158 research outputs found

    ์™ธ๋ถ€ ๊ตฌ์กฐ๋ฌผ์„ ์žฅ์ฐฉํ•œ ์ € ์„ธ์žฅ๋น„ ๋ฐœ์‚ฌ์ฒด์˜ ๊ณต๋ ฅ ํŠน์„ฑ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2020. 8. ๊น€๊ทœํ™.The Korea Aerospace Research Institute(KARI) has developed the Test Launch Vehicle(TLV) to confirm the performance of a 75 tonf engine in the Korea Space Launch Vehicle(KSLV)-II. And the TLV flight test was successful on November 28, 2018. In this paper, the solutions using CFD of the problem related to the longitudinal control of the launch vehicle due to the flow around the umbilical plate during the development process of the TLV, which intends to use the second and third stages of the KSLV-II with slight changes in configuration has been summarized. Owing to the influence of the flow around the umbilical plate, the normal force changed with the change in roll angle, and the center of pressure shifted accordingly. The controllability of the Resemblant TLV was verified by obtaining the Control Ratio(CR, the ratio of control torque to aerodynamic torque), which is the control requirement of the launch vehicle. Meanwhile, the height of the umbilical plate is lowered and the aerodynamic characteristics are predicted to confirm that the controllability increases compared to the original umbilical plate. In addition, the section shape of the umbilical plate is changed from one ellipse to two small circles to confirm that the CR increases. Finally, the position of the umbilical plate moves forward to Payload Fairing. There are various possible approaches to increase the CR of the Resemblant TLV, such as increasing the deviation angle of the nozzle and increasing the thrust of the engine. However, the simplest way to improve the controllability by increasing the CR is to reduce the height of the protuberance such as the umbilical plate and minimize the influence of the flow around the protuberance. And the section of this plate is smaller circular shape rather than an elliptical shape to increase the controllability. When developing the low aspect ratio launch vehicle using some stages and parts of the mother launch vehicle for the specific purpose such as the engine performance testing during the development of the mother launch vehicle, careful attention should be paid to the design of the protuberance such as the umbilical plate owing to control problems. This study confirmed that controllability can be a problem when the umbilical plate is mounted in the aft body of the low aspect ratio launch vehicle. It is expected that this paper could be used as a reference material in the design of low aspect ratio launch vehicles by providing an intuitive input for the design of the protuberance and control device of this type of launch vehicle.