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Abstract 

EFFECTS OF HUMAN BODY ON 

UWB CHANNEL IN INDOOR 

ENVIRONMENTS  
 

Young-Hoon Kim 

Department of Electrical Engineering and Computer Science 

The Graduate School 

Seoul National University 

 

In this dissertation, the effects of human body on Ultra Wideband (UWB) 

channel in indoor environments are represented. Unlike previous 

communication system, UWB system has a large bandwidth. This leads to 

interference to the other communication systems in the same frequency bands. 

This feature makes UWB system deployable in line-of-sight (LOS) and 

slightly cluttered non-line-of-sight (NLOS) environment in which the signal 

undergoes less attenuation. In these environments, the UWB channel largely 

depends on surroundings of a transmitter (Tx) and receiver (Rx) antennas.  In 

indoor environments, a human body is a major factor that changes channel 

characteristics. This dissertation dealt with the effect of human body on the 

UWB channel in indoor environments. 
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First, this dissertation addresses UWB channel variation depending on the 

number of people in indoor LOS environments. To assess variation of UWB 

channels, four environments which have different room sizes and wall 

structures are considered. During measurements, people did not move around, 

but were just sitting on their chair with small motion if necessary. Because the 

UWB system operates in a wide bandwidth compared to previous 

communication systems, it is necessary to understand the frequency correlation 

characteristics of UWB channels. We found the correlation coefficients 

between two frequency tones with an interval of 10MHz are smaller than about 

0.5. In the dissertation, we deal with a distance-dependent path-loss model, a 

frequency-dependent path-loss model, and time dispersion parameters. To 

provide a general channel model, we obtained the linear regression model with 

population density for each parameter.  

Next, the dissertation considered a situation where either LOS path is not 

blocked or slightly blocked by human bodies as a Rx is shifted by small-scale 

(1λ) distance while a Tx is fixed. In this situation, we measure the small-scale 

amplitude statistics in the absence and presence of human bodies and propose a 

statistical model of the small-scale fading distribution. From the measurement 

data, we found the best fitted channel model among several typical theoretical 

distribution models such as Lognormal, Nakagami, and Weibull distributions, 

showing good agreement with the empirical channel data. 

In the last part of dissertation, we dealt with the performance analysis of 

impulse radio (IR) UWB system based on the proposed small-scale fading 

distribution and also compare the performance with the existing channel model. 
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Due to the fine time resolution of UWB system, the system mainly uses a rake 

receiver which consists of a number of correlators that are sampled at the 

delays related to specific number of multipath components. The dissertation 

considers two types of rake receiver, selective combining (SC) and partial 

combing (PC) rake receiver. The standard channel model, IEEE 802.15.4a, 

shows the best bit-error-rate (BER) performance. But this model does not 

include the effect of human body. When the effect of human body is included 

on 802.15.4a model, the BER performance is deteriorated. 

 

Keywords: UWB Channel modeling, Human body, IR-UWB, Rake 

receiver, BER performance, 

Student Number: 2007-20949 
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Chapter 1. Introduction 

 

1.1 UWB system 

 

Ultra-Wide-Band (UWB) systems are commonly defined as the systems that have either more 

than 20% relative bandwidth or more than a 500 MHz absolute bandwidth. It is well known that 

UWB systems have many advantages [1]: 1) Accurate position location and ranging, due to the 

fine time resolution, 2) no significant multipath fading due to fine time resolution, 3) multiple 

access due to wide transmission bandwidth, 4) possibility of extremely high data rates, 5) covert 

communications due to low transmission power operation, and 6) possible easier material 

penetration due to the presence of energy at different frequencies. There are numerous 

applications of the UWB system, such as personal area networks (PANs), sensor networks, geo-

location sensors, and emergency communications. An overview of the ranges for typical 

applications is given Table 1.1. 

Table 1.1: Typical environment and ranges for UWB applications 

Environment Range 

Indoor residential 1-30m 

Indoor office 1-100m 

Body area network 0.1-2m 

Outdoor peer to peer 1-100m 

Outdoor base station scenario 1-300m 

Industrial environments 1-300m 

Emergency communications 1-50m 
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1.2 UWB channel standard model 

 

1.2.1 IEEE 802.15.3a 

 

The IEEE established the 802.15.3a study group to define a new physical layer concept for short 

range, high-data-rate applications. The purpose of the study group is to provide a higher speed 

PHY for the existing approved 802.15.3a standard for applications which involve imaging and 

multimedia. The main desired characteristics of the alternative PHY are: 

 

 Coexistence with all existing IEEE 802 physical layer standards; 

 Target data rate in excess of 100 Mbps for consumer applications; 

 Robust multipath performance; 

 Location awareness; 

 Use of additional unlicensed spectrum for high data rate WPANs (wireless personal 

area network) 

 

1.2.1 IEEE 802.15.4a 

 

The IEEE established the 802.15.4a study group to define a new physical layer concept for low 

data rated applications utilizing UWB technology at the air interface. The study group addresses 

new applications that require only data throughput, but long battery life such as low-rate 

wireless personal area network, sensors and small networks. 
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1.3 Motivation 

 

In this thesis, indoor office is considered, especially line-of-sight (LOS) environments such as 

classrooms and office. UWB systems that use relatively large bandwidth must use low power so 

as not to cause interference to the neighboring communication systems. This feature allows the 

UWB system to be deployed in line-of-sight (LOS) and slightly cluttered non-line-of-sight 

(NLOS) environments in which the signal undergoes small attenuation. In these environments, 

the UWB channel largely depends on surroundings of the transmitting (Tx) and receiving (Rx) 

antennas. The presence of human bodies might be a dominant factor that can alter such channel. 

In this dissertation, we analyze the effect of human body on UWB channel in indoor LOS 

environments and propose the channel model including human body effects. 

Chapter 2 deals with UWB channel variation depending on the number of people in indoor LOS 

environments. Many researches about the effects of human bodies on wireless propagation 

channels have been reported until recently [2]-[11], however they dealt with channel variation 

by a single person. Some studies on the channel variation in populated environments were 

reported [12]–[14], but they did not consider the channel variation with population density. And 

the study [14] dealt with the channel variation depending on how many seats are occupied by 

passengers in airplane, not indoor environment. In this chapter, we analyzed UWB channel 

variation with population density in indoor LOS environment and proposed the channel model 

with population density. To assess variation of UWB channels, we choose four environments, 

and consider the following four scenarios in each environment: 1) no people, 2) 25% of 

maximum number of people, 3) 50%, and 4) 100%. Because the UWB system has an extremely 

wide bandwidth compared to conventional wireless system, it is necessary to understand the 

frequency correlation characteristics of UWB channels. To show the frequency correlation 

characteristics of UWB channels, a frequency correlation coefficient of the measured channel 

gains is first analyzed. And a distance-dependent path-loss model, a frequency-dependent path-

loss model, and time dispersion parameters are considered. To obtain a frequency-dependent 

path-loss model, the result of the frequency correlation coefficients and the same method of [15] 

are used. To provide a general channel model, the linear regression model with population 
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density for each parameter is obtained. 

