pairs. The 

decrease of peak intensity can be fitted with following equations 

S/S0 = 1 – f{1 – exp[-M2, II(2τ)2/2]} 

= exp(-t/T2) 

and therefore, the distance between Li-Li pairs can be obtained from T2 

measurements using solid-state NMR. 
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Table 4.S1. The estimated fraction of Qn species in Na-Li trisilicate glasses at 

1 atm. The values are obtained by the simulation of peak areas of 29Si 

MAS NMR spectra. 

XLi Q2 Q3 Q4 

0.25 1.1 65.7 33.1 

0.50 5.2 60.1 34.7 

0.75 6.5 57.5 36.0 
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Table 4.S2. Raman modes corresponding to binary Na- and Li-silicate glasses 

and SiO2 glasses. 

Composition n1 (cm-1) Modes Ref. 
Li-silicate 
glasses 

~380 Si-O-H wagging (1) 

Li-silicate 
glasses 

440 Symmetric motion of the bridging oxygen, 
ns(Si-O-Si) (transverse optical splitting) 

(2) 
 

Li-silicate 
glasses 

430–500 Si-O-Si bending vibration of linkages 
associated with the predominant Q4 species 

(1), 
(5) 

Li-silicate 
glasses 

490 Symmetric motion of the bridging oxygen, 
ns(Si-O-Si) (longitudinal optical splitting) 

(2)  

Li-silicate 
glasses 

 D1 defect, 4-membered rings of SiO4 

tetrahedra 
(1) 

Na2Si2O5 glass 562 Si-O-Si bending vibration of linkages 
associated with the predominant Q3 species 

(5) 

Na2Si2O5 glass 600 Si-O-Si vibration of linkages associated with 
the Q2 species 
The presence of three-membered siloxane 
rings containing both Q4 and Q3 species 

(5) 
 
(1) 

MgSiO3 garnet 600 Bending vibration of [4]Si-O-[6]Si (4) 

SiO2 glass 740 Si motion against its tetrahedral oxygen cage (3) 

Na2Si2O5 glass 772 Si motion against its tetrahedral oxygen cage (5) 

Na2Si2O5 glass 940 Si-O stretching of Q2 species (5) 

 1060 Antisymmetric Si-O-Si stretching mode 
nas(Si-O-Si) (longitudinal optical splitting) 

(2) 

Na2Si2O5 glass 1090 Si-O stretching of Q3 species (5) 

 1190 Antisymmetric Si-O-Si stretching mode 
nas(Si-O-Si) (transverse optical splitting) 

(2) 

 1100 [Si2O5]n2- sheet unit (2) 

(1) Seuthe et al. (2013); (2) Matson et al. (1983); (3) McMillan (1984); (4) 
McMillan et al. (1989) (5) Xue et al. (1991) 
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Figure 4.S1. (Left) Simulation results of the 29Si MAS NMR spectra of NLS3 

glasses with varying XLi. The thick black lines refer to experimental 

data. The thin blue, red, green, and black lines correspond to Q2, Q3, Q4, 

and total simulation results, respectively. (Right) Variations in the Qn 

fraction with respect to XLi in the NLS3 glasses. The blue, red, and 

green colors correspond to Q2, Q3, and Q4, respectively. 
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Figure 4.S2. 7Li MAS NMR spectra of NLS3 glasses with XLi = 0.25 at 14.1 T. 
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Figure 4.S3. 17O MAS NMR spectra of NLS3 glasses with varying pressure 

and XLi at 9.4 T.  
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Figure 4.S4. Raman spectra of NLS3 glasses with varying XLi and at 

different pressures up to 6 GPa.  
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Figure 4.S5. Full-width at half-maximum (FWHM) in 7Li MAS NMR spectra 

(blue) and those derived from T2 of 7Li NMR spectra (black). Triangles, 

squares, and circles refer to XLi = 0.25, 0.50, and 0.75, respectively. 
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Chapter 5. Speciation of carbon in aluminosilicate glasses 

and crystals at high pressure up to 14 GPa: Insights from 
13C solid-state NMR and Raman spectroscopy 

 

Eun Jeong Kim and Sung Keun Lee 

 

This study is currently ongoing, and thus the part of results and their 

discussion are presented here. 

 

5.1. Introduction 

Mantle is the largest carbon reservoir in the Earth interior (Dasgupta 

and Hirschmann, 2010; Kelemen and Manning, 2015). The presence of 

carbon species and their cycle in the mantle affects the oxygen fugacity of 

the mantle and the geophysical and geochemical properties of silicate melts 

at high pressure. For example, redox reaction of CO2 and/or carbonates 

with transition metal cations in the silicate minerals is one of the 

mechanisms to control the oxygen fugacity of the mantle (Stagno et al., 

2013) and recent study reported the presence of highly oxidized garnet with 

diamond inclusions which is expected to have been in the boundary of 

upper mantle and mantle transition zone (Xu et al., 2017), indicating the 

importance of carbon species in controlling oxygen fugacity in the mantle 

up to the boundary of upper mantle and transition zone. The presence of 

CO2 or carbonates in silicate melts affect the viscosity of silicate melts and 

the transport of carbon species (Luth, 2003; Mysen and Richet, 2005). 

Previous study reported the low-velocity zone atop ~410 km depth, which 
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may be induced by the volatile-induced silicate melts at ~330–410 km depth 

in the mantle (Revenaugh and Sipkin, 1994). 

Carbon species exists mostly as accessory minerals in the grain 

boundaries of silicate crystals such as graphite, diamonds, and carbonate 

minerals (Hazen and Schiffries, 2013; Keppler et al., 2003; Luth, 2003; 

Shcheka et al., 2006). Once those carbon species form carbon-bearing silicate 

melts, the mobility of carbon species itself and the viscosity of silicate melts 

increases. During the dissolution of carbon species, especially for neutral 

carbon species, the following reaction occurs: 

C + O2 = CO2 

where O2 is from the redox reaction of transition metals in the silicate 

crystals and/or can be free oxygens in the silicate melts. While the redox 

reaction of carbon species and transition metals in the silicate crystals has 

been studied at high pressure up to 11 GPa (Stagno and Frost, 2010; Stagno 

et al., 2013; Tao et al., 2017), interaction between silicate melts and carbon 

species has been studied up to 4 GPa due to the difficulties in synthesizing 

the sample (Brooker et al., 1999; Kohn et al., 1991; Morizet et al., 2017a; Ni 

and Keppler, 2013).  

Previous studies have reported the carbon environments in silicate 

melts with varying pressure, temperature, and composition of silicate melts 

at high pressure up to 4 GPa (Behrens et al., 2004; Blank and Brooker, 1994; 

Brooker et al., 1999; Kohn et al., 1991; Morizet et al., 2002; Morizet et al., 

2014a; Morizet et al., 2015; Mysen et al., 1976; Mysen et al., 2009; Mysen et 

al., 2011; Pan et al., 1991; Tossell, 1995). In the oxidized conditions with H2O, 

major carbon species are CO2 and CO32= while CH4, graphite, and CO are 

the major carbon species in the reduced conditions (Mysen et al., 2011). As 
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the carbon species varies with the presence of H2O and the changes in 

oxygen fugacity, previous studies have also investigated the speciation of 

carbon in silicate melts without the presence of water to simplify the 

systems (e.g., Blank and Brooker, 1994; Brooker et al., 2001; Brooker et al., 

1999). In the absence of H2O in the system, CO2 and CO32- are the major 

carbon species in the carbon-bearing silicate glasses. The fraction of CO2 

over CO32- in silicate melts increases with decreasing the fraction of non-

bridging oxygen over tetrahedron (NBO/T) and only carbonate species are 

observed in depolymerized silicate melts at high pressure (e.g., Behrens et 

al., 2004; Eggler and Rosenhauer, 1978; Kadik et al., 2004; Morizet et al., 

2010; Morizet et al., 2017b; Mysen et al., 1975).  

Peak widths of carbonate species in 13C MAS NMR spectra changes 

with varying network modifying cations and the NBO/T ratio (Morizet et 

al., 2014b). The reported increase of peak widths is related to the changes of 

network modifying cations from Na+ and/or K+ to Ca2+ and/or Mg2+ and 

the structural changes of silicate melts with varying NBO/T ratio. Previous 

study on the peak widths of carbonate minerals in 13C MAS NMR showed 

that the peak width of carbonate minerals is the sharpest in sodium 

carbonates (~0.8 ppm of full-widths at half-maximum) and increases with 

the changes of cations from Na+ to Ca2+ and Mg2+ (Papenguth et al., 1989). 