ํ•œ๊ตญํ•ญ๊ณต์šฐ์ฃผ์—ฐ๊ตฌ์›์—์„œ๋Š” ํ•œ๊ตญํ˜•๋ฐœ์‚ฌ์ฒด๋ฅผ ๊ฐœ๋ฐœ ์ค‘์— ์žˆ์œผ๋ฉฐ, ํ•œ๊ตญํ˜•๋ฐœ์‚ฌ์ฒด์˜ 75ํ†ค ์•ก์ฒด๋กœ์ผ“์—”์ง„์˜ ์„ฑ๋Šฅ ์‹œํ—˜์„ ์œ„ํ•ด ์‹œํ—˜๋ฐœ์‚ฌ์ฒด๋ฅผ ๊ฐœ๋ฐœํ•˜์—ฌ 2018๋…„ 11์›” 28์ผ ๋น„ํ–‰์‹œํ—˜์„ ์„ฑ๊ณตํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ „์‚ฐ์œ ๋™ํ•ด์„๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜์—ฌ ์—„๋นŒ๋ฆฌ์นผ ํ”Œ๋ ˆ์ดํŠธ์™€ ๊ฐ™์€ ์™ธ๋ถ€ ๊ตฌ์กฐ๋ฌผ์„ ์žฅ์ฐฉํ•œ ์‹œํ—˜๋ฐœ์‚ฌ์ฒด ์œ ์‚ฌ ํ˜•์ƒ์— ๋Œ€ํ•ด ๊ณต๋ ฅ ํŠน์„ฑ์„ ์˜ˆ์ธกํ•˜๊ณ , ๋Œ์ถœ๋ฌผ ์ฃผ๋ณ€ ์œ ๋™ ํ˜„์ƒ์„ ๋ถ„์„ํ•˜์—ฌ ๋ฐœ์‚ฌ์ฒด ์ข…์•ˆ์ •์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์™ธ๋ถ€ ๊ตฌ์กฐ๋ฌผ ์ฃผ๋ณ€ ์œ ๋™ ํ˜„์ƒ์€ ์ˆ˜์ง๋ ฅ์˜ ๋ณ€ํ™”๋ฅผ ์•ผ๊ธฐํ•˜์—ฌ ์ตœ์ข…์ ์œผ๋กœ ๋ฐœ์‚ฌ์ฒด ์ข…์•ˆ์ •์„ฑ์— ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค. ์ด๋ฅผ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ๋Œ์ถœ๋ฌผ์˜ ๋†’์ด, ๋‹จ๋ฉด ํ˜•์ƒ ๋ฐ ์žฅ์ฐฉ์œ„์น˜๋ฅผ ๋ณ€ํ™”์‹œ์ผœ ๊ฐ€๋ฉฐ, ๊ทธ ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋Œ€ํ˜• ๊ตฌ์กฐ๋ฌผ์„ ์žฅ์ฐฉํ•œ ์ € ์„ธ์žฅ๋น„ ๋ฐœ์‚ฌ์ฒด์˜ ์ข…์•ˆ์ •์„ฑ์„ ํ™•๋ณดํ•˜๋ ค๋ฉด, ์—”์ง„ ์ถ”๋ ฅ์„ ๋†’์ด๊ฑฐ๋‚˜ ์—”์ง„ ๋…ธ์ฆ์˜ ํšŒ์ „๊ฐ์„ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ• ๋“ฑ์ด ์žˆ์ง€๋งŒ, ๊ฐ€์žฅ ๊ฐ„๋‹จํ•œ ๋ฐฉ๋ฒ•์€ ๊ตฌ์กฐ๋ฌผ์˜ ๋†’์ด๋ฅผ ์ตœ๋Œ€ํ•œ ๋‚ฎ์ถ”๋Š” ๊ฒƒ์ด๋‹ค. ๋˜ํ•œ ๊ตฌ์กฐ๋ฌผ์˜ ๋‹จ๋ฉด ํ˜•์ƒ์€ ๋‹จ์ผ ํƒ€์› ๋ณด๋‹ค๋Š” ๋ณต์ˆ˜์˜ ์ž‘์€ ์›ํ˜•์œผ๋กœ ๊ตฌ์„ฑํ•˜๋Š” ๊ฒƒ์ด ๋ฐ”๋žŒ์งํ•˜๋‹ค. ํ•œ๊ตญํ˜•๋ฐœ์‚ฌ์ฒด ์‹œํ—˜๋ฐœ์‚ฌ์ฒด์™€ ๊ฐ™์ด ์„ธ์žฅ๋น„๊ฐ€ ์ž‘์œผ๋ฉฐ ๊ธฐ์กด ๋ฐœ์‚ฌ์ฒด ์„ค๊ณ„ ์ž๋ฃŒ์™€ ๋ถ€ํ’ˆ ๋ฐ ๋ฐœ์‚ฌ ์„ค๋น„๋ฅผ ์ด์šฉํ•˜์—ฌ ๋‹จ์‹œ๊ฐ„์— ์ €๋น„์šฉ์œผ๋กœ ๊ฐœ๋ฐœํ•  ๊ฒฝ์šฐ, ๋ณธ ์—ฐ๊ตฌ๊ฐ€ ์ € ์„ธ์žฅ๋น„ ๋ฐœ์‚ฌ์ฒด์˜ ์ข…์•ˆ์ •์„ฑ ํ™•๋ณด์— ๋„์›€์ด ๋  ๊ฒƒ์ด๋‹ค. ํŠนํžˆ ๋ฏผ๊ฐ„ ์ฃผ๋„์˜ ์ƒˆ๋กœ์šด ์šฐ์ฃผ ๊ฐœ๋ฐœ ์‹œ๋Œ€์— ์ € ์„ธ์žฅ๋น„ ๋ฐœ์‚ฌ์ฒด ์„ค๊ณ„์— ๋ณธ ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋ฅผ ํ™œ์šฉํ•˜๋ฉด ๋ฐœ์‚ฌ์ฒด ์„ค๊ณ„ ๊ณผ์ •์—์„œ ์‹œํ–‰์ฐฉ์˜ค๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.1. Introduction 1 2. Research objectives 7 3. Method and Validation 13 3.1. Simulation methods 13 3.2. Validation case 15 4. Simulation results and analysis 21 4.1. Effects of flight trajectories regard to aerodynamic characteristics 21 4.1.1 Aerodynamic characteristics for flight trajectory using constant Reynolds number and temperature 21 4.1.2 Aerodynamic characteristics for TLV flight trajectory 46 4.2. Effects of configurations of the umbilical plate regard