In chapter 3, small-scale amplitudes statistics in the absence and presence of human bodies are 

measured in indoor LOS environments and a statistical model of the small-scale fading 

distribution is proposed. Many previous studies dealt with the shadowing effect of human 

bodies on the UWB channel [13], [16]-[19], but no study has dealt with small-scale fading in the 

presence of human bodies. In [20]–[23], which did not consider human bodies, the small-scale 

fading distribution was matched to some typical theoretical distributions such as Lognormal, 

Nakagami, Rayleigh, Rice, and Weibull distributions depending on the measurement 

environments and scenarios. In this chapter, we measure and analyze the small-scale fading 

distribution in the absence and the presence of human bodies. To obtain the small-scale 

amplitudes statistics, we consider a situation where either LOS path is not blocked or slightly 

blocked by human bodies as a Rx is shifted by small-scale (1λ) distance while a Tx is fixed. To 

create this situation, we set the height of the Tx and Rx antennas in consideration of the height 

of human bodies sitting on chairs. In this situation, the effects of human bodies on all paths 

including LOS path are different depending on where the Rx is located. From the measured 

UWB channel data, an impulse response is obtained by inverse Fourier transform which is used 

to transform the measured frequency domain data to the time domain data. The extraction of 

amplitude for each bin was carried out by collecting a vector of 49 amplitude values with an 

equivalent delay at 49 local points. To evaluate the goodness-of-fit for these candidate 

amplitude distributions, we use the Kolmogorov-Smirnov and chi-square hypothesis tests. These 

two tests compare empirical data and a reference probability distribution. Due to some 

limitations in each of these two hypothesis tests, both tests are deployed in this chapter to ensure 

the reliability of the fitting. From the results of two tests, we found the distribution well fitted to 

the small-scale fading amplitude statistics and proposed the model for the parameters of the 

distribution. The proposed model is used to analyze the effect of human body on the 

performance of UWB system in the next chapter. 

In chapter 4, impulse radio (IR) UWB system is briefly introduced. IR-UWB system does not 

require frequency up-conversion and down-conversion because the system communicates with 

baseband pulses of very short duration. Due to their fine time resolution, the receiver structure 
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consists of a number of correlators that are sampled at the delays related to specific number of 

multipath components; each of those correlators is known as rake finger. In this chapter, we 

analyzed bit-error-rate (BER) performance of the Rake receiver in IR-UWB system, using the 

proposed channel models in Chapter 3, comparing with previous standard channel model, i.e., 

IEEE 802.15.4a [24], and also considering People Shadowing Effect (PSE) [19]. Among several 

channel models of 802.15.4a, CM 3 channel model which consider scenarios in indoor office 

environment is used in the performance analysis. PSE model describes the scenario when a 

person moves along a straight line perpendicular to the LOS path. The PSE model provides a 

suitable way to determine the shadowing term instead of using an independent log-normal 

distributed random variable which is used in 802.15.4a CM 3 model. In this chapter, 6 different 

channel models are utilized in BER performance analysis. 

 

1.4 Dissertation Outline 

 

This dissertation is organized as follows: Chapter 2 deals with the modeling of UWB channel 

with population density in indoor LOS environments. In Chapter 3, the small-scale fading 

distribution in the absence and the presence is proposed. And Chapter 4 analyzed BER 

performance of Rake receiver based on Chapter 3. Finally, Chapter 5 summarizes and suggests 

future research directions. 
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Chapter 2. Modeling of UWB channel with Population density 

in indoor LOS environments 

 

2.1 Introduction 

 

In indoor environments (including a classroom), a human body is a major factor that changes 

channel characteristics. So, many researches about the effects of human bodies on wireless 

propagation channels have been reported until recently. They can be divided into three types: 1) 

the depth and duration of shadow fading due to pedestrians moving near to the transmitter and 

the receiver [2]–[4], 2) the effect of human bodies on wireless personal area networks (WPANs) 

in which one end of the link is located either close to or on a person [5]–[8], and 3) the effect of 

a human body on wireless body area networks (WBANs) in which both ends of the link are 

located either close to or on a person [9]–[11]. 

The above-mentioned articles dealt with channel variation by a single person. Several studies on 

the channel variation in populated environments were reported [12]–[14]. In [12], authors dealt 

with the time-varying property of the channel response due to moving human bodies. The paper 

provides the full response on a given link of which each path as the sum of a static one predicted 

using site-specific ray tracing plus zero-mean time-varying one, based on some type of 

empirical model. The probability model for the shadowing due to human activities was 

proposed in [13]. These two papers considered the channel variation in the populated 

environments, but they did not consider the channel variation with population density. Another 

study [14] assessed the channel variation depending on how many seats are occupied by 

passengers in airplane, but this environment mostly composed by metal materials is uncommon 

and very different from building environments. 

This chapter addresses UWB channel variation depending on the number of people in indoor 

LOS environments. To assess variation of UWB channels, we choose four environments, and 

consider the following four scenarios in each environment: 1) no people, 2) 25% of maximum 

number of people, 3) 50%, and 4) 100%. First, a frequency correlation coefficient of the 
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measured channel gains is analyzed. We deal with a distance-dependent path-loss model, a 

frequency-dependent path-loss model, and time dispersion parameters. To provide a general 

channel model, we obtained the linear regression model with population density for each 

parameter. 

This chapter is organized as follows: Section 2.2 presents the channel measurement system and 

the measurement scenario. In Section 2.3, a frequency correlation coefficient of the measured 

channel gains is analyzed. Section 2.4 shows path-loss characteristics. In Section 2.5, the time 

dispersion parameters are described. Finally, the paper is ended with a summary and conclusion 

in Section 2.6. 
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2.2 Measurement methodology 

 

2.2.1 Measurement system 

 

We measured the UWB channel using the frequency-domain channel sounding method with a 

vector network analyzer (VNA). The VNA (Agilent 8719ES) transmits 1601 discrete tones that 

are uniformly spaced from 3.0 to 4.6 GHz, requiring 400 ms for one sweep. This frequency 

interval allows us to measure a multipath with a maximum excess delay of 500 ns, and the 

bandwidth of 1.6 GHz gives a time resolution of 0.625 ns. The measurement system is described 

in Figure 2.1. The same dipole antennas with a gain of 2 dBi are used on both the transmitter 

and receiver sides and are located on 1.2-m-high tripods. The power amplifier (PA) with the 

gain of 25dB and the low-noise amplifier (LNA) with the gain of 27 dB are used. To eliminate 

the effect of antennas, PA, LNA, and cables, the measurement system is calibrated in an 

anechoic chamber. 

 

 

Figure 2.1: Block diagram of the measurement system 



9 

 

2.2.2 Measurement Scenario 

 

To analyze the effect of people on UWB channels in indoor LOS environments, we measured 

channels in four environments which have different room sizes and wall structures. Size, area, 

maximum number of people, and main features are described in Table 2.1. The ceiling heights 

of all environments are 2.7m. In each environment, four scenarios are considered: no people, 

25% of the maximum number of people, 50%, and 100%. During measurements, people did not 

move around, but were just sitting on their chair with small motion if necessary. In each 

scenario, we measured the channel at several receiving points from the fixed transmitting point 

in the environment. At each receiving point, the receiver was moved around to 9 local positions 

to obtain a local average. Figure 2.2 shows the floor plans for no people and 10 people in B 

environment. In Figure 2.2 (b), 10 people are sitting on their chairs in zigzags. In the other 

environments, people take their seats in the same way as in Figure 2.2 (b). 
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Table 2.1: Size, Area, Max. No. of people, and Main features 

Enviro

nment 

Size [m] 

(L x W) 

Area 

2[ ]m

 

Max. 