Assuming that the effect of cations on the structural changes of carbonate 

minerals can be applied to the structural changes of carbon-bearing silicate 

melts with varying cations, the changes of Na+ to Ca2+ and/or Mg2+ in 

silicate melts would result in the increase of peak widths in 13C MAS NMR 

spectra. This may make the analysis on the carbon species in carbon-bearing 

silicate melts more difficult. The peak widths in NMR spectra generally 
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increases with increasing pressure due to the pressure-induced topological 

disorder of network-forming species. Therefore, to minimize the effect of 

cations on the peak broadening, we chose binary- to ternary-silicate glasses 

as a model system to understand the carbon environments in silicate melts 

at high pressure, and Na-silicate melts system was chosen as the model 

system. 

The natural magma systems contain both CO2 and H2O and the 

estimated CO2/H2O ratio in the mid-ocean ridge basalt and oceanic island 

basalts are in the range of 0.2–4 (Hirschmann and Dasgupta, 2009). 

Although the model system in the study does not contain H2O, the obtained 

structural information on the speciation of carbon in carbon-bearing sodium 

silicate melts at high pressure above 4 GPa up to 14 GPa would provide 

insights into pressure-induced structural changes of carbon in silicate 

glasses and the effect of carbon species on the structural changes of silicate 

melts and crystals at high pressure up to 14 GPa. 

Although the absence of H2O and the presence of CO2 in the silicate 

melts is different from the natural magma systems, the obtained structural 

information on the speciation of carbon in carbon-bearing sodium silicate 

melts at high pressure above 4 GPa up to 14 GPa would provide insights 

into pressure-induced structural changes of carbon in silicate glasses and 

the effect of carbon species on the structural changes of silicate melts and 

crystals at high pressure up to 14 GPa. In this study, we aim to identify the 

speciation of carbon in crystalline and amorphous sodium aluminosilicate at 

high pressure up to 14 GPa and the carbon-induced structural changes of 

silicate melts. We also discuss the changes of oxygen fugacity with the 

changes in the carbon species and the formation of silicate melts at high 
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pressure. 

 

5.2. Experimental methods 

5.2.1. Sample preparation 

Sodium trisilicate glasses (Na2O-3SiO2, NS3) were synthesized from 

powdered Na2CO3 and SiO2 at 1 atm. About 0.2 wt.% of Co oxides was 

added to enhance the spin-lattice relaxation. The mixture of Na2CO3 and 

SiO2 was decarbonated in a Pt crucible at 800 °C for 1 h, and fused at 

1000 °C for 30 min. The amount of carbon needed for saturation of 13CO2 in 

NS3 glasses was predicted from the linear extrapolation of previous studies 

(Mysen et al., 2009) as the solubility data are only available up to 4 GPa. The 

factor of 6 was multiplied to the predicted carbon solubility in NS3 glasses 

in reduced conditions (Mysen et al., 2009; Mysen et al., 2011). Due to the 

absence of H2O, only CO2 and CO32- species are expected to observed and 

the estimated fO2 was similar to those in previous study (Kim et al., 2018), 

around C-CO (CCO) buffer (fO2 = ~ -7.5) based on the fraction of each carbon 

species formed in the silicate melts (Zhang and Duan, 2010). The 99.7% 13C-

enriched Na213CO3 was used for carbon reservoir in the sample. The 

amounts of Na213CO3 added to a pre-synthesized glass are 11.2 and 16.3 

wt% (3.5 and 5.2 wt% of CO2) for 9.2 GPa and 14 GPa, respectively, balanced 

with SiO2, into the pre-starting glasses at 1 atm. The samples were loaded 

into a 1100-ton multi-anvil apparatus in Seoul National University with 

14/8 (octahedron edge length/truncated edge length of the anvils) 

assembly. The samples were fused at 9.2 GPa and 14 GPa at the temperature 

ranging from 1700–1900 °C for 5 min, and then quenched to glasses by 

turning off the power. The initial quenching rate was approximately 
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500 °C/s. 

Carbon-bearing albite glasses (NaAlSi3O8) at 9.2 GPa and 

aluminosilicate crystals (NaAlSi3O8) at 14 GPa were synthesized from the 

mixture of Na213CO3, Al2O3, and SiO2. The amount of Na213CO3 needed for 

saturation of 13CO2 in albite glasses calculated from the linear extrapolation 

of previous studies (Brooker et al., 1999; Stolper et al., 1987) was higher than 

the direct mixing of powdered Na213CO3, Al2O3, and SiO2 (~7.9 wt% of 

13CO2). The mixtures were ground in the agate mortar for 30 min and then 

loaded into Pt capsule. The samples were loaded in a 1100-ton multi-anvil 

press in Seoul National University and then synthesized in the same 

manner as the synthesis of NS3 glasses at high pressure.  

 

5.2.2. NMR spectroscopy 

The 13C, 29Si, and 27Al MAS NMR spectra were collected on a Varian 

solid-state NMR 400 system (9.4 T) at Larmor frequencies of 100.582 MHz 

for 13C, 79.47 MHz for 29Si, and 104.23 MHz for 27Al nuclides using a 3.2-mm 

double resonance probe. The 13C MAS NMR spectra were collected with a 

single-pulse sequence with an approximately 30° pulse (0.5 µs), a recycle 

delay of 1 s, and at a speed of 17 kHz. Approximately 35,000 scans (~ 3 

days) of FID were averaged to achieve the signal-to-noise ratio shown in the 

13C MAS NMR spectra. The spectra were referenced to solid adamantane 

(ADM), which is 38.6 ppm away from tetramethylsilane (TMS). The 29Si 

MAS NMR spectra were collected at a spinning speed of 11 kHz with a 

single-pulse sequence with a 30° pulse (1.2 µs) and delay time of 30 s. 

Tetramethylsilane (TMS) was used as the external reference. 27Al MAS and 

3QMAS NMR spectra were collected a spinning speed of 17 kHz. 27Al MAS 
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NMR spectra were collected using a single-pulse sequence with an 

approximately 30° pulse (1.2 µs) and a recycle delay of 1 s. 27Al 3QMAS 

NMR spectra were obtained using a fast-amplitude modulation (FAM)-

based shifted-echo pulse sequence with a relaxation delay of 0.3 s – 3 µs 

pulse for 3Q excitation – t1 delay – FAM pulse train with a 0.7 µs pulse – 

echo delay – 15 µs soft pulse for echo reconversion – t2 acquisition 

(Baltisberger et al., 1996; Lee et al., 2009; Madhu et al., 1999).The 27Al NMR 

spectra were referenced to an external 0.1 M AlCl3 solution. 

 

5.2.3. Raman spectroscopy 

The Raman spectra of carbon-bearing aluminosilicate crystals were 

collected on a micro Raman spectrometer at the Seoul National University. 

The sample was polished Raman analysis was conducted on chunks of the 

samples. The crystalline aluminosilicates were fixed in an epoxy resin and 

were polished using 200 mech, 600 mesh, 1500 mesh powders for 30 min 

and 6000 mesh powders for 2 h, respectively. The spectra were collected 

using the following conditions: laser wavelength of 488 nm, exposure time 

of 4 s, 100 accumulation runs, and a grating groove density of 1800/500 

L/mm. The spectral resolution was ~0.55–0.85 cm–1/pixel and the 

spectrometer slit width was 250 µm. The typical spectral width was ~940 

cm–1 (centered at 600 cm–1) and ~840 cm–1 (centered at 1400 cm–1), and ~780 

cm-1 (centered at 2200 cm-1), respectively. A beam diameter of 3.1 µm (using 

50x microscope objectives), laser power of 36 mW, and beam scattering of 1 

mrad were used. The estimated reproducibility of the recorded peak 

positions in the spectra was less than 0.5 cm–1. 
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5.2.4. SEM/EDS analysis 

The backscattered (BSE) images and EDS analysis on the C-bearing 

aluminosilicate crystals were obtained from JSM-6380 in Seoul National 

University. The sample was coated with Pt (10 nm-thick) to see carbon 

signal from EDS analysis. The voltage of 20 kV, the spot size of 60, and 

working distance of 10 mm was used. 

 

5.3. Results 

5.3.1. Characterization of C-bearing aluminosilicate crystals at 14 GPa 

Figure 5.1 a-c shows stereoscopic micrographs of C-bearing albite 

glasses at 9.2 GPa and those of C-bearing aluminosilicate crystals at 14 GPa. 