to aerodynamic characteristics 60 4.2.1 Aerodynamic characteristics for LV without the umbilical plate 60 4.2.2 Aerodynamic characteristics for LV with half umbilical plate 72 4.2.3 Aerodynamic characteristics for LV with half cylindrical umbilical plate 88 4.3. Effects of location of the umbilical plate regard to aerodynamic characteristics 101 5. Conclusions 114 References 118 Appendix. The aerodynamic prediction using the empirical approach 123 ๊ตญ๋ฌธ์ดˆ๋ก 129Docto

    ์ง„ํ–‰์„ฑ ์œ„์•”์—์„œ ๋‹ค์ค‘๋ฉด์—ญํ™”ํ•™์—ผ์ƒ‰์„ ํ†ตํ•ด ํŒ๋ณ„๋œ ๊ณจ์ˆ˜์œ ๋ž˜ ๋ฉด์—ญ์–ต์ œ์„ธํฌ์˜ ๊ณต๊ฐ„์  ๋ถ„ํฌ์™€ ์•„ํ˜•์— ๋”ฐ๋ฅธ ์ž„์ƒ์  ์˜๋ฏธ ๋ฐ ์˜ˆํ›„์™€์˜ ์—ฐ๊ด€์„ฑ์— ๋Œ€ํ•˜์—ฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์˜๊ณผ๋Œ€ํ•™ ์˜ํ•™๊ณผ, 2021.8. ๊ฐ•๊ฒฝํ›ˆ.Introduction: Myeloid-derived suppressor cells (MDSCs) are heterogenous population of immature myeloid cells that are found in pathological conditions including cancer. These cells are renowned to play a vital role within the tumor microenvironment (TME), but information about their distribution and impact on clinical features are not reported in gastric cancer (GC). Materials and methods: A respective study included 59 patients with advanced GC. Tissue microarray and multiplex immunohistochemistry was used to assess the immune cell components of the TME which includes subtypes of MDSC and T cells. Clinicopathological characteristics including prognosis were correlated with these immune cells. Results: PMN-MDSC was most abundant followed by M-MDSC. MSS/EBV-negative GCs were T cell low even when MDSC were high unlike EBV-positive and MSI-high GCs. PD-L1 expression was more frequent in M-MDSC. All MDSC subsets were located close to tumor cells as was CD8+ T cells Conclusion: MDSCs resides in a distinct niche within the TME of GC. These features pose MDSC as a potential target for improved treatment. Keyword: Myeloid-derived suppressor cell, advanced gastric cancer, tumor microenvironment, multiplex immunohistochemistry, prognosis, immune system์„œ๋ก : ๊ณจ์ˆ˜ ์œ ๋ž˜ ์–ต์ œ ์„ธํฌ(MDSC)๋Š” ๋‹ค์–‘ํ•œ ์„ธํฌ๋กœ ๊ตฌ์„ฑ๋œ ๋ฏธ๋ถ„ํ™”๋œ ๊ณจ์ˆ˜์„ฑ์„ธํฌ๋กœ ์•”์„ ๋น„๋กฏํ•œ ์งˆ๋ณ‘์ƒํƒœ์—์„œ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ๋‹ค. MDSC๋Š” ์•” ๋ฏธ์„ธํ™˜๊ฒฝ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ์ง€๋งŒ ์ง„ํ–‰์„œ ์œ„์•”์—์„œ MDSC์˜ ๊ตฌ์„ฑ๊ณผ ์ž„์ƒ์  ํŠน์„ฑ๊ณผ์˜ ์œ ์˜์„ฑ์— ๋Œ€ํ•ด์„œ๋Š” ์•Œ๋ ค์ ธ ์žˆ์ง€ ์•Š๋‹ค ๋ฐฉ๋ฒ•: 59๋ช…์˜ ์ง„ํ–‰์„ฑ ์œ„์•”์กฐ์ง์—์„œ ์ฑ„์ทจํ•œ ๊ฒ€์ฒด๊ฐ€ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค Tissue microarray์™€ multiplex