No. of 

people

Main features 

A 7.6 x 4.6 34.96 16 
- Glass window (on the opposite side of Tx) 

- Blackboard (on the same side of Tx) 

B 10.8 x 5.2 56.16 20 
- Two metal doors (front and rea side) 

- Two big glass windows (on the left side of Tx) 

C 12.4 x 6.8 84.32 24 

- Glass window (on the same side of Tx) 

- Metal doors (on the opposite side of Tx) 

- Blackboard (on the left side of Tx) 

D 9.5 x 7.3 69.35 24 

- Metal wall and glass window (on the left side 

of Tx) 

- Metal door (on the opposite side of Tx) 
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(a) 

 

(b) 

Figure 2.2: Floor plans for (a) no people and (b) 10 people in B environment. 
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2.3 Frequency Correlation Coefficient of the Measured Channel Gains  

 

Because the UWB system operates in an extremely wide bandwidth compared to conventional 

wireless systems, it is necessary to understand the frequency correlation characteristics of UWB 

channels. To characterize the frequency correlation properties, the correlation coefficient is used 

to represent the correlation level of the received signal amplitudes between frequency tones. It is 

represented as [25] 

 

( , )
( )

( , ) ( , )

C f f f
f

C f f C f f f f
  
 

   
                  (2.1) 

 

where 1 2 1 1 2 2( , ) [{ ( ) ( )}{ ( ) ( )}]C f f E a f m f a f m f   , 1( )a f  is the amplitude of the channel gain at 

frequency 1f ,  and 1( )m f  is the mean of 1( )a f . 

Figure 2.3 shows the correlation coefficient of the measured channel gains in all environments. 

There are differences of the correlation among all environments, which is because of different 

size and different main features shown in Table 2.1, but the correlation increases as more people 

exist in all environments. As the numbers of people in the environment increases, more 

multipath are blocked or weaken by existing people. This results in increasing correlation of the 

measured channel gains. In all environments, the correlation coefficients between two frequency 

tones with an interval of 10MHzf   are mostly smaller than 0.5. This result is used in 

calculating the frequency-dependent path-loss model in section 2.4.2. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 2.3: Correlation Coefficient with f in (a) Environment A, (b) 

Environment B, (c) Environment C, and (d) Environment D 
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2.4 Path-Loss Characteristics 

 

2.4.1 Empirical distance-dependent path-loss model 

 

This section shows the path-loss model with distance. We assume that the distance dependence 

of the path-loss follows the log-distance model with lognormal shadowing as conventional 

narrowband models. The distance dependent path-loss model is given by, 

 

0 10 0( ) ( ) 10 log ( / )dB dB dPL d PL d n d d                   (2.2) 

 

where 
0( )dBPL d  is the path-loss at the reference distance 0 1d m , d  is the separation 

between the transmitter and the receiver, n  is the distance-dependent path-loss exponent, and 

d  is a random variable in dB related to the degree of large-scale fading to follow the zero-

mean Gaussian distribution with standard deviation of d [26]. 0( )dBPL d  and d  in (2.2) 

are averaged over 1.6GHz bandwidth, and n  is computed using the minimum mean square 

error fitting. These parameters are summarized in Table 2.2. The path-loss exponent n  for the 

scenario with no people in the environment is 1.5 to 1.55 which is similar to the results of the 

previous studies [27]-[30]. The path-loss exponent becomes larger as more people exist. In 

particular, for B environment, the exponent becomes 1.99 when all seats are occupied by human 

bodies. As described in Table 2.1, B environment has two big glass windows, which cause more 

path-loss compared to the other environments. But D environment has the smallest exponent 

because there is a wall of metal surface. Because of different room size and wall structures, 

there are some differences of the exponent among environments. 

In all environments, the exponent n increases from 0.2 up to 0.44 with varying number of 

people. To provide a general distance-dependent path-loss model, we obtained the linear 

regression model with population density defined as the number of people per unit area ( 2[ ]m ). 

Figure 2.4 (a) shows the path-loss exponents and its regression model. For all environments, the 

linear regression model is ( ) 0.83 1.51n x x  , where x  is the population density. The 
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standard deviation d  and its linear regression model with population density are shown in 

Figure 2.4 (b). In the figure, d  is heavily dependent on the population density and the 

regression model of d  is ( ) 1.02 0.81d x x   . As the population density increases, both 

the path-loss exponent and the standard deviation get larger.  

Table 2.2: Empirical Distance-dependent Path-loss Parameters 

 A B C D 

 n  
0( )dBPL d

[dB] 

d  

[dB] 
n  

0( )dBPL d

[dB] 

d  

[dB] 
n  

0( )dBPL d

[dB] 

d  

[dB] 
n  

0( )dBPL d

[dB] 

d  

[dB] 

0% 1.53 44.50 0.78 1.55 45.47 0.80 1.50 43.34 0.81 1.50 44.39 0.84 

25% 1.58 44.72 0.88 1.82 44.14 0.92 1.54 43.28 0.88 1.47 44.68 0.86 

50% 1.52 45.43 1.02 1.83 45.71 1.16 1.56 43.50 0.93 1.42 44.91 0.82 

100% 1.80 44.17 1.22 1.99 45.12 1.19 1.70 42.94 0.99 1.72 43.33 1.19 
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(a) 

 

(b) 

Figure 2.4: (a) Path-loss exponent n  and (b) d . 
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2.4.2 Empirical frequency-dependent path-loss model  

 

For the frequency-dependent path-loss model, we used the following equation, 

 

10( ) ( ) 20 log ( / )dB dB c c fPL f PL f k f f                     (2.3) 

 

where 3.8cf  GHz is the reference frequency, k is the frequency-dependent path-loss 

exponent expressing the dependence on frequency, and f is a zero-mean Gaussian distributed 

random variable (in dB) with a standard deviation of f  also in dB. 

For the calculation of the frequency-dependent path-loss exponent k , the same method of [15] 

is used in this paper. We used the minimum mean square error fitting, using the distance-

averaged path-loss values for each frequency. The critical point here is to model the large-scale 

characteristics of the environment. The method needs to determine how the pathloss increases 

with frequency, although it does not show rapid variations in the path-loss for consecutive 

frequency samples, i.e., the frequency selectivity of the channel. Therefore, the method needs to 

obtain the local mean values computed by independent frequency samples. These local mean 

values were used for the calculation of the k  in (2). From [31], the number N  of 

independent samples required to estimate the local mean with 90% degree of confidence for 

±1dB deviation around the true mean is 57. Therefore, we need to estimate the rate of 

decorrelation of the samples, i.e., the number of consecutive frequency samples that are needed 

so that the autocorrelation of the channel trasnfer function (CTF) falls below the threshold value 

of 0.5. In this letter, 10 samples (MHz) are chosen to meet this condition in our most scenarios. 