The C-bearing albite glasses at 9.2 GPa is a chunk of glass showing vitreous 

luster on the surface while the C-bearing aluminosilicate glasses at 14 GPa 

consists of a mixture of greyish smooth grains and whitish rough grains, 

and the surface of the sample, which was in contact with the Pt tube, had a 

black speckled pattern. The polished surface of C-bearing aluminosilicate 

crystals at 14 GPa in figure 5.1.d shows the distribution of greyish smooth 

grains and whitish rough grains and the proportion of greyish smooth 

grains is ~40%. Figure 5.1.c-g show the BSE images of C-bearing 

aluminosilicate crystals synthesized at 14 GPa. The greyish grains are 

recognized with their larger grains (5–15 μm) and euhedral to subhedral 

grain shape in the BSE images while whitish rough grains are composed of 

very fine (< 1 μm × 10 μm) columnar grains. Compared with the BSE images 

of C-bearing aluminosilicate crystals, that of C-bearing albite glasses 

quenched from melts at 9.2 GPa shows a relatively uniform surface and the 

contrast of the image is monotonic due to its homogeneous composition  



229 

 

 
 

Figure 5.1. Stereoscopic micrographs of (a) C-bearing aluminosilicate glasses 

at 9.2 GPa and (b) C-bearing aluminosilicate glasses and crystals at 14 

GPa inside and (c) outside. (d) A stereoscopic micrograph of C-bearing 

aluminosilicate crystals and glasses synthesized at 14 GPa. (e) BSE image 

of C-bearing aluminosilicate crystals and glasses synthesized at 14 GPa. 

(f) Close-up view of transparent particles (5‒15 μm). (g) Close-up view 

of small white particles in fig. e. (h) BSE image of C-bearing albite glasses 

at 9.2 GPa. (i-l) EDS patterns of labelled particles in fig. f and h. 
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(Figure 5.1.h). The EDS analyses of point i-l in Fig. 5.1.f and Fig. 5.1.h are 

shown in figure 5.1.(i–l). The grain in point i in figure 5.1.f shows the EDS 

pattern of jadeite (NaAlSi2O6) and point j shows EDS pattern of albite-like 

aluminosilicate composition (NaAlSi3.5O9) with intense carbon signal. The 

EDS patterns in figure 5.1.k is obtained from whitish rough area in figure 

5.1.g, which shows the silica-rich aluminosilicate composition 

(NaAlSi33.8O70), which is similar to SiO2. The obtained EDS patterns of C-

bearing albite glasses at 9.2 GPa shows the Na6Al7.7Si23.9O65.4 composition, 

which is similar to albite (NaAlSi3O8) and the observed EDS patterns are 

relatively consistent within the given area in figure 5.1.h.  

 

5.3.2. Raman spectra 

Figure 5.2 shows the Raman spectra for C-bearing albite glasses at 9.2 

GPa, C-bearing aluminosilicate crystals at 14 GPa, and Na2CO3 powder at 

1atm as a reference. The inset shows stereoscopic micrographs of C-bearing 

aluminosilicate crystals and the numbers labeled on the right indicate the 

area where Raman spectra obtained (see the labels #1 to #4 on the right side 

of the spectra). The Raman spectra for C-bearing aluminosilicate crystals 

show the presence of multiple mineral phases including jadeite, stishovite, 

cubic graphite, nano-diamonds, and small portion of glasses and reveal 

heterogeneous distribution of these minerals and glasses which can be 

expected by the different colors in the stereoscopic micrographs. The peak 

assignments are based on the previous Raman data on each mineral. The 

peak at 415, 430, 525, 580, 590, 690, 710, 790, 990, ~1010, ~1070 cm-1 are 

assigned to Ag symmetry of jadeite (Prencipe et al., 2014). The vibrational 

modes of stishovite are shown at 589 cm-1 for Eg symmetry mode and 753  
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Figure 5.2. Raman spectra for C-bearing aluminosilicate crystals and glasses 

at 14 GPa, C-bearing albite glasses at 9.2 GPa, and Na2CO3 at 1 atm. 

Inset images were obtained from C-bearing aluminosilicate crystals and 

glasses at 14 GPa (left: inside, right: outside). Asterisks refer to central 

spike in Raman spectra.  
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cm-1 of A1g mode, respectively (Hemley, 1987). While Na2CO3 was added as 

a carbon reservoir in the mixture, the presence of Na2CO3 was not observed 

in the synthesized product in Raman spectra. The broad peaks at ~1350 cm-1 

and ~1580 cm-1 are assigned as D and G bands of cubic graphite, 

respectively (Hanfland et al., 1989; Knight and White, 1989; Perraki et al., 

2006; Vidano and Fischbach, 1978). The peaks at ~1250, ~1290, ~1350, and 

~1530 cm-1 corresponds to B2g, A1g, E1g of hexagonal diamonds, and G band 

of residual graphite, respectively (Goryainov et al., 2014). See section 5.4.1 

for the peak assignment of cubic graphite and nano-diamonds in Raman 

spectra. The peaks for disordered graphite are only observed at the surface 

of the sample (black speckled area) and the vibrational modes of nano-

diamonds are only observed inside of the sample. The Raman spectra for 

glassy part in C-bearing aluminosilicate crystals show broad vibrational 

peaks at ~590 cm-1 and ~1100 cm-1 which are assigned as vibrational mode 

of “defect” bands (D1) and (Al,Si)-O-(Al,Si) stretching (W2), respectively 

(McKeown et al., 1984). The vibrational modes of glass in C-bearing 

aluminosilicate crystal is similar to those of Si-rich sodium aluminosilicate 

glasses (Na3.07Al0.05Si3.06O8) (McKeown et al., 1984). While the intensity of 

stretching modes are weaker, the Raman spectra for C-bearing albite glasses 

at 9.2 GPa show peaks at ~450 cm-1 , ~600 cm-1, and ~1050 cm-1 are generally 

consistent with previous studies on albite glasses (McKeown et al., 1984) 

and additional peaks at ~1370 cm-1, ~1470 cm-1, and ~1600 cm-1 are assigned 

as disordered sp2 band (D’) and υ3 in carbon (Ferrari and Robertson, 2001; 

Schindler and Vohra, 1995; Vidano and Fischbach, 1978). Note that the 

presence of carbonate minerals is not observed in either glassy part of C-

bearing aluminosilicate crystals at 14 GPa or C-bearing albite glasses at 9.2 
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GPa.  

 

5.3.3. 13C MAS NMR spectra of C-bearing aluminosilicate glasses and 

crystals at high pressure 

Figure 5.3 shows the 13C MAS NMR spectra of C-bearing albite 

glasses at 9.2 GPa and C-bearing aluminosilicate crystals at 14 GPa, and 

those of C-bearing albite glasses at 1.5 and 6 GPa, reported in previous 

study (Kim et al., 2018). The peaks at ~125 ppm and 150–170 ppm are 

assigned as dissolved CO2 and carbonates species in C-bearing albite glasses 

at high pressure based on the previous 13C NMR studies and quantum 

chemical calculations (Feng et al., 2006; Jones et al., 2005; Kim et al., 2016; 

Kohn et al., 1991; Moore et al., 2015; Morizet et al., 2007; Morizet et al., 2010; 

Morizet et al., 2014a; Mysen et al., 2011; Papenguth et al., 1989; Tossell, 

1995). While the dissolved CO2 is the dominant carbon species in albite 

glasses at high pressure up to 9.2 GPa and the fraction of bridging carbonate 

drastically increases with increasing pressure from 6 GPa to 9.2 GPa. In 

addition, the peak widths of CO2 increase from 4 ppm at 1.5 and 6 GPa to 8 

ppm at 9.2 GPa, respectively, while the peak position of CO2 is almost 

constant (125.4 ppm at 1.5 and 6 GPa and 125.7 ppm at 9.2 GPa, 

respectively). The chemical shift anisotropy of CO2 seems to change with 

increasing pressure from 6 GPa to 9.2 GPa. As the current spectra only 

shows 2–3 spinning sidebands, it is difficult to analyze CSA patterns of CO2 

systematically. Further 13C MAS NMR experiments on the carbon-bearing 

albite glasses with spinning speed of ~6–7 kHz would provide the 

information on the chemical shift anisotropy of dissolved CO2 at high 

pressure. See section 5.4.2 for detailed discussion on the peak broadening of  
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Figure 5.3. 13C MAS NMR spectra for C-bearing albite glasses at high pressure 

up to 9.2 GPa. The data of 1.5 and 6 GPa are from Kim et al. (2018). The 

peak intensities are in the absolute value, corrected to the sample weight. 

The asterisks refer to spinning side bands.  



235 

 

13CO2 in C-bearing albite glasses at high pressure. The broad peak at ~150–

170 ppm is assigned for bridging carbonates, such as [4]Al(CO3)[4]Al, 

[4]Si(CO3)[4]Al, and [4]Si(CO3)[4]Si, at 165, 160, and 155 ppm, respectively 

(Brooker et al., 1999). As the pressure-induced peak shift of carbonate 

species is hard to be distinguished due to the peak overlap, we assume that 

the peak positions of bridging carbonate species, such as [4]Al(CO3)[4]Al, 

[4]Si(CO3)[4]Al, and [4]Si(CO3)[4]Si, remain constant with increasing pressure. 