immunohistochemistry๊ฐ€ MDSC์™€ T ์„ธํฌ์˜ ์•„ํ˜•์„ ๋ถ„์„ํ•˜๋Š”๋ฐ ์ด์šฉ๋˜์—ˆ๋‹ค. ์ž„์ƒ์  ํŠน์„ฑ ๋ฐ ์˜ˆํ›„์™€์˜ ๊ด€๋ จ์„ฑ์— ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ: MDSC ์ค‘ PMN-MDSC๊ฐ€ ๊ฐ€์žฅ ํ’๋ถ€ํ•˜์˜€์œผ๋ฉฐ M-MDSC๊ฐ€ ๊ทธ ๋’ค๋ฅผ ์ด์—ˆ๋‹ค. CIMP-์Œ์„ฑ ์œ„์•”์€ MDSC๊ฐ€ ํ’๋ถ€ํ•œ ๊ฒฝ์šฐ์—๋„ ์ƒ๋Œ€์ ์œผ๋กœ T ์„ธํฌ์˜ ๋ฐ€๋„๋‚˜ ๋‚ฎ์€ ๋ฐ˜๋ฉด CIMP-์–‘์„ฑ ์œ„์•”์€ MDSC์™€ T์„ธํฌ ์–‘์ชฝ ๋ชจ๋‘ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. PD-L1 ๋ฐœํ˜„์€ MDSC ์ค‘์—์„œ๋Š” M-MDSC๊ฐ€ PD-1 ๋ฐœํ˜„์€ T ์„ธํฌ ์ค‘์—์„œ CD8์–‘์„ฑ T์„ธํฌ์—์„œ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์„ธ๊ฐ€์ง€ MDSC ๋ชจ๋‘ ๋‹ค๋ฅธ ๊ณจ์ˆ˜์„ฑ์„ธํฌ์— ๋น„ํ•ด ์•”์„ธํฌ์— ๊ฐ€๊น๊ฒŒ ์œ„์น˜ํ•˜๊ณ  ์žˆ์—ˆ์œผ๋ฉฐ T์„ธํฌ ์ค‘์—์„œ๋Š” CD8์–‘์„ฑ T์„ธํฌ๊ฐ€ ๊ฐ€์žฅ ์•”์„ธํฌ์™€ ๊ฐ€๊นŒ์› ๋‹ค. ๊ฒฐ๋ก : ์ด ์‹คํ—˜์„ ํ†ตํ•ด MDSC๊ฐ€ ์ง„ํ–‰์„ฑ ์œ„์•”์—์„œ ๋…ํŠนํ•œ ํŠน์„ฑ์„ ์ง€๋‹ˆ๋ฉด์„œ ํŠน์ดํ•œ ์œ„์น˜์— ์ž๋ฆฌ๋งค๊น€ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๋ฐํž ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด ๊ฐ™์€ MDSC๋งŒ์˜ ํŠน์„ฑ์€ ๋ฉด์—ญ์น˜๋ฃŒ๋ฅผ ๋น„๋กฏํ•œ ์•”์„ ์น˜๋ฃŒํ•จ์— ์žˆ์–ด์„œ ๋งค์šฐ ์ค‘์š”ํ•˜๊ฒŒ ์ž‘์šฉํ•  ๊ฒƒ์ด๋‹ค.Introduction 1 Materials and Methods 4 Results 9 Discussion 22 References 24 Abstract in Korean 27๋ฐ•

    ์‹ค๋‚ด ํ™˜๊ฒฝ์—์„œ ์ดˆ๊ด‘๋Œ€์—ญ ์ฑ„๋„์— ๋ฏธ์น˜๋Š” ์ธ์ฒด์˜ ์˜ํ–ฅ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2015. 8. ๊น€์„ฑ์ฒ .In this dissertation, the effects of human body on Ultra Wideband (UWB) channel in indoor environments are represented. Unlike previous communication system, UWB system has a large bandwidth. This leads to interference to the other communication systems in the same frequency bands. This feature makes UWB system deployable in line-of-sight (LOS) and slightly cluttered non-line-of-sight (NLOS) environment in which the signal undergoes less attenuation. In these environments, the UWB channel largely depends on surroundings of a transmitter (Tx) and receiver (Rx) antennas. In indoor environments, a human body is a major factor that changes channel characteristics. This dissertation dealt with the effect of human body on the UWB channel in indoor environments. First, this dissertation addresses UWB channel variation depending on the number of people in indoor LOS environments. To assess variation of UWB channels, four environments which have different room sizes and wall structures are considered. During measurements, people did not move around, but were just sitting on their chair with small motion if necessary. Because the UWB system operates in a wide bandwidth compared to previous