Having estimated this value, the averaging window size of samples used to calculate the local 

means is given by multiplying this value with the number of independent samples 57N  , i.e., 

10 × 57 = 570 samples. This window is slided by 10 MHz for the computation of the next local 

mean, and the procedure continues to the end of the frequency samples. Figure 2.5 depicts the 

above method to obtain the frequency dependent path-loss model. 
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Using the above method, we obtained the parameters of (2.3) which are listed in Table 2.3. The 

path-loss exponent k  decreases as the number of people increases. This means that the 

attenuation of the frequency-dependent path-loss ( )dBPL f  with frequency tones becomes 

smaller as more people exist in the environment. Like the distance-dependent path-loss 

exponent, the exponent k  depends on the environments. For a general model of the frequency-

dependent path-loss model, we obtained the linear regression model with a function of 

population density. Figure 2.6 (a) shows the path-loss exponent k  and its linear regression 

model with population density. The regression model of k  is ( ) 1.84 0.84x x    . As 

population density increases, the path-loss exponent k  becomes smaller. Unlike the result of 

d  in Figure 2.6 (b), the standard deviation f  is irrelevant to population density, which is 

shown in Figure 2.4 (b). 

Figure 2.5: Methods for obtaining frequency-dependent path-loss model 
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Table 2.3: Empirical Frequency-dependent Path-loss Parameters 

 A B C D 

 k  

( )dB cPL f

[dB] 

f
 

[dB] 
k  

( )dB cPL f

[dB] 

f  

[dB] 
k  

( )dB cPL f

[dB] 

f  

[dB] 
k  

( )dB cPL f

[dB] 

f  

[dB] 

0% 0.80 52.65 0.59 1.26 53.37 0.64 1.06 52.74 0.90 1.13 52.90 0.87 

25% 0.53 52.39 0.45 0.39 53.35 0.70 0.54 51.64 0.73 0.54 52.87 0.74 

50% 0.76 52.31 0.25 0.14 52.40 0.76 0.26 51.72 0.62 0.57 52.93 0.89 

100% 0.52 51.24 0.59 0.06 52.41 0.86 0.04 51.89 0.75 0.64 52.45 0.94 
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(a) 

 

(b) 

Figure 2.6: (a) Path-loss exponent k  and (b) f . 
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2.5 Time-Dispersion Parameters 

 

In this section, two time-dispersion parameters are considered, i.e., the mean excess delay and 

the rms delay spread. The signal measured using a VNA is a frequency response. The inverse 

Fourier transfrom (IFFT) is used to transform the measured frequency domain data to the time 

domain. First, the pass-band signal is obtained with zero padding from the lowest frequency 

down to DC, taking the conjugate of the signal, and reflecting it to the negative frequencies. The 

result is then transformed to the time domain using IFFT. 

The mean excess delay is the first moment of the power delay profile and is defined as follows: 

 

 

 
k k

k

k
k

P

P

 







                              (2.4) 

 

The RMS delay spread is the square root of the second central moment of the power delay 

profile and is defined as 

 

   22
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                             (2.6) 

 

These delays are measured relative to the first detectable signal arriving at the receiver at 0 . 

Equations (2.4)-(2.6) do not rely on the absolute power level of  P  , but only on the relative 

amplitudes of the multipath components (MPCs) [26]. 

Figure 2.7 shows the mean excess delay and RMS delay spread with population density. For a 
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general model of time dispersion parameters, we obtained the linear regression models shown in 

the figure. As population density increases, the delay spread parameters decrease, which is 

explained by the fact that more multipath are blocked or weakened due to the people. This 

phenomenon is depicted in Figure 2.8. Figure 2.8 (a) and (b) show the normalized power delay 

profiles (PDP) in B and D environment, respectively. The difference of the normalized PDPs 

between 0 and 100% occupancy in B environment is smaller than in D environment, and this 

leads to decreased delay parameters. Like the results of [14] in the airplane, the delay spread 

parameters get smaller as more people exist. But the parameters are larger than those in the 

airplane [14], because the indoor environments have different materials and structures compared 

to the airplane which mainly consists of metallic surfaces. As there are more people in the 

environment, some multipath with large delay time are weakened by human bodies. As a result, 

the amplitudes of the multipath components get smaller. From Figure 2.7-8, as more people 

exist in the environment, more multipath are blocked, which results in less dispersive channel.
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(a) 

 

(b) 

Figure 2.7: (a) Mean excess delay and (b) RMS delay spread 
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(a) 

 

(b) 

Figure 2.8: Normalized power delay profile in (a) B and (b) D environment 
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2.6 Conclusions 

 

To show the effect of the presence of people in indoor LOS environments on a UWB channel, 

the measurements are carried out in four environments which have different size and structure. 

For each environment, four scenarios which have different number of people are chosen. The 

frequency-domain channel sounding method was used for channel characterization from 3.0 to 

4.6 GHz. In this chapter, four UWB channel parameters are considered, i.e., the frequency 

correlation coefficient of the measured channel gains, the distance-dependent path-loss model, 

frequency dependent path-loss model, and time dispersion parameters. As increasing the number 

of people, the frequency correlation coefficients get larger. For the distance-dependent path-loss 

model, frequency dependent path-loss model, and time dispersion parameters, the linear 

regression model with a function of population density to obtain a general model for each 

parameter. The distance-dependent path-loss exponent becomes larger due to larger path-loss 

with increasing population density, while the frequency-dependent path-loss exponent becomes 

smaller. For the time dispersion parameters, the mean excess delay and RMS delay spread get 

smaller as population density increases. This means that the UWB channel becomes less 

dispersive with increasing population density. This is because more multipath are blocked or 

weakened by increasing the number of people. In summary, this paper shows that the presence 

of people substantially affects radio-wave propagation in indoor LOS environments and should 

be considered when characterizing the performance of UWB systems. This finding will be 

helpful to those who want to validate the results of software simulations of radio-wave 

propagation in indoor LOS environments. 
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Chapter 3. Human Body Affected Small-Scale Fading for 

Indoor UWB channel 

 

3.1 Introduction 

 

The presence of human bodies might be a dominant factor that can alter such channel. Many 

previous studies have dealt with the shadowing effect of human bodies on the UWB channel 

[13], [16]–[19], but no study has dealt with small-scale fading in the presence of human bodies. 

In [20]–[23], which did not consider human bodies, the small-scale fading distribution was 

matched to some typical theoretical distributions such as Lognormal, Nakagami, Rayleigh, Rice, 

and Weibull distributions depending on the measurement environments and scenarios. In this 

paper, we measure and analyze the small-scale fading distribution in the absence and the 

presence of human bodies. 

The IEEE 802.15.4a UWB channel model [24] is commonly used in performance analysis, but 

the model does not include the small-scale fading variation in the presence of human bodies as 

well as the shadowing effect of human bodies on the UWB channel. Therefore, it is expected 

that there are distinct differences in UWB system performance if the human body effect on the 

channels is included. 

In this paper, we considered a situation where either LOS path is not blocked or slightly blocked 

by human bodies as a Rx is shifted by small-scale (1λ) distance while a Tx is fixed. To create 

this situation, we set the height of the Tx and Rx antennas in consideration of the height of 

human bodies sitting on chairs. In this situation, the effects of human bodies on all paths 

including LOS path are different depending on where the Rx is located.  

The main contribution of this chapter is that we measure the small-scale amplitude statistics in 

the absence and presence of human bodies and propose a statistical model of the small-scale 

fading distribution.  

The remainder of the chapter is organized as follows: Section 3.2 presents the channel 

measurement system and measurement scenario. In Section 3.3, we describe the small-scale 
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fading distribution in the absence and the presence of human bodies. Finally, Section 3.4 

presents the summary and the conclusion.  