While the peak intensity for carbonate species including bridging and non-

bridging carbonates increases with increasing pressure, the fraction of 

[4]Si(CO3)[4]Al increases the most with increasing pressure. The presence of 

CO is not observed in C-bearing albite glasses at 9.2 GPa which is mainly 

due to the changes in the assembly sets (from those using graphite heater to 

those using Re heater). 

Figure 5.4 shows the 13C MAS NMR spectra of C-bearing 

aluminosilicate crystals (NaAlSi2O6 + SiO2) at 14 GPa, C-bearing albite 

glasses at 9.2 GPa, and Na2CO3 at 1 atm. The 13C MAS NMR spectra for C-

bearing aluminosilicate crystals show peaks at 164.5 ppm and ~35 ppm. The 

peak at ~35 ppm in the 13C MAS NMR spectra for C-bearing aluminosilicate 

crystals at 14 GPa is assigned as nano-diamonds based on the previous 

studies (Donnet et al., 2000; Duncan, 1987; Panich, 2017; Shames et al., 2002). 

Peak assignment for the peak at 164.5 ppm with peak widths of ~5 ppm is 

rather difficult. The peak position and widths in Na2CO3 in Figure 5.4 is 

170.8 ppm and ~1.7 ppm, respectively, and the reported peak position and 

widths of Na2CO3 are 169.7 ppm and 0.8 ppm and those of CaCO3 are 167.5 

ppm and 1.0 ppm, respectively (Papenguth et al., 1989). The peak position 

of carbonates in scapolite (a solid-solution of Na4Al3Si9O24Cl and  
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Figure 5.4. 13C MAS NMR spectra for C-bearing aluminosilicate crystals 

(NaAlSi2O6 + SiO2) at 14 GPa, C-bearing albite glasses at high pressure 

up to 9.2 GPa, and Na2CO3. The peak intensities are normalized to its 

highest height. Asterisks refer to spinning side bands.  
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Ca4Al6Si6O24CO3) showed ~ 3 ppm peak shift to the lower frequencies 

(~163.8 ppm) when the planar carbonates were bent less than 3° to the (001) 

plane (Kohn et al., 1991; Sherriff et al., 1987). Therefore, the peak at 164.5 

ppm may be due to the carbonate minerals liked to silicon or aluminum 

tetrahedra at high pressure and/or carbonate minerals with off-planar 

carbonate structure (distorted structure) at high pressure. 

 

5.3.4. 27Al 3QMAS NMR spectra and 29Si MAS NMR spectra of C-bearing 

aluminosilicate glasses and crystals at high pressure 

Figure 5.5a shows the 27Al MAS NMR spectra of C-free albite glasses 

at 1 atm and C-bearing albite glasses at high pressure up to 9.2 GPa. While 

the small fraction of [5]Al is observed in C-free albite glasses at 8 GPa (Lee, 

2004), the current 27Al MAS NMR spectra show that only [4]Al exists in C-

bearing albite glasses at high pressure. The peak assignment is based on 

previous NMR studies on aluminosilicates crystals and glasses (e.g., 

Baltisberger et al., 1996; Edén, 2015; Kelsey et al., 2008; McMillan and 

Kirkpatrick, 1992; Neuville et al., 2008; Toplis et al., 2000 and references 

therein). The peak position shifts to lower frequency region (negative 

frequency) from ~54 ppm at 1.5 GPa to ~50 ppm at 9.2 GPa and the peak 

widths increases with increasing pressure. The 27Al 3QMAS NMR spectra in 

Figure 5.5b shows the increase of peak widths in both MAS dimension (y 

axis) and isotropic dimension (X axis) with increasing pressure: from 60 

ppm (~10–70 ppm) to 80 ppm (~ -10–70 ppm) in MAS dimension and from 

~17 ppm (-47 – -30 ppm) to 25 ppm (~-50 – -25 ppm) in isotropic dimension, 

respectively. The increase of peak widths is related to the increase  
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Figure 5.5. (A) 27Al MAS and (B) 3QMAS NMR spectra for C-free albite 

glasses at 1 atm and C-bearing albite glasses at high pressure up to 9 GPa. 

B
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topological disorder, such as changes in Al-O bond lengths and/or bond 

angle around Al environments (e.g., Edén, 2015; Lee, 2010; Park and Lee, 

2012). As the fraction of [4]Al(CO3)[4]Si increases the most with increasing 

pressure (Figure 5.3), the increase of topological disorder of Al in C-bearing 

albite glasses suggest that the carbon-induced topological disorder of Al in 

albite melts at high pressure.  

Figure 5.6 shows the 29Si MAS NMR spectra of C-bearing albite 

glasses at 9.2 GPa and C-bearing aluminosilicate crystals at 14 GPa, and 

those of C-bearing albite glasses at 1.5 and 6 GPa from previous study (Kim 

et al., 2018). The 29Si MAS NMR spectra for C-bearing albite glasses at high 

pressure show only the [4]Si environment at high pressure up to 9.2 GPa. 

While the peak for [4]Si in C-bearing albite glasses at 6 GPa is identical to 

that at 1.5 GPa, the peak position shifts to lower frequency (negative region, 

~1 ppm) and peak widths increase from 16 ppm to 20 ppm with increasing 

pressure from 6 GPa to 9.2 GPa, respectively. Together with the pressure-

induced topological disorder of Al in C-bearing albite glasses at high 

pressure (Figure 5.5), the absence of highly coordinated Al and Si in albite 

glasses at 9.2 GPa suggests that the formation of bridging carbonate species 

in silicate melts change both Al and Si environments, evidenced by the peak 

broadening with increasing pressure up to 9.2 GPa, and the Al 

environments changes first from 6 GPa and then the Si environments starts 

to change from 9.2 GPa (e.g., Lee, 2010; Lee et al., 2004; Yarger et al., 1995 

and references therein). The formation of highly coordinated Al and Si is 

still absent at 9.2 GPa, and this may indicate that the densification 

mechanism for C-bearing aluminosilicate melts may be different from that 

for C-free aluminosilicate melts at high pressure.  
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Figure 5.6. 29Si MAS NMR spectra for C-bearing aluminosilicate crystals 

(NaAlSi2O6 + SiO2) at 14 GPa, C-bearing albite glasses at high pressure 

up to 6 GPa.  
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Figure 5.7. 13C MAS NMR spectra for C-bearing sodium trisilicate (NS3) 

glasses quenched from melts at high pressure up to 14 GPa. 

 

5.3.5. 13C and 29Si MAS NMR spectra of C-bearing alkali silicate glasses at 

high pressure 

Figure 5.7 shows the 13C MAS NMR spectra of C-bearing NS3 glasses 

at high pressure up to 14 GPa. The peak at ~171 ppm is assigned as free 

carbonates and that at ~160 ppm is assigned as bridging carbonates 

[4]Si(CO3)[4]Si as there is only one network-former cation in this glass 

(Morizet et al., 2014a; Tossell, 1995). Whereas the peak for free carbonates 

shifts to lower frequency region (negative frequency) from 171.7 ppm to 
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170.2 ppm with increasing pressure from 4 to 8 GPa, respectively, the peak 

for free carbonates at 9.2 and 14 GPa seems to shift back to 171.2 and 170.8 

ppm, respectively. The increase of peak widths from ~2.5 ppm up to 8 GPa 

to ~4 ppm at 9.2 and 14 GPa is also observed. The peak at ~160 ppm 

gradually increases with increasing pressure and shifts toward higher 

frequency region (positive frequency) with increasing pressure above 9.2 

GPa.  

Figure 5.8 shows the 29Si MAS NMR spectra of C-bearing NS3 glasses 

at high pressure up to 14 GPa. The peaks for [4]Si, [5]Si, and [6]Si are observed 

at ~-90, -150, and -200 ppm, respectively, based on the previous studies on 

crystalline and amorphous silicates (Kirkpatrick et al., 1986; Stebbins, 1995 

and references therein). While the peak position of [4]Si slightly shift to 

higher frequency region (from -91.4 ppm at 4 GPa to -90.4 ppm at 8 GPa) 

(Kim et al., 2018), further increase of pressure result in the peak shift to 

lower frequency region from -90.4 ppm at 8 GPa to -96.2 ppm at 14 GPa, 

respectively. The formation of [4]Si linked to [6]Si makes the longer and more 

ionic bonds, resulting in the decreasing of chemical shielding and peak shift 

to higher frequency (positive region) (Kanzaki et al., 1998; Skibsted et al., 

1990; Xue et al., 1991). The peak shift to lower frequency is related to the 

shorter and more covalent bonds and the increase of chemical shielding. As 

the bond lengths of C-O in carbonates (~1.3 Å) are shorter than those of Si-O 

(~1.6 Å in [4]Si and ~1.8 Å in [6]Si) (Effenberger et al., 1981; Smith et al., 1983; 

Tossell, 1995), the peak shift to lower frequency in 29Si MAS NMR spectra 

may be related to the formation of bridging carbonates [4]Si(CO3)[4]Si. This is 

consistent with previous study on carbon-bearing basaltic glasses at high 

pressure up to 3 GPa, showing the peak shift toward negative frequency  
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Figure 5.8. 29Si MAS NMR spectra for C-bearing sodium trisilicate (NS3) 

glasses quenched from melts at high pressure up to 14 GPa. 
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with increasing pressure (Morizet et al., 2015). In 13C MAS NMR spectra, on 

the other hand, the peak for bridging carbonates seems to shift to higher 

frequency region with increasing pressure. This may be related to the 

formation of bridging carbonates not only [4]Si(CO3)[4]Si but also 

[4]Si(CO3)[5,6]Si and the increase of C-O bond lengths with increasing 

pressure. Further studies on the NMR chemical shielding of [4]Si(CO3)[5,6]Si 

by quantum chemical calculations are needed to confirm the origin of non-

linear peak shift in C-bearing NS3 glasses at high pressure. 