communication systems, it is necessary to understand the frequency correlation characteristics of UWB channels. We found the correlation coefficients between two frequency tones with an interval of 10MHz are smaller than about 0.5. In the dissertation, we deal with a distance-dependent path-loss model, a frequency-dependent path-loss model, and time dispersion parameters. To provide a general channel model, we obtained the linear regression model with population density for each parameter. Next, the dissertation considered a situation where either LOS path is not blocked or slightly blocked by human bodies as a Rx is shifted by small-scale (1ฮป) distance while a Tx is fixed. In this situation, we measure the small-scale amplitude statistics in the absence and presence of human bodies and propose a statistical model of the small-scale fading distribution. From the measurement data, we found the best fitted channel model among several typical theoretical distribution models such as Lognormal, Nakagami, and Weibull distributions, showing good agreement with the empirical channel data. In the last part of dissertation, we dealt with the performance analysis of impulse radio (IR) UWB system based on the proposed small-scale fading distribution and also compare the performance with the existing channel model. Due to the fine time resolution of UWB system, the system mainly uses a rake receiver which consists of a number of correlators that are sampled at the delays related to specific number of multipath components. The dissertation considers two types of rake receiver, selective combining (SC) and partial combing (PC) rake receiver. The standard channel model, IEEE 802.15.4a, shows the best bit-error-rate (BER) performance. But this model does not include the effect of human body. When the effect of human body is included on 802.15.4a model, the BER performance is deteriorated.Chapter 1 Introduction.............................................................1 1.1 UWB system................................................................................1 1.2 UWB channel standard model.....................................................2 1.2.1 IEEE 802.15.3aโ€ฆโ€ฆ....................................................................2 1.2.2 IEEE 802.15.4aโ€ฆโ€ฆ....................................................................2 1.3 Motivationโ€ฆโ€ฆ....................................................................................3 1.4 Dissertation Outline............................................................................5 