 

3.2 Measurement Campaign 

 

3.2.1 Measurement system 

 

In this chapter, we measured the UWB channel using a frequency-domain channel sounding 

method for channel characterization with the vector network analyzer (VNA). The VNA 

(Agilent 8719ES) transmits 1601 discrete tones that are uniformly spaced from 3.0 to 4.6 GHz 

with a frequency interval of 1 MHz, requiring 800 ms for one sweep. This frequency interval 

allows us to measure a multipath with a maximum excess delay of 1000 ns, and the bandwidth 

of the system yields a time resolution of 0.2174 ns. The measured data from the VNA were 

stored on a data acquisition computer via a general purpose interface bus (GPIB). The 

measurement system is the same described in Section 2.2.1. The same dipole antennas with a 

gain of 2 dBi are used on both the transmitting and receiving sides. We set the height of both a 

Tx and Rx antennas as 1.2m in consideration of the height of a human body sitting on a chair, 

which is mostly from 0.9 to 1.2m. The height of the antennas is chosen to consider a situation 

where either LOS path is not blocked or slightly blocked by human bodies as the Rx is shifted 

by small-scale (1λ) distance while the Tx is fixed. A power amplifier (PA) with a gain of 25dB 

and a low-noise amplifier (LNA) with a gain of 27 dB are used on the transmitting and 

receiving sides, respectively. To eliminate the effect of the antennas, the PA, the LNA, and the 

cables, all measured data were calibrated in the anechoic chamber. 

 

3.2.2 Measurement scenario 

 

In this chapter, we consider five representative environments for the analysis of small-scale 

fading in the absence and presence of human bodies in indoor LOS environments. The details of 

five environments are shown in Table 3.1. The floor plans which include the transmitter, 
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receiver, and positions of the human bodies are described in Figure 3.1. In order to determine 

the small- scale fading statistics, a sufficient number of measurement points have to be taken in 

an area where large scale parameters such as shadowing are constant [1]. With these 

requirements, we choose 49 (7×7 grid) local measurement points with 1 λ of distance between 

two neighboring local points, corresponding to 3.8 GHz, which is the center frequency of the 

measurement frequency bands. During the measurement in all environments, human bodies did 

not move around, but were just sitting on their chair with small motion. 

Table 3.1:  Size and Main Features of all Environments 

 
Size [m] 

(L x W) 
Main features 

Environment 1 14.4 x 5.8 

- Partition (height: 1m) 

- Glass window 

- Bookshelves 

Environment 2 6.2 x 3.4 

- Metal wall (two side) 

- Glass window 

- Bookshelves 

- Round table 

Environment 3 5 x 2.8 

- Glass walls (2 sides) and widow 

- Conference table 

- Glass door 

Environment 4 12.6 x 10.4 
- Partition (height: 1.8m) 

- Glass windows (2 sides) 

Environment 5 8 x 3.5 

- Metal wall (one side) 

- Partition (height: 1m) 

- Glass windows (2 sides) 

- Bookshelves 
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(e) 

Figure 3.1: Floor plans for (a) Environment 1, (b) Environment 2, (c) Environment 3, (d) 

Environment 4, and (e) Environment 5 
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3.3 Statistical Modeling of Small-Scale Fading [1] 

 

In narrowband systems, many MPCs fall into each resolvable delay bin, so that the central limit 

theorem is applicable, and the amplitudes of the bins exhibit a Rayleigh distribution. In UWB 

system, the number of MPCs falling into each resolvable bin is much smaller because of fine 

timing resolution, and it has been empirically determined that in many environments, alternative 

amplitude distributions must be used:  

 

1) Nakagami distribution: Observed in  

 

2 1 22
( ) exp

( )

m
mm m

f x x x
m

            
               (3.1) 

 

where 1/ 2m   is the Nakagami m -factor, ( )m  is the gamma function, and   is the 

mean-square value of the amplitude. The m -parameter is often modeled as a random variable. 

 

2) Rice distribution: The Rice distribution describes the envelope of a sum of one dominant 

component and many smaller components.  

 

3) Lognormal distribution: This distribution has the advantage that the fading statistics of the 

small-scale statistics and the large-scale variations have the same form; the superposition of 

lognormal variables can also be well approximated by a lognormal distribution. 

 

4) Weibull distribution:  
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                    (3.2) 
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where   is the scale parameter and   is the shape parameter of the distribution. 

 

5) Rayleigh distribution: For some environments, the Rayleigh distribution is valid even when 

the resolvable bin-width is very small.
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3.4 Small-Scale Fading Distribution by Body 

 

In this section, the small-scale fading statistics in the absence and presence of human bodies in 

indoor LOS environments are obtained from the measured data and are denoted as the small-

scale fading distribution with no body (SFDNB) and with body (SFDB), respectively. The 

measured data using a VNA is a frequency response of the channel which has both amplitude 

and phase. The real pass-band inverse Fourier transform is used to transform the measured 

frequency domain data to the time domain data [32]. The power delay profile (PDP) is extracted 

from the time domain data and PDPs from 49 local points are gathered. Amplitudes are 

normalized by the largest amplitude in PDPs of whole 49 local points. Then, the extraction of 

amplitude for each bin was carried out by collecting a vector of 49 amplitude values with an 

equivalent delay at 49 local points. Figure 3.2 shows the normalized PDP of a sample data file 

in the presence of human bodies at the distance of 8m from Tx for Environment 1.  

To evaluate the goodness-of-fit for these candidate amplitude distributions, we use the 

 

Figure 3.2: Typical the normalized power delay profile of a sample data file for 

Environment 1
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Kolmogorov-Smirnov ( K S ) and chi-square (
2 ) hypothesis tests. These two tests compare 

empirical data and a reference probability distribution. A significance level of 5 % is used in the 

tests. Due to some limitations in each of these two hypothesis tests [33], both tests are deployed 

here in order to ensure the reliability of the fitting. Empirical data from bins at specific excess 

delays were matched to some typical theoretical distributions for amplitude statistics such as 

Lognormal, Nakagami, and Weibull. Table 3.2 and 3.3 show the passing rate of K S  and 
2  

tests for the above distributions in the absence and presence of human bodies in the 

environments, respectively. The passing rates in the tables are averaged over delay times. The 

tables show that the Weibull distribution yields the highest passing rate for both tests in all 

environments. Therefore, we can assume that the small-scale fading statistics can be modeled by 

the Weibull distribution.  