 

5.3.6. Quantification of carbon species in albite glasses by 13C MAS NMR 

spectra 

The quantitative measurements of carbon species in albite glasses are 

based on the peak intensity of central peak and spinning side bands and the 

measured T1 of each carbon species in 13C MAS NMR spectra. The measured 

T1 times of CO2 and CO32- in C-bearing albite glasses at 9.2 GPa are ~30 s 

and ~28 s, respectively. Compared with the previous T1 of CO2 in C-bearing 

albite glasses at 1.5 and 6 GPa (43 s and ~140 s, respectively), the T1 at 9.2 

GPa is much shorter due to the higher Co contents in the sample (~0.4% of 

Co due to the detection limit of the scale). The peak area of CO2 and CO32- 

are normalized by the measured T1 at 9.2 GPa. Note that the measure T1 of 

CO2 and CO32- are relatively similar and we used the same T1 for CO2 and 

CO32- in C-bearing albite glasses at 1.5 and 6 GPa due to the difficulties in 

the fitting of T1 for CO32- with low signal to noise ratio (Kim et al., 2018). 

Therefore, an assumption for using the same T1 for CO2 and CO32- in C-

bearing albite glasses at high pressure up to 6 GPa may not result in the 

severe error in the quantification of carbon species at high pressure.  
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Figure 5.9 shows the carbon contents of CO2, CO32-, and CO in albite 

glasses at high pressure up to 9.2 GPa taking into consideration the T1 time 

of carbon species. The estimated amount of CO2, CO32-, and CO at 9.2 GPa 

are 4.12, 3.03, and 0.04 wt%, respectively. The calculated carbon contents in 

the current study (9.2 GPa) together with the previous data from Kim et al. 

(2018) is generally consistent with the trend observed in previous theoretical 

calculations (Guillot and Sator, 2011). The fraction of CO32- increases from 

~31% at 1.5 GPa, ~27 % at 6 GPa to ~42% at 9.2 GPa, which clearly shows 

the drastic increase of carbonates above 6 GPa, similar to the previous study 

(Guillot and Sator, 2011). 

While the estimated fraction of carbon species in carbon-bearing 

albite glasses at high pressure up to 9.2 GPa gradually increases with 

increasing pressure from ~1.4 wt% at 1.5 GPa to ~7.9 wt% at 9.2 GPa, 

respectively, the actual carbon contents carried by silicate melts would be 

different from those estimated from 13C MAS NMR spectra. Note that 

carbon carrying capacity of silicate melts only provides the information on 

the maximum carbon contents that can be carried by the silicate melts and 

actual carbon contents in silicate melts from in the mantle vary with its 

location. Recent study suggested the dissolution of carbon species into 

water and transport of carbon species into mantle wedge during the 

subduction of oceanic crust (e.g., Sverjensky et al., 2014) while some argued 

that there is no significant transfer of carbon species into the mantle wedge 

(Dasgupta and Hirschmann, 2010; Kelemen and Manning, 2015; Kerrick and 

Connolly, 2001). Based on these experimental data, the estimated carbon 

flux between subducting oceanic crust and mantle wedge at depth < 60–70 

km varies from 0.06 to 6 Mt C/y (Kelemen and Manning, 2015). It is difficult  
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Figure 5.9. Carbon contents in the C-bearing albite glasses with increasing 

pressure up to 9.2 GPa. Black, blue, red, and violet closed circles 

correspond to total carbon, CO2 CO32-, and CO contents in albite glasses 

calculated from 13C MAS NMR spectra, respectively. Open triangle, 

rectangle, and diamonds correspond to previous data from Stolper et al. 

(1987), Brooker et al. (1999), and Guillot and Sator (2011), respectively. 
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to estimate the actual carbon contents in the silicate melts from in the mantle 

based on the current study because of the heterogeneity in the distribution 

of carbon species in the mantle and difficulties in the estimating the 

remnant carbon species in the subducting slab. Therefore, although the 

estimated carbon carrying capacity of carbon-bearing albite melts gradually 

increases up to ~7.9 wt% with increasing pressure up to 9.2 GPa, the actual 

carbon contents in silicate melts formed at ~9 GPa may be different from 

those estimated in the current study. Based on the reported carbon contents 

in the fertile mantle, the average carbon contents in basaltic melts are 

estimated as ~0.2 wt% (Ni and Keppler, 2013). 

 

5.4. Discussion 

5.4.1. Peak assignment of graphite and nano-diamond quenched from 

high pressure and high temperature conditions 

The peak assignment in the Raman spectra of C-bearing 

aluminosilicate glasses at 14 GPa is based on the previous Raman studies on 

diamond, lonsdaleite, and graphite (Ferrari and Robertson, 2001; Goryainov 

et al., 2014; Knight and White, 1989; Kuzmany et al., 2004; Schindler and 

Vohra, 1995; Vidano and Fischbach, 1978) and previous 13C NMR studies on 

nano-diamonds (Donnet et al., 2000; Komatsu et al., 2007; Panich, 2017; 

Shames et al., 2002). The broad peak at ~1540 cm-1 in Raman spectra for the 

surface of the C-bearing aluminosilicate crystals is assigned as G bands of 

cubic graphite, respectively (Hanfland et al., 1989; Knight and White, 1989; 

Perraki et al., 2006; Vidano and Fischbach, 1978). The G band of cubic 

graphite shows asymmetric feature (longer tails to the higher frequencies) 

and this may be due to the presence of D’ bands at ~ 1600 cm-1 which is 
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related to the structural disorder of graphite (Vidano and Fischbach, 1978).  

Previous studies on nano-diamond showed three peaks for nano-

diamonds at ~1150, ~1350, and ~1550 cm-1 where the presence of a peak at 

~1150 cm-1 is the key to find nano-diamonds (Ferrari and Robertson, 2004; 

Kuzmany et al., 2004; Prawer et al., 2000; Schindler and Vohra, 1995). The 

obtained Raman spectra for C-bearing aluminosilicate glasses at 14 GPa 

shows peaks at ~1250, ~1290, ~1350, and ~1530 cm-1, and vibrational modes 

at ~1250 cm-1 is ~100 cm-1 away from the reported peak position of nano-

diamonds. Previous study on the high-pressure experiment on 

polycrystalline pyrolytic graphite at room temperature reported the 

presence of intermediate structures between diamond and graphite, 

showing bands at 1250 cm-1, 1294 cm-1, 1326 cm-1, and 1574 cm-1 (Schindler 

and Vohra, 1995), which is lonsdaleite, often called as hexagonal diamonds 

(Goryainov et al., 2014; Hazen et al., 2013). Both diamonds and lonsdaleite 

consist of sp3 bonding of carbon while the stacking sequence of diamonds is 

a three-layer sequence, filling all the empty site of the first layer, that of 

lonsdaleite is a two-layer sequence that one empty site exists when stacking 

one graphene-like layer to another (Hazen et al., 2013). Lonsdaleite is often 

observed in shock-compressed meteorites, where the impact of pressure and 

temperature is short (Hazen et al., 2013). Here, we heated the C-bearing 

aluminosilicate crystals for 5 min at 14 GPa, which is short for crystal 

formation. The heating of graphite at 2300 °C at 15–18 GPa for 10–10000 s 

made mixtures of cubic- and hexagonal-diamonds of 10–30 nm size 

(Sumiya, 2004). Therefore, heating of 5 min at 14 GPa may be too short to 

form cubic-diamonds in the system. The residence time of carbon species in 

the mantle is several millions of years, which is much longer than our 
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experimental heating conditions. In geological conditions, the formation of 

cubic diamonds is expected. While the crystal structure of cubic- and 

hexagonal diamonds are different, peak assignment of nano-diamonds in 

13C MAS NMR spectra does not show the differences in cubic- and 

hexagonal-diamonds as both diamonds have a same sp3 bonding and their 

differences are in the stacking sequences of the layers. Therefore, it is 

necessary to use Raman spectroscopy or X-ray diffractions to identify the 

exact structure of nano-diamonds in the sample. 