Chapter 2 Modeling of UWB channel with Population density in indoor LOS Environments................... ...............................6 2.1 Introduction..................................................................................6 2.2 Measurement Methodology ........................................................8 2.2.1 Measurement System...................................................................8 2.2.2 Measurement Scenario.................................................................9 2.3 Frequency Correlation Coefficient of the Measured Channel Gains ................................................................................................12 2.4 Path-Loss Characteristicsโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..15 2.4.1 Empirical distance-dependent path-loss model.........................15 2.4.2 Empirical frequency-dependent path-loss model......................18 2.5 Time-Dispersion Parameters.....................................................22 2.6 Conclusion...โ€ฆโ€ฆโ€ฆ..................................................................26 Chapter 3 Human body Affected Small-Scale Fading for indoor UWB channelโ€ฆโ€ฆ.....................................................27 3.1 Introduction................................................................................27 3.2 Measurement Campaignโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ28 3.2.1 Measurement Systemโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ................28 3.2.2 Measurement Scenarioโ€ฆ...........................................................28 3.3 Statistical Modeling of Small-Scale Fading โ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆโ€ฆ35 3.4 Small-Scale Fading Distribution by Bodyโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆโ€ฆ37 3.5 Conclusions................................................................................48 Chapter 4 Performance Analysis of Rake receiver in IR-UWB systemโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ49 4.1 Introduction................................................................................49 4.2 UWB Rake receiverโ€ฆ....