The cumulative distribution functions (CDFs) of passing rates of Weibull distribution for K S   

and 
2  test in the presence of human bodies for all environments are shown in Figure 3.3 (a) 

and (b), respectively. For the two tests, more than about 80% of bins have more than 65% of 

passing rates in all environments. Thus, Figure 3.3 shows the small-scale fading amplitude 

statistics at most of bins are well fitted by Weibull distribution. 
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Table 3.2: Passing Rate For The Scenarios In The Absence of Human Body 

Distribution 
Environment 1 Environment 2 Environment 3 Environment 4 Environment 5

K-S 2  K-S 2  K-S 2  K-S 2  K-S 2  

Lognormal 57.37 3.51 54.39 6.16 61.94 7.38 67.02 12.49 63.55 11.93

Rayleigh 14.97 5.85 12.54 5.53 21.15 9.39 22.49 11.74 24.24 12.87

Nakagami 63.64 61.02 62.93 59.06 64.04 62.26 62.03 56.88 59.52 57.24

Rician 43.71 27.64 13.41 7.76 28.45 24.52 23.33 17.41 24.67 21.31

Weibull 77.23 72.73 78.16 73.89 79.57 76.73 77.54 75.19 75.94 72.42

 

Table 3.3: Passing Rate For The Scenarios In The Presence of Human Body 

Distribution 
Environment 1 Environment 2 Environment 3 Environment 4 Environment 5

K-S 2  K-S 2  K-S 2  K-S 2  K-S 2  

Lognormal 52.89 5.98 57.85 1.76 57.86 8.01 66.75 10.61 63.98 9.85 

Rayleigh 18.01 5.53 17.94 4.31 21.85 10.44 21.37 12.87 23.32 16.49

Nakagami 66.63 61.14  67.23 60.89 64.92 61.3 61.41 57.49 61.74 60.03

Rician 46.73 25.36  15.34 8.06 31.32 23.61 26.59 17.38 26.28 19.43

Weibull 70.78 68.82  73.12 67.06 76.92 70.62 69.78 70.05 71.55 72.95
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(a) 

 

(b) 

Figure 3.3: CDFs of passing rate of Weibull distribution for (a) K S  and (b) 

2  test with the significant level of 5 % in the presence of human bodies 
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(a) 

 

(b) 

Figure 3.4: CDFs of the empirical small-scale fading amplitude fitted with 

Weibull distribution (a) in the absence of human bodies and (b) in the presence 

of human bodies for Environment 1 (D=4m)  
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Figure 3.4 (a) and (b) show CDFs of the empirical small-scale fading amplitude fitted to 

Weibull distribution at different excess delays at the distance of 4m from Tx in the absence and 

the presence of human bodies for Environment 1, respectively. At the same position in 

Environment 1, in Figure 3.4 (a) for when there is nobody in the environment, the amplitudes of 

small-scale fading are not distributed smaller than -50 dB, but when there are human bodies in 

the environment, the amplitudes are distributed smaller than -50 dB, which are shown in Figure 

3.4 (b). From the figures, the variance range of amplitudes of small-scale fading become larger 

when there are human bodies in the environment. 

From Table 3.2, 3.3, and Figure 3.4, the small-scale fading amplitude statistics are well modeled 

by Weibull distribution. The Weibull distribution is defined as 
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                  (3.3) 

 

where   is the scale parameter and   is the shape parameter of the distribution. 

The amplitude and the shape of Weibull distribution depend on two parameters, the scale 

parameter   and the shape parameter  . In this paper, we try to suggest models of two 

parameters. The   and   parameters of the Weibull distribution were extracted from the 

measurement data using the maximum likelihood estimation (MLE) method for all 

environments. 

We found that the scale parameter of Weibull distribution , are well fitted by the exponential 

function as follow, 

 

( ; , ) exp( )f x a b a bx                           (3.4) 

 

where a and b  are parameters of the exponential function and x  is delay times. 
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Figure 3.5 (a) and (b) describe   with delay time and its exponential regression model 

with/without human bodies for Environment 1 and Environment 4, respectively. In the figures, 

the scale parameter of Weibull distribution   depends on whether or not human bodies exist 

in the environment. When there are human bodies in the environment, the scale parameters with 

delay time are larger than those when nobody exists. For Weibull distribution, the variation 

range of the distribution increases as the scale parameter   increases. This result is also 

shown in Figure 3.4. 



44 

 

 

 

(a) 

 

(b) 

Figure 3.5:   with delay time and its regression model fitted with the exponential 

function for (a) Environment 1(D=4m) and (b) Environment 4 (D=4m) 
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Table 3.4 shows the parameters a and b  of the exponential regression model of   by (3.4) 

in the absence and presence of human bodies. In all environments, a largely depends on the 

distance, but b  does not largely depend on the distance. When there are human bodies in the 

environments, the parameter of exponential fit a, is larger than one when nobody exists on the 

same condition. And the parameters b  which decide how fast   decreases with delay times 

in the presence of human bodies are smaller than those in the absence of bodies. This means that 

at the same delay time the variation range of small-scale fading amplitudes increases when there 

are human bodies in the environment. 

Table 3.4: The parameters of the exponential fit for   

 
Distance 

[m] 

Exponential fit 

Without bodies With bodies 

a b a b 

Environment 1 

8 0.218 0.054 0.287 0.028 

4 0.188 0.055 0.222 0.026 

2 0.143 0.051 0.184 0.028 

Environment 2 
4 0.201 0.049 0.243 0.035 

2 0.128 0.047 0.214 0.031 

Environment 3 
4 0.197 0.058 0.250 0.026 

2 0.116 0.048 0.211 0.030 

Environment 4 

8 0.214 0.053 0.285 0.033 

4 0.190 0.048 0.225 0.025 

2 0.144 0.046 0.208 0.030 

Environment 5 
4 0.189 0.053 0.258 0.034 

2 0.139 0.042 0.186 0.031 
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As claimed in [23], the shape parameter of Weibull distribution  are well modeled by the 

Lognormal distribution as follows 
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Figure 3.6 shows CDFs of   with different distances and its Lognormal regression models in 

the presence of human bodies for Environment 1. 

Table 3.5 shows the parameters   and   of the lognormal regression model of   by (3.5) 

in the absence and presence of human bodies. The parameters of Lognormal distribution,   

and   are related to environments, not to distance. From the table, the parameter,    in the 

absence of human bodies is larger than one in the presence of human bodies for the same 

distance and the same environment, but   does not depend on the existence of human bodies. 

Here, the variance of amplitudes of Weibull distribution increases as the shape parameter 

 decreases with the fixed scale parameter. This is shown in the parameters  of Lognormal 

 

Figure 3.6: CDF of  and their regression model fitted with Lognormal distribution in 

the presence of human bodies for Environment 1  
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distribution from the table. And also the parameters  with/without body measured in the 

office environments are larger than those measured in apartments [23]. 

Table 3.5: The parameters of the Lognormal fit for   

 
Distance 

[m] 

Lognormal fit 

Without body With body 

        

Environment 1 

8 0.374 0.101 0.327 0.102 

4 0.489 0.111 0.449 0.113 

2 0.395 0.121 0.348 0.122 

Environment 2 
4 0.419 0.107 0.385 0.108 

2 0.405 0.112 0.378 0.112 

Environment 3 
4 0.446 0.107 0.421 0.108 

2 0.473 0.111 0.443 0.108 

Environment 4 

8 0.499 0.112 0.478 0.115 

4 0.484 0.118 0.449 0.118 

2 0.477 0.114 0.443 0.119 

Environment 5 
4 0.514 0.122 0.496 0.133 

2 0.509 0.113 0.452 0.114 
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 3.5 Conclusions 

 