 

5.4.2. Peak broadening of CO2 in C-bearing albite glasses with increasing 

pressure 

The peak widths of CO2 in C-bearing albite glasses increase from 4 

ppm to 8 ppm with increasing pressure from 6 GPa to 9.2 GPa, respectively, 

while the peak position is unchanged with respect to the pressure (Figure 

5.3). The peak broadening of dissolved CO2 may be related to the increase of 

spin-lattice relaxation time (T1) of CO2 with increasing pressure (Etesse et 

al., 1992) and/or pressure-induced topological disorder of CO2. Previous 

study reported that the spin-relaxation time of gas phase CO2 increases with 

increasing pressure and the changes of spin-relaxation time of CO2 with 

respect to pressure show a threshold pressure that sudden increase of T1 

occurred (Etesse et al., 1992). In addition, the diffusion of dissolved CO2 

would decrease with increasing pressure and various topologically different 

CO2–bridging oxygen (BO) site would exist with increasing pressure, such 

as variations dihedral angle of CO2–BO and CO2–BO bond lengths, resulting 

in the broadening of peak above 6 GPa. It is interesting to note that the 

variations in CO2–BO bond lengths seems not to result in the peak shift to 
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the lower frequency (negative region, more shielded) until the bond lengths 

of CO2–BO decreases below a threshold length as the peak position of CO2 

in fluid inclusion in enstatite at 1. 5 GPa and that of dissolved CO2 in albite 

glasses at 1.5 GPa is identical (Kim et al., 2016, 2018). The additional 

interaction between CO2–BO occurs in dissolved CO2 in albite glasses at 1.5 

GPa only causes the presence of spinning side bands. Therefore, it seems 

that the distance between CO2–BO seems to have negligible effect on the 

chemical shift of CO2 in 13C MAS NMR spectra at high pressure up to 9.2 

GPa. Therefore, the non-linear changes in T1 of CO2 with increasing 

pressure and the topological disorder between CO2-BO with increasing 

pressure would result in the peak broadening of CO2 in albite glasses with 

increasing pressure. 

 

5.4.3. Redox reaction of carbon and the oxygen fugacity of mantle 

Redox reaction of carbon species is one of the well-known processes 

to control the oxygen fugacity of mantle (Stagno et al., 2013) and the 

increase of atmospheric oxygen during the early Earth (Duncan and 

Dasgupta, 2017; Ruhl and Kürschner, 2011). The redox reaction of carbon 

species in mantle minerals are usually related to the redox reaction of 

transition metals in minerals as followed (Stagno et al., 2013). 

MgSiO3 + MgCO3 = Mg2SiO4 + C + O2 

enstatite magnesite  olivine diamond 

4Fe2SiO4 + 2FeSiO3 + O2 = 2Fe3Fe23+Si3O12 

olivine  orthopyroxene   garnet  

In the current study, we used Na2CO3 as a carbon reservoir and we obtained 

cubic graphite, hexagonal diamonds, and unidentified carbonate minerals 
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after the reaction of Na2CO3 + Al2O3 + SiO2 at 14 GPa. The formations of 

both carbonate minerals and hexagonal nano-diamonds are observed, and 

this can be explained in the following equation 

3 CO2 = C + 2 CO32- 

Based on the equation, the formation of graphite with carbonate minerals 

may not form free oxygen when the fraction of carbonate minerals over 

nano-diamonds (Xcarbonate/Xdiamond) equals 2. On the other hand, the free 

oxygen would be formed even with the presence of carbonate minerals 

when Xcarbonate/Xdiamond is less than 2. Together with the peak intensity of 

carbonate minerals and nano-diamonds in 13C MAS NMR spectra, the 

estimated Xcarbonate/Xdiamond is ~15. Therefore, the presence of free oxygen by 

the formation of nano-diamonds would be negligible in the current sodium 

aluminosilicate glasses and crystals at high pressure.  

When the presence of neutral carbon species is observed with the presence 

of silicate melts and the absence of carbonate minerals, this may have an 

implication on the free oxygen in the silicate melts at high pressure. Silicate 

melts contains some amounts of free oxygen depending on the composition 

of silicate melts (Lee and Kim, 2015; Stebbins, 2017) and the estimated 

fraction of free oxygen in lead-disilicate glasses is ~6% (Lee and Kim, 2015) 

and the fraction of free oxygen decreases with increasing the fraction of SiO2 

in the silicate melts (Stebbins, 2017). We put 7.9 wt% of CO2 in the C-bearing 

aluminosilicate crystals and glasses at 14 GPa. Assuming that the all the CO2 

transforms into C + O2, the amount of free oxygen produced is ~6.9 mol%, 

which is similar to the fraction of free oxygen in lead disilicate glasses (Lee 

and Kim, 2015). However, as the presence of new carbonate species are 

observed in 13C MAS NMR spectra (Figure 5.4) and the proportion of nano-
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diamonds are one-tenth of that of carbonate species at high pressure, the 

produced free oxygen should be less than 0.7 mol%. Though the fraction of 

aluminosilicate glasses in the sample is relatively low (~10%) based on the 

peak intensity of glass in 29Si MAS NMR spectra (Figure 5.6), 0.7 mol% of 

free oxygen could be consumed in silicate melts. This experiment may 

indicate that the formation of silicate melts at high pressure can also affect 

the oxygen fugacity of the mantle by storing free oxygen in the magma. The 

volcanic eruption of magma containing excess free oxygen may result in the 

release of O2 in the proto-atmosphere without the presence of O2 releasing 

living organisms. The recent study reported inorganic processes in the 

formation of O2 in the atmosphere (Hu et al., 2016). The presence of FeO2 in 

the lower mantle was observed at ~76 GPa and the upwelling of FeO2 

through the magma eruption may cause the release of excess O2 to the 

atmosphere as the Fe2O3 and Fe3O4 is stable at lower pressure (Hu et al., 

2016). The presence of the redox reaction of carbon species with silicate melt 

may also be applicable to the inorganic formation of O2 in the atmosphere. 

The previous study reported the episodic subduction of crust during 

Precambrian period (~1.1, 1.9–2.1, 2.7, and 3.5 Ga) based on the apparent 

polar wander angular velocities and Nb/Th ratio (O’Neil et al., 2007). The 

reported episodic subduction of crust at ~2.7 and ~3.5 Ga may be related to 

the emission of oxygen to the proto-atmosphere with volcanic activities in 

the arc. Thus, the current result may also imply the effect of silicate melts on 

the redox reaction of inorganic carbon species at high pressure and the 

effect of inorganic carbon species on the formation of O2 in the proto-

atmosphere. 
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5.5. Conclusion 

In this study, we identify the pressure-induced speciation of carbon 

in binary sodium silicate glasses and ternary sodium aluminosilicate glasses 

and crystals at high pressure up to 14 GPa. In both systems, the fraction of 

bridging carbonates increases with increasing pressure. In polymerized 

albite glasses at 9.2 GPa, the peak widths of CO2 increase almost twice to 

those at 6 GPa, which may be related to the increase of T1 time of CO2 and 

pressure-induced topological disorder of CO2 weakly bound to bridging 

oxygen. The formation of highly coordinated Al and Si is not observed in C-

bearing albite glasses at high pressure up to 9.2 GPa while the topological 

disorder of both network formers increases with increasing pressure, 

evidenced by the increase of peak widths. In depolymerized sodium silicate 

glasses, the peak position of bridging carbonates seems to shift towards 

higher frequency region in 13C MAS NMR spectra and that of [4]Si shifts 

towards lower frequency region. This may be related to the formation of 

bridging carbonates and the shielding and deshielding effect on each 

nuclide. In C-bearing aluminosilicate crystals and glasses at 14 GPa, the 

presence of nano-diamonds is observed in both Raman and 13C NMR 

spectra. As the Na2CO3 was used as a carbon reservoir, the formation of 

nano-diamonds indicates that free oxygens are stored in the silicate melts. 

This implies that the formation of silicate melts at high pressure may result 

in the reduction of carbon species from carbonates to diamonds without the 

redox reaction with metal ions and affects the oxygen fugacity in the mantle.  
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Appendix.  

A1. Abstract Published in Korean Journal 

 

Pressure-load calibration of multi-anvil press and the thermal 

gradient within the sample chamber 

Eun Jeong Kim and Sung Keun Lee 

Published in Journal of Mineralogical Society of Korea, 31, 161-172 (2018) 

 

Multi-anvil press (MAP) is one of the high pressure apparatuses and 

often generates the pressure-conditions ranging from 5 to 25 GPa and 

temperature-conditions up to 2300 °C. The MAP is, therefore, suitable to 

explore the pressure-induced structural changes in diverse earth materials 

from Earth’s mantle and the bottom of the mantle transition zone (~660 km). 