โ€ฆ.......................................................51 4.2.1 UWB Rake receiver structure... โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ........................51 4.2.2 Rake Receiver Type... โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..........................54 4.3 Channel modelsโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.............................56 4.3.1 801.15.4a UWB channel model โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.......................56 4.3.2 People Shadowing Effect on UWB Channels...........................58 4.4 BER performance analysis.........................................................60 4.5 Conclusion..................................................................................66 Bibliography..........................................................................67 Abstract in Korean.................................................................70Docto

    Femtocell/Macrocell Interference Analysis in WiBro System

    Get PDF
    ํŽจํ† ์…€์„ ๋„์ž…ํ•จ์œผ๋กœ์จ ์ด๋™ํ†ต์‹ ์‹œ์Šคํ…œ์˜ ์‹ค๋‚ด ์ปค๋ฒ„๋ฆฌ์ง€๋ฅผ ํ™•์žฅํ•˜๊ณ  ์‹œ์Šคํ…œ ์šฉ๋Ÿ‰์„ ์ฆ๋Œ€์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ํŽจํ† ์…€์ด ํšจ๊ณผ์ ์œผ๋กœ ๋™์ž‘ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ํŽจํ† ์…€๊ณผ ๋งคํฌ๋กœ์…€๊ฐ„์˜ ์ „ํŒŒ ๊ฐ„์„ญ์— ๋Œ€ํ•œ ๋ถ„์„์ด ํ•„์š”ํ•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์™€์ด๋ธŒ๋กœ ์‹œ์Šคํ…œ์— ํŽจํ† ์…€์„ ์ ์šฉํ•˜๋Š” ๊ฒฝ์šฐ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ„์„ญ ์˜ํ–ฅ์„ ์‚ดํŽด๋ณธ๋‹ค. ํŽจํ† ์…€๊ณผ ๋งคํฌ๋กœ์…€๊ฐ„์˜ ๋™๊ธฐ๊ฐ€ ์œ ์ง€๋œ ๊ฒฝ์šฐ๋ฅผ ๊ฐ€์ •ํ•˜์—ฌ, ํŽจํ† ์…€์ด ๋งคํฌ๋กœ ์…€๊ณผ ๋™์ผํ•œ ์ฑ„๋„์—์„œ ๋™์ž‘ํ•˜๋Š” ๊ฒฝ์šฐ์™€ ์ธ์ ‘ ์ฑ„๋„์—์„œ ๋™์ž‘ํ•˜๋Š” ๊ฒฝ์šฐ์— ๋Œ€ํ•˜์—ฌ ์‹œ์Šคํ…œ ๋ ˆ๋ฒจ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ํ‰๊ท  ์…€ throughput ์„ ๊ตฌํ•˜๊ณ  ํŽจํ† ์…€๊ณผ ๋งคํฌ๋กœ์…€๊ฐ„ ๊ฐ„์„ญ ์˜ํ–ฅ ํŠน์„ฑ์„ ๋ถ„์„ํ•œ๋‹ค.์ด ๋…ผ๋ฌธ์€ ๋‘๋‡Œํ•œ๊ตญ 21 ์‚ฌ์—…๊ณผ ์ง€์‹๊ฒฝ์ œ๋ถ€ ๋ฐ ์ •๋ณดํ†ต์‹ ์—ฐ๊ตฌ์ง„ํฅ์›์˜ IT ํ•ต์‹ฌ๊ธฐ์ˆ ๊ฐœ๋ฐœ์‚ฌ์—… [2008-F-007-01, 3 ์ฐจ์› ํ™˜๊ฒฝ์—์„œ ์ง€๋Šฅํ˜• ๋ฌด์„  ํ†ต ์‹  ์‹œ์Šคํ…œ ์—ฐ๊ตฌ] ์— ์˜ํ•˜์—ฌ ์ง€์›๋˜์—ˆ

    Measurement and Characterization of Multiple-Input Multiple-Output (MIMO) Wideband Relay Channel at 5.8 GHz

    Get PDF
    This paper includes channel measurement results using 4 transmitting / receiving antennas and PN sequence with 50ns, 40ns and 20ns per a chip at 5.8GHz in Seoul National University campus. Seoul National University is proper to measure channels because it has many LOS / NLOS environments. Base station - F Relay channel is compared with a polarization diversity. We derived channel capacities form F Relay - Relay(A, B, C, D) channel.๋ณธ ๋…ผ๋ฌธ์€ BK21 project ์˜ ์ง€์›์„ ๋ฐ›์•˜์Šต๋‹ˆ๋‹ค

    Outdoor 4X4 MIMO Channel Measurements and Analysis at 5.8GHz in Campus Environments

    Get PDF