This chapter deals with the small-scale fading distribution in the absence and presence of human 

bodies in indoor LOS environments. The measurements are carried out in five representative 

environments having different structures and sizes from each other. From the measurement data, 

the small-scale fading statistics are best modeled by the Weibull distribution, but the shape and 

the scale of the distribution depend on two parameters. The chapter makes a model of two 

parameters. First, the shape parameter of the distribution is modeled by the exponential function 

with delay time, and the result shows the parameter largely depends on whether or not human 

bodies exist. The scale parameter of the distribution is modeled by the Lognormal distribution, 

and  of the distribution in the presence of human bodies are smaller than those in the absence 

of human bodies. The results show that the shape parameter of the Weibull distribution increases 

at the same delay time when human bodies exist in the environment, but the scale parameter 

decreases. This is because the variance of the small-scale amplitudes increases when there are 

human bodies exist in the environment. The small-scale fading model in the absence and the 

presence of human bodies will be helpful to those who want to know the human body effect on 

UWB channel and validate the results of software simulation of radio-wave propagation in 

indoor LOS environments 
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Chapter 4. Performance Analysis of Rake receiver in IR-UWB 

system 

 

 

4.1 Introduction 

 

Impulse radio (IR) refers to the generation of a series of impulse like waveforms, each of 

duration in the hundreds of picoseconds.  IR-UWB communicates with baseband pulses of 

very short duration, typically on the order of a nanosecond, thereby spreading the energy of the 

radio signal very thinly from near dc to a few gigahertz (GHz). For this reason, IR-UWB system 

does not require frequency up-conversion and down-conversion. This reduces the complexity 

and power consumption of transceiver and thus makes IR-UWB suitable for low-complexity 

and low power wireless sensor network applications. 

UWB systems have robustness to multipath fading because of their fine time resolution. This 

leads to a high diversity order once combined with a Rake receiver. Rake receivers are used in 

time-hopping impulse radio systems and direct sequence spread spectrum systems for matched 

filtering of the received signal. The receiver structure consists of a matched filter that is matched 

to the transmitted waveform that represents one symbol and a tapped delay line that matches the 

channel impulse response [34]. It is also possible to implement this structure as a number of 

correlators that are sampled at the delays related to specific number of multipath components; 

each of those correlators is known as rake finger. Based upon the Rake receivers are three types. 

The All combining Rake (AC-Rake) receiver captures all most all the energy carried by a very 

large number of different multipath signals. To reduce the rake complexity, a partial combining 

(PC-Rake) is used as partial combining of the energy, which combines the first arriving paths 

out of the available resolved multipath components. Selective combining (SC-Rake) is a 

suboptimum Rake receiver, which combines the energy selectively carried out by the strongest 

multipath components. 
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This chapter deals with BER performance of Rake receiver using the small-scale fading channel 

model proposed in section 3.3, comparing with previous channel models. 

The remainder of the chapter is organized as follows: Section 4.2 presents a UWB Rake receiver 

structure. In Section 4.3, we briefly introduce existing channel models. Section 4.4 deals with 

Bit-Error-Rate(BER) performance analysis of IR-UWB system. Finally, Section 4.5 presents the 

summary and the conclusion.  
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4.2 UWB Rake Receiver 

 

4.2.1 UWB Rake receiver structure [35] 

 

A UWB rake receiver structure is shown in Figure 4.1. 

For a single user system, the continuous transmitted data stream is represented as 

 

( ) ( ) ( )
k

s
k

s t d k p t kT




                         (4.1) 

 

where ( )d k  are stationary uncorrelated BPSK data and sT  is the symbol duration. The UWB 

pulse ( )p t  has duration uwbT . 

The channel impulse response is given by 

 

0

( ) ( )
M

i i
i

h t h t 


                          (4.2) 

 

M  is the total number of paths in the channel. 

The received signal first passes through the receiver filter matched to the transmitted pulse and 

is given by: 
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      ( ) ( ) ( )i s i
k i
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      
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where ( )p t  represents the receiver matched filter and ( )n t  is the Additive White Gaussian 

Noise (AWGN) with zero mean and variance 0 / 2N . Also, ( ) ( ) ( )m t p t p t    and 

( ) ( ) ( )n t n t p t  
. 

Combining the channel response with the transmitter pulse shape and the matched filter 

 



52 

 

0

( ) ( ) ( ) ( ) ( )
M

i i
i

h t p t h t p t h m t 


     


                 (4.4) 

The received signal sampled at the thl  rake finger in the thn  data symbol interval is given by 
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                  (4.5) 

 

Where l  is the delay time corresponding to the thl  rake finger and is an integer multiple of 

sT . 

The rake combiner output at time st nT  is 
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4.2.2 Rake Receiver Type [32] 

 

The received signal energy can be improved in a multipath fading channel by utilizing a 

diversity technique, such as the rake receiver [32]. Rake receivers combine different signal 

components that have propagated through the channel by different paths. This can be 

characterized as a type of time diversity. The combination of different signal components will 

increase the signal-to-noise ratio (SNR), which will improve link performance. The ideal rake 

receiver structure captures all of the received signal power by having a number of fingers equal 

to the number of multipath components. The problem with this approach is the need for an 

infinite number of rake branches, which also means an infinite number of correlators. 

Consequently, implementation of the AC-Rake is not possible. A practical rake receiver 

implementation is a SC-Rake and PC-Rake. The SC-Rake only uses the strongest propagation 

paths. Figure 4.3 (a) shows the multipath components used by the SC-Rake. The PC-Rake 

involves combining the first propagation paths. The principle behind this approach is that the 

first multipath components will typically be the strongest and contain the most of the received 

signal power. The disadvantage is that the multipath components that the PC-Rake receiver 

combines are not necessarily the strongest multipath components, so optimum performance will 

not be achieved. Figure 4.3 (b) shows the multipath components used by the PC-Rake. 
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(a) 

 

(b) 

Figure 4.2: Principle of (a) SC-Rake and (b) PC-Rake receiver [32] 
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4.3 Channel models 

 

4.3.1 801.15.4a UWB channel model [24] 

 

The CIR defined in the 4a model is a stochastic process, composed of a series of delayed and 

attenuated multipath components: 

 

, ,
0 1

( ) ( )k l l k l
l k

h t X a t T t
 

 

                      (4.7) 

 

where the cluster arrival and ray arrivals within each cluster are modeled as Poisson processes 

with arrival rate of   and  , respectively. By definition, the delay of the first cluster is 

0 0T   and the arrival time of other clusters, 
lT , has the distribution of Gamma( l , ), 1, 2, .l    

The ray arrival time within a cluster, ,k lt  , has the distribution of Gamma( , ), 1, 2, .     

The total excess delay of the k -th ray in the l -th cluster is 
, ,k l l k lT t   . X  represents the 

log-normal attenuation with zero mean and variance of 2
X . The multipath gain coefficients 

,k la  

are modeled as:    2 2
10 , , 1 220log ,k l k la N    . The average delayed power, 

2

,k lE a 
  

, is 

represented by double exponential decay:  
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where 
0  is the mean power of the first path of the first cluster. The total energy of the 

multipath components is normalized such that 
2

,0 0
1k ll k

a
 

 
  . The 3a model follows the 

Nakagami distribution for the small-scale fading. The distribution of Nakagami is 
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where 1/ 2m   is the Nakagami m -factor, ( )m  is the gamma function, and   is the mean-

square value of the amplitude. The m -parameter is modeled as a lognormally distributed 

random variable, whose logarithm has a mean m  and standard deviation m . Both of these 

can have delay dependence 

 

0 0
ˆˆ( ) ,  ( )m m m mm k m k                          (4.10) 

 

The constant parameters ( ,  ,  ,  , 
1 , 

2 , 
0m , and 

0m̂ ) are defined in the 3a standard 

for four propagation scenarios (CM1~CM4). The parameters of CM3 are used throughout to 

consider scenarios in indoor office environment with the LOS path between the UWB 

transceivers. 
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4.3.2 People Shadowing Effect on UWB Channels 

 

In [19], people shadowing effect (PSE) on UWB channels is considered. The paper proposed the 

PSE model when a person moves along a straight line perpendicular to the LOS path. The PSE 

model provides a suitable way to determine the shadowing term X  instead of using an 

independent log-normal distributed random variable. 