In this study, we present the experimental results for pressure-load 

calibration of the 1100-ton multi-anvil press equipped in the authors’ 

laboratory. The pressure-load calibration experiments were performed for 

the 14/8 step, 14/8 G2, 14/8 HT, and 18/12 assembly sets. The high 

pressure experiments using α-quartz, wollastonite-structure of CaGeO3, and 

forsterite as starting materials were analyzed by powder X-ray diffraction 

spectroscopy. The phase transition of each mineral indicates the specific 

pressure that is loaded to a sample at 1200 °C: a transition of α-quartz to 

coesite at 3.1 GPa, that of garnet-structure of CaGeO3 to perovskite-structure 

at 5.9 GPa, that of coesite to stishovite at 9.2 GPa, and that of forsterite to 

wadsleyite at 13.6 GPa. While the estimated pressure-load calibration curve 

is generally consistent with those obtained in other laboratories, the 
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deviation up to 50 tons is observed at high pressure above 10 GPa. This is 

partly because of the loss of oil pressure at high pressure resulting from the 

differences in a sample chamber, and the frictional force between pressure 

medium and second anvil. We also report the ~200 °C/mm of thermal 

gradient in the vertical direction of the sample chamber of 14/8 HT 

assembly. The pressure-load calibration curve and the observed thermal 

gradient within the sample chamber can be applied to explain the structural 

changes and the relevant macroscopic properties of diverse crystalline and 

amorphous earth materials in the mantle. 

  



267 

 

A2. Publication list 

Journal Articles 

International Journals 

Kim, E. J., Fei, Y., and Lee, S. K., Effect of pressure on the short-range 

structure and speciation of carbon in alkali silicate and aluminosilicate 

glasses and melts at high pressure up to 8 GPa: 13C, 27Al, 17O and 29Si 

solid-state NMR study, Geochimica et Cosmochimica Acta, 224 3270-343 

(2018). 

Lee, S. K., Han, R., Kim, E. J., Jeong, G.Y., Khim H., and Hirose, T., Quasi-

equilibrium melting of quartzite upon extreme friction, Nature 

Geoscience, 10 436-441 (2017).  

Ryu, Y.-J, Yoo, C.-S., Kim, M., Yong, X., Tse, J., Lee, S. K., Kim, E. J., 

Hydrogen-doped polymeric carbon monoxide at high pressure, The 

Journal of Physical Chemistry C, 121 11078-11086 (2017) 

Kim, E. J., Fei, Y., and Lee, S. K. Probing carbon-bearing species and CO2 

inclusions in amorphous carbon-MgSiO3 enstatite reaction products at 

1.5 GPa: Insights from 13C high-resolution solid-state NMR. American 

Mineralogist, 101 1113-1124 (2016) 

Lee, S. K., Kim, H. –I., Kim, E. J., Mun, K. Y., and Ryu, S. B., Extent of 

disorder in magnesium aluminosilicate glasses: Insights from 27Al and 

17O NMR, Journal of Physical Chemistry C, 120 737-749 (2016) 

Lee, S. K. and Kim, E. J., Probing metal-bridging oxygen and 

configurational disorder in amorphous lead silicates: Insights from 17O 

solid-state nuclear magnetic resonance, Journal of Physical Chemistry C, 

119 748-756 (2015) 



268 

 

Lee, S. K., Kim, H. N., Lee, B. H., Kim, H. I., Kim, E. J. Nature of chemical 

and topological disorder in borogermanate glasses: Insights from B-11 

and O-17 solid-state NMR and quantum chemical calculations. Journal of 

Physical Chemistry B 114 412-420 (2010) 

 

Domestic Journals (Korean) 

Kim, E. J. and Lee, S. K. Pressure-load calibration of multi-anvil press and 

the thermal gradient within the sample chamber. Journal of Mineralogical 

Society of Korea 31(3) 161-172 (2018) 

Kim, E. J. and Lee, S. K. Atomic structure of dissolved carbon in enstatite: 

Raman spectroscopy and quantum chemical calculations of NMR 

chemical shift. Journal of Mineralogical Society of Korea 24 289-300 (2011) 

 

In Preparation 

Kim, E. J. and Lee, S. K., (in preparation) Pressure-induced speciation of 

carbon in carbon-bearing silicate glasses quenched from melts at high 

pressure up to 14 GPa: Implications for deep carbon cycle near upper 

mantle-transition zone boundaries 

Kim, E. J., Kim, Y. H., and Lee, S. K., (in preparation) Effect of chemical 

disorder on structural changes in Na-Li silicate glasses quenched from 

melts at high pressure 

 

Conference Abstracts 

International Conferences 

Kim, E. J., Fei, Y., and Lee, S. K. Effect of pressure on the speciation of 

carbon in silicate melts and crystals at high pressure up to 8 GPa: 



269 

 

Insights from multi-nuclear solid-state NMR. Deep Carbon Observatory 

Early Career Scientist Workshop, Catania, August 28-September 2, 2017. 

(Oral and poster) 

Kim, E. J., Fei, Y., and Lee, S. K. Effect of pressure on the structural changes 

of silicate network of fluid-bearing silicate melts: Insights from multi-

anvil press and multi-nuclear solid-state NMR. 2016 IUCr High-Pressure 

Workshop, Pohang, September 20-24, 2016. (Poster) 

Kim, E. J., Fei, Y., and Lee, S. K. Effect of pressure on the carbon speciation 

in silicate glasses and melts: Insights from multi-nuclear solid-state 

NMR. 2015 American Geophysical Union Fall Meeting, San Francisco, 

December 14-18, 2015. (Poster) 

Kim, E. J., Lee, S. K., and Fei, Y., Effect of pressure on the speciation of 

carbon in silicate glasses: A view from multi-nuclear high resolution 

solid-state NMR. The 7th Asian Conference on High Pressure Research, 

Bangkok, January 16-18, 2015. (Poster) 

Kim, E. J. and Lee, S. K., Pressure-induced speciation and relaxation of 

carbon in silicate glasses: Insights from 13C solid-state NMR. 

International Symposium on Non-Oxide and New Optical Glasses, Jeju, 

August 24-28, 2014. (Oral) 

Kim, E. J., Fei, Y., Tschauner, O. D., Mosenfelder, J. L., Asimow, P. D., and 

Lee, S. K., Effects of pressure on short-range structure and carbon 

speciation in silicate melts: Insights from multi-nuclear NMR and X-ray 

Raman scattering. 2013 American Geophysical Union Fall Meeting, San 

Francisco, December 9-13, 2013. (Poster) 

 

Domestic Conferences 



270 

 

Kim, E. J. and Lee, S. K., Speciation of carbon in aluminosilicate melts and 

crystals at the lower part of upper mantle using Raman spectroscopy. 

Fall Meeting of the Geological Society of Korea, Gyeongju, October 24-

27, 2018. (Poster) 

Kim, E. J. and Lee, S. K., Carbon-induced structural changes in silicate melts 

at 9 GPa using solid-state NMR. Annual Joint Conference of Petrological 

Society of Korea and Mineralogical Society of Korea, Cheongju, May 28-

29, 2018. (Poster) 

Kim, E. J., Kim Y. H., and Lee, S. K., Effect of pressure on the distribution of 

cations in Na-Li trisilicate glasses: Insights from solid-state NMR. 

Annual Joint Conference of Petrological Society of Korea and 

Mineralogical Society of Korea, Daegu, May 28-29, 2017. (Poster) 

Kim, E. J. and Lee, S. K., Structural changes in Na-Li silicate glasses with 

varying pressure and composition using multi-anvil press. Fall Meeting 

of the Geological Society of Korea, Pyeongchang, October 26-29, 2016. 