    ๋ณธ ๋…ผ๋ฌธ์€ 5.8GHz ๋Œ€์—ญ์—์„œ ์˜์‚ฌ์žก์Œ ์‹œํ€€์Šค๋ฅผ ์ด์šฉํ•˜์—ฌ 4 ๊ฐœ์˜ ์†ก์‹  ์•ˆํ…Œ๋‚˜์™€ 4 ๊ฐœ์˜ ์ˆ˜์‹  ์•ˆํ…Œ๋‚˜๋ฅผ ํ†ตํ•ด ์„œ์šธ๋Œ€ํ•™๊ต ๊ด€์•…์บ ํผ์Šค ๋‚ด์—์„œ 4ร— 4 MIMO ์ฑ„๋„ ์ธก์ • ๊ฒฐ๊ณผ ๋ฐ ๋ถ„์„์„ ํฌํ•จํ•˜๊ณ  ์žˆ๋‹ค. ์‹คํ—˜ ์žฅ์†Œ์ธ ๊ด€์•…์บ ํผ์Šค๋Š” LOS(Line of Sight) ํ™˜๊ฒฝ๊ณผ NLOS(Non Line of Sight) ํ™˜๊ฒฝ์„ ๋ชจ๋‘ ๊ฐ€์ง€๊ณ  ์žˆ๊ณ  ์ง€ํ˜•๊ณ ๋„์˜ ๋ณ€ํ™”๊ฐ€ ์‹ฌํ•˜์—ฌ ์—ฌ๋Ÿฌ ์กฐ๊ฑด์„ ๊ณ ๋ คํ•  ์ˆ˜ ์žˆ์–ด์„œ ์‹คํ—˜ํ•˜๊ธฐ์— ์ ํ•ฉํ•œ ํ™˜ ๊ฒฝ์ด๋‹ค. ์‹คํ—˜์€ ์„œ์šธ๋Œ€ํ•™๊ต ๋‚ด์˜ ์—ฌ๋Ÿฌ ์ง€์ ์—์„œ ์ˆ˜์‹  ์•ˆํ…Œ๋‚˜ ๊ฐ๊ฐ์— ๋Œ€ํ•œ ์ˆ˜์‹  ์ „๋ ฅ์„ ์ธก์ •ํ•˜ ๊ณ , ๊ฐ ์ง€์ ์—์„œ ์ˆ˜์‹ ๋œ ์˜์‚ฌ์žก์Œ ์‹œํ€€์Šค(Pseudo-Noise sequence)๋ฅผ ์ด์ƒ์ ์ธ ์˜์‚ฌ์žก์Œ ์‹œํ€€์Šค์™€ ์ƒํ˜ธ์ƒ๊ด€ ํ•˜์—ฌ ์ฑ„๋„์˜ ํŠน์„ฑ์„ ์•Œ์•„๋ณด๊ธฐ ์œ„ํ•ด ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ƒํ˜ธ์ƒ๊ด€์„ ๋ฐ”ํƒ•์œผ๋กœ ์ „๋ ฅ ์ง€ ์—ฐ ํ”„๋กœํŒŒ์ผ(Power Delay Profile)๊ณผ tapped delay line ์ฑ„๋„ ๋ชจ๋ธ์„ ๊ตฌํ•˜์˜€๋‹ค. ๋˜ํ•œ ์ด ๋ชจ๋ธ์„ ์ด์šฉ ํ•ด์„œ ๊ด‘๋Œ€์—ญ(wideband) ์ฑ„๋„ ์šฉ๋Ÿ‰๊ณผ ํ˜‘๋Œ€์—ญ(narrowband) ์ฑ„๋„ ์šฉ๋Ÿ‰์„ ๊ตฌํ•˜๊ณ  ๋ถ„์„ํ•˜์˜€๋‹ค.This paper is supported by BK21 project and Seoul R&BD program(10544)

    Through-wall Characterization of Ultra WideBand signal

    Get PDF
    ์ดˆ๊ด‘๋Œ€์—ญํ†ต์‹ ์€ ์‹ค๋‚ดํ™˜๊ฒฝ ๊ทผ๊ฑฐ๋ฆฌ์—์„œ ์šด์šฉ๋˜๋Š” ๋‹ค์–‘ํ•œ ์‹œ์Šคํ…œ์œผ๋กœ ์ ์šฉ ๊ฐ€๋Šฅํ•œ ํ†ต์‹ ๊ธฐ๋ฒ•์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—๋Š” ์ดˆ๊ด‘๋Œ€์—ญํ†ต์‹ ์˜ ํšจ์œจ์ ์ธ ๋ง ๊ตฌ์„ฑ์„ ์œ„ํ•ด ํ•„์š”ํ•œ ์ดˆ๊ด‘๋Œ€์—ญ ์‹ ํ˜ธ์˜ ๋ฒฝ ์žฌ์งˆ์— ๋”ฐ ๋ฅธ ๊ฐ์‡„์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚˜์žˆ๋‹ค. ๋ถ„์„์€ ์ผ๋ฐ˜ ๊ฑด๋ฌผ์— ์ฃผ๋กœ ์‚ฌ์šฉ๋˜๋Š” 4 ๊ฐ€์ง€ ์žฌ์งˆ์˜ ๋ฒฝ ์— ๋Œ€ํ•˜์—ฌ 3GHz ๋Œ€์—ญ์˜ 600MHz ์‹ ํ˜ธ๋ฅผ ํˆฌ๊ณผ์‹œ์ผœ ํŠน์„ฑ์„ ๋ชจ๋ธ๋งํ•˜์˜€๋‹ค. ๋ถ„์„๊ธฐ๋ฒ•์€ ์ „์ž๊ธฐํ•™๊ณผ ์œ ํ•œ์ฐจ๋ถ„์‹œ๊ฐ„์˜์—ญ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์ด๋ก ์  ๊ฐ์‡„๋Ÿ‰์„ ์˜ˆ์ธกํ•œ ํ›„ ํšŒ๋กœ๋ง๋ถ„์„๊ธฐ ๊ธฐ๋ฐ˜์˜ ์ธก์ •์‹œ์Šคํ…œ ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ธก์ •๊ฒฐ๊ณผ๋ฅผ ๋ชจ๋ธ๋งํ•˜๋Š” ๋ฐฉ์‹์ด๋‹ค. ์ˆ˜์ง์ž…์‚ฌ ์‹œ์— ๊ฐ์‡„๋Ÿ‰์˜ ๋ถ„์„์€ ์„ ํƒ๋œ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์˜ ํ‰๊ท  ๊ฐ์‡„๋Ÿ‰๊ณผ ํ•จ๊ป˜ ์ฃผํŒŒ์ˆ˜์— ๋”ฐ๋ฅธ ๊ฐ์‡„๋Ÿ‰์˜ ํ‘œ์ค€ํŽธ์ฐจ ๊ฐ’์ด ์ฃผํŒŒ์ˆ˜ ์„ ํƒํŠน์„ฑ๋ถ„์„์„ ์œ„ ํ•ด ๋น„๊ต๋˜์—ˆ์œผ๋ฉฐ ๋ฒฝ์„ ํ†ต๊ณผํ•œ ํ›„ ์ˆ˜์‹ ๋˜๋Š” ๊ฐ๋„์— ๋”ฐ๋ฅธ ๊ฐ์‡„๋Ÿ‰์„ ๋ถ„์„ํ•˜์—ฌ ์ˆ˜์‹ ์ง€์ ์— ๋”ฐ๋ฅธ ๊ฐ์‡„๊ฒฝํ–ฅ์„ ๋ชจ๋ธ๋งํ•˜์˜€๋‹ค.๋ณธ ๋…ผ๋ฌธ์€ Brain Korea 21 project ์™€ ์„œ์šธ์‹œ ์‚ฐํ•™ ์—ฐ ํ˜‘๋ ฅ์‚ฌ์—… (10544)์˜ ๋„์›€์œผ๋กœ ์ž‘์„ฑ๋˜์—ˆ์Šต๋‹ˆ๋‹ค

    ๋‚˜๋…ธ๊ธฐ๊ณต์„ฑ ์•Œ๋ฃจ๋ฏธ๋‚˜์˜ ์‹ ์ œ์กฐ๋ฒ•๊ณผ ํก์ฐฉ ๋ฐ ๋ถ„์ž์ˆ˜์ค€๊ฒ€์ถœ์—์˜ ์‘์šฉ

    No full text
    Thesis(doctoral)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์‘์šฉํ™”ํ•™๋ถ€,2005.Docto
    • โ€ฆ
    corecore