(Oral) 

Kim, E. J. and Lee, S. K., Structural changes of Na-Li silicate glasses with 

varying pressure: Insights from solid-state NMR and Raman 

spectroscopy. Annual Joint Conference of Petrological Society of Korea 

and Mineralogical Society of Korea, Busan, May 26-27, 2016. (Oral) 

Kim, E. J. and Lee, S. K., Pressure-load calibration of multi-anvil press for 

high pressure experiments up to the upper mantle-transition zone 

boundary. Fall Meeting of the Geological Society of Korea, Jeju, October 

28-29, 2015. (Poster) 

Kim, E. J. and Lee, S. K., Preliminary studies for high pressure experiments 

using mutli-anvil press: Pressure-load calibration using mineral phase 



271 

 

transition. Annual Joint Conference of Petrological Society of Korea and 

Mineralogical Society of Korea, Andong, May 28-29, 2015. (Oral) 

Kim, E. J. and Lee, S. K., Effect of pressure on speciation of carbon in silicate 

melts using 13C solid-state NMR. Annual Joint Conference of Petrological 

Society of Korea and Mineralogical Society of Korea, Busan, May 29-30, 

2014. (Oral) 

Kim, E. J. and Lee, S. K., Solubility and speciation of carbon in enstatite and 

silicate glasses at high pressure: Distribution of carbon in the Earth 

interior. Fall Meeting of the Geological Society of Korea, Jeju, October 23-

27, 2013. (Oral) 

Kim, E. J., Lee, S. K., and Fei, Y., Solubility and speciation of carbon in 

crystalline and amorphous silicates at high pressure using 13C MAS 

NMR. 2013 Summer Meeting for the Korean Magnetic Resonance 

Society, Muchangpo, July 1-3, 2013. (Poster) 

Kim, E. J., Lee, S. K., and Fei, Y., Speciation of carbon in albite glass at high 

pressure using solid-state C-13 NMR. Annual Joint Conference of 

Petrological Society of Korea and Mineralogical Society of Korea, 

Daejeon, May 23-24, 2013. (Oral) 

Kim, E. J. and Lee, S. K., Quantum calculations of equilibrium silicon 

isotope fractionation factor for silicates with varying degree of 

polymerization: Implications for Si isotope composition in precambrian 

chert. Fall Meeting of the Geological Society of Korea, Jeongseon, 

October 24-27, 2012. (Oral) 

Kim, E. J., Lee, S. K., and Fei, Y., Atomistic origins of carbon solubility into 

crystalline enstatite at 1.5 GPa. Fall Meeting of the Geological Society of 

Korea, Jinju, May 26-27, 2011. (Oral)  



272 

 

요약 (국문초록) 

 

맨틀은 지구상에서 가장 큰 탄소 저장고로 맨틀 내에서의 탄소의 

화학종 변화는 규산염 용융체의 지구물리 및 지구화학적 성질 변화, 맨틀 

내의 산소 퓨가시티 조절, 그리고 맨틀 내의 탄소 분포에 중요한 역할을 

한다. 이러한 중요성으로, 규산염 용융체 내에 용해된 탄소 화학종에 

대한 연구는 4 GPa 까지의 압력 조건에서 활발히 수행되었다. 그러나 

시료 합성에서의 어려움으로, 상부 맨틀에 해당하는 4–14 GPa 의 압력 

조건에서 규산염 용융체 내의 탄소 화학종 변화와 그에 따른 규산염 

물질의 구조 변화에 대한 연구는 아직까지 진행되지 않았다. 

본 학위논문에서는 결정질 및 비정질 규산염 물질 내에 존재하는 

탄소에 대해 압력에 의한 화학종 변화를 체계적으로 확인하고자 다핵종 

(13C, 27Al, 29Si, 17O, and 7Li) 고상 핵자기공명 분광분석 (NMR)과 라만 

분광분석을 이용했다. 논문의 주 목적은 결정질 및 비정질 규산염 물질 

내에 존재하는 탄소 화학종을 분석하고 정량화하는 것이다. 압력에 의한 

알칼리 규산염 용융체의 구조 변화도 함께 수행되었다. 

우선 13C 로 부화된 비정질 탄소와의 반응으로 생성된 엔스테 

타이트 (enstatite) 결정을 1.5 GPa 에서 합성하고, 시료 내에 존재하는 

탄소 화학종을 함유한 유체 포획물 및 탄소 화학종에 대한 체계적인 

분석 방법을 수립했다. 라만 스펙트럼에서는 유체 포획물 내에서 CO2 및 

CO, CH4, H2O, H2와 같은 다양한 화학종이 불균질하게 분포하고 있음을 

확인하였으나, 13C MAS NMR 스펙트럼에서는 CO2, CO와 더불어 라만에서 

확인되지 않았던 CO32-가 확인되었다. 라만 스펙트럼에서 확인되지 

않았던 화학종이 결정질 규산염 내부에 용해된 화학종인지를 확인하기 

위해 13C MAS NMR 스펙트럼에서의 피크 세기와 시료 내의 13C 함량에 

대한 관계식을 세웠다. 관계식으로부터 CO32-는 28–45 ppm 존재하는 
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것으로 확인되었으며, 이것은 엔스테타이트 결정 내의 탄소 용해도 

(0.05–4.7 ppm)보다 훨씬 높으므로 CO32-는 분리된 상으로 존재할 것으로 

생각된다. 본 연구에서 엔스테타이트 내의 탄소 화학종을 동정하기 위해 

사용된 라만 및 NMR 방법론을 이용하여 앞으로 규산염 결정 내에 

존재하는 탄소 화학종을 정량적으로 분석할 수 있을 것으로 생각된다. 

8 GPa 까지의 압력에서 이성분계 Na-규산염 용융체와 삼성분계 

Na-알루미노규산염 용융체 내에 존재하는 탄소의 압력에 따른 화학종 

변화와 그에 따른 규산염 용융체의 구조 변화에 대해 이해하고자 

다핵종(13C, 27Al, 29Si, 17O) 고상 NMR 을 이용한 연구가 수행되었다. 

이성분계 Na-규산염 용융체에서는 규산염 용융체 내에 용해된 탄산염 

이온만이 관찰되었으며, 6 GPa 이상의 압력에서는 규산염 사면체와 

연결된 연결탄산염의 형성이 확인되었다. 그에 반해 삼성분계 Na-

알루미노규산염 용융체에서는 CO2, CO, CO32-가 확인되었으며, 6 GPa까지 

압력이 증가함에 따라 탄산염 이온의 분율이 증가했다. 네 종류의 탄산염 

화학종 중, Al(CO3)Si 의 분율이 압력의 증가에 따라 가장 많이 

증가했으며 이것은 27Al 3QMAS NMR 스펙트럼에서 보이는 Al 의 

위상학적 무질서도의 증가와 관련이 있는 것으로 생각된다. 13C MAS 

NMR 에서의 피크 세기와 CO2의 스핀-격자 완화 시간으로부터 계산했을 

때, Na-알루미노규산염 용융체 내에 존재하는 탄소의 총함량은 1.5 

GPa 에서는 ~1 wt%, 6 GPa 에서 ~4 wt%로 유추된다. 4 GPa 이상의 

압력에서 규산염 용융체 내의 탄소 화학종 변화에 대한 본 연구 결과는 

상부 맨틀 내에 존재하는 규산염 용융체 내에서의 탄소 화학종 및 

함량에 대한 이해를 도울 것으로 생각된다. 

탄소가 없는 규산염 용융체에서의 압력에 따른 구조 변화를 

이해하고 혼합 양이온 효과를 확인하기 위해서 8 GPa 까지의 고압 

환경에서 Na-Li 규산염 용융체의 구조 변화에 대해 NMR 분광분석을 
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통해 연구했다. 29Si MAS NMR 스펙트럼은 리튬 함량(XLi)과 관계없이 

압력이 증가함에 따라 고배위수의 Si 함량이 대체적으로 비슷하게 

나타남을 보였다. 7Li MAS NMR 스펙트럼에서는 압력 및 XLi이 증가함에 

따라 피크 위치와 폭이 점진적으로 변하는 양상을 보였다. Na-Li 규산염 

용융체 내의 7Li 의 스핀-스핀 완화 시간으로부터, Na 과 Li 의 양이온 

무질서도는 1 기압에서는 무작위 분포였다가 고압으로 갈수록 보다 

화학적 질서를 이룬다. 

14 GPa까지의 고압 환경에서 탄소를 함유하고 있는 비정질 규산염 

내에서 압력에 따른 탄소 화학종 변화를 라만 분광분석과 NMR 을 

이용해 분석했다. 탄소를 함유한 Na-알루미노규산염 용융체에서는 CO2와 

CO32- 가 존재함을 확인했고, 9.2 GPa 까지 압력이 증가할 때 연결 

탄산염의 분율이 증가하며, 이러한 경향성은 이전의 계산 결과와 

일치한다. 14 GPa 에서 합성된 탄소를 함유한 Na-알루미노규산염 

결정에서는 나노다이아몬드가 확인되었고, 13C MAS NMR 에서는 

나노다이아몬드와 탄산염 광물의 존재가 확인됐다. 탄소를 포함한 

이성분계 Na-규산염 용융체에서는 14 GPa 까지 압력이 증가함에 따라 

연결탄산염의 분율이 60%까지 증가함을 확인했다. 이러한 압력에 따른 

연결 탄산염의 증가는 고압 환경에서 탄소를 포함한 비정질 용융체의 

중합화과정에 대한 구조적 프록시로 사용될 수 있으며 탄산암 용융체와 

규산염 용융체 사이의 불응 분리에 관한 미시적 정보를 제공할 것으로 

생각된다. 

 

주요어: 탄소 화학종, 규산염 용융체, 고압 환경, 고상 핵자기공명 

분광분석, 라만 분광분석 
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