Figure 4.3 (a) shows the blocking angular range with a position with human body: a single 

scatterer, normally a person, is moving around the area between UWB transceivers and thus 

obstructing some significant paths. The body is modeled as a cylinder with radius 30r   cm. 

The numerical results of PSE when a person is passing through the LOS path along a straight 

line perpendicular to the LOS path from (0.5, -1.5) to (0.5, 1.5) (the unit is m) is shown in 

Figure 4.3 (b). 
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(a) 

 

(b) 

Figure 4.3: (a) Computation of blocking angular range and (b) Power 

attenuation when a person moves along a path perpendicular to LOS 
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4.4 BER performance analysis 

 

In this section, BER performance of Rake receiver is analyzed for 6 different channel models 

which are described in Table 4.1. For all channel models, the parameters of 802.15.4a CM 3 

channel model which consider scenarios in indoor office environment with the LOS path 

between the UWB transceiver are used in common [24]. In the table, people shadowing effect 

(PSE) on UWB channels is considered [19]. This model described the scenario when a person 

moves along a straight line perpendicular to the LOS path. The PSE model provides a suitable 

way to determine the shadowing term X  instead of using an independent log-normal 

distributed random variable. During the BER performance simulation in the paper, we assumed 

the PSE model in which a human body blocked the LOS path to show the worst BER 

performance. In the table, 802.15.4a and 802.15.4a+PSE channel models use the Nakagami 

distribution as the small-scale fading model, and the others use the Weibull distribution which is 

proposed in Section III. When we added the proposed small-scale distribution to 802.15.4a CM3 

model, the parameters of Weibull distribution applied to each bin of CM3 CIR, which is to make 

the amplitude of each bin of CM3 CIR mean value and to follow amplitudes of each bin Weibull 

distribution. The only difference of between 802.15.4a and 802.15.4a+SFDNB is that small-

scale fading distributions of the two models are different, i.e., Nakagami and Weibull 

distribution, respectively. The two distributions describe different small-scale fading statistics 

measured in actual environments that have different shape and range of probability density 

function (PDF) in the statistics. The shape and the range largely depend on the surroundings of 

Tx and Rx antennas. Under the same mean, the Weibull distribution can cover much smaller 

variables than the Nakagami distribution. For these reasons, each model uses different 

distribution that is best fitted to the small-scale fading statistics measured in actual 

environments. This leads to different shapes and ranges of amplitudes at the same delay time in 

PDPs. The 8012.15.4a+PSE, 802.15.4a+PSE+SFDNB and 802.15.4a+PSE+SFDB channel 

models include the PSE model as shadowing effect of human bodies described in [19], but the 

others not. In the table, SFDNB uses the parameters of small-scale fading distribution with no 

body in Table IV and V, and SFDB uses the parameters with body. In the BER performance 
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simulation, the channel and transmitted bits are sampled with 0.2174 nsec of the sample 

duration. The bit duration and bit rate are 21.74 nsec and 46 Mbps, respectively. And the 

transmitted bits are BPSK modulated. 

Table 4.1: Main Difference of Channel Models 

Channel Model 
Large scale fading 

distribution 

Small-scale fading 

distribution 

802.15.4a Lognormal Nakagami 

802.15.4a+PSE 
Lognormal, 

People shadowing effect
Nakagami 

802.15.4a+SFDNB Lognormal 

Weibull- 

without bodies 

(Table 3.4 and 3.5) 

802.15.4a+SFDB Lognormal 

Weibull- 

with bodies 

(Table 3.4 and 3.5) 

802.15.4a+PSE+ 

SFDNB 

Lognormal, 

People shadowing effect

Weibull- 

without bodies 

(Table 3.4 and 3.5) 

802.15.4a+PSE+ 

SFDB 

Lognormal, 

People shadowing effect

Weibull- 

with bodies 

(Table 3.4 and 3.5) 
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Figure 4.4 shows the BER of the system with the number of rake fingers for 0/ 10 bE N dB . 

For SC-Rake receiver in Figure 4.4 (a), the BER performance gets better up to 10 fingers, but 

the performance does not any better more than 10 fingers. The BER performance for PC-Rake 

receiver is shown in Figure 4.4 (b). Unlike the result of SC-Rake, the BER performance 

becomes better as the number of fingers. This is because PC-Rake receiver combines the first 

arriving paths out of the available resolved multipath components, while SC-Rake receiver 

combines the instantaneously strongest multipath components. As increasing the number of rake 

fingers, PC-Rake has a chance to use stronger multipath than multipath earlier arriving.
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(a) 

 

(b) 

Figure 4.4: BER with the number of fingers for (a) SC-Rake receiver and 

(b) PC-Rake receiver (Environment 1) 
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Figure 4.5 (a) shows the BER performance of a 10-finger SC-Rake receiver. In the figure, the 

802.15.4a channel model has the best BER performance with the same Eb/No. The required 

Eb/No increases when either PSE or SFDB/SFDNB model is included comparing with 

802.15.4a model. When both PSE and SFDNB/SFDB model are involved, BER performance of 

SC-Rake receiver becomes worse. When there are human bodies with the same Eb/No, BER 

performance gets worse, which is because the channel suffers severe fading by human bodies 

near to a receiver. These results are shown by comparing 802.15.4a+SFDNB and 

802.15.4a+SFDB or 802.15.4a+PSE+SFDNB and 802.15.4a+PSE+SFDB in Figure 4.5 (a). At 

high Eb/No, up to 4 dB is required to meet the same BER performance on the same condition 

when human bodies exist. In Figure 4.5 (b), the BER performance of a 10-finger PC-Rake 

receiver is represented. The required Eb/No is up to 4 dB when either PSE or SFDNB/SFDB 

model is included comparing with 802.15.4a model. When both PSE and SFDNB/SFDB model 

are involved, 4 to 12 dB of Eb/No need to meet the same BER performance with 802.15.4a 

model. As the result of SC-Rake receiver, BER performance of PC-Rake receiver with human 

bodies is worse than one with nobody. From the figures, SC-Rake receiver has better BER 

performance than PC-Rake receiver with the same Eb/No for all channel models in Table 4.1, 

and when there are human bodies around a receiver, BER performance gets worse. In summary, 

when human bodies exist around a receiver, SFDB model proposed by this paper should be 

included in the BER performance analysis and more Eb/No required not to deteriorate BER 

performance. 
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(a) 

 

(b) 

Figure 4.5: BER performance of a 10-finger (a) SC-Rake receiver and 

(b) PC-Rake receiver (Environment 1) 



66 

 

4.5 Conclusion 

 

This chapter deals with BER performance of Rake receiver using the small-scale fading channel 

model in section 3.4, comparing with previous channel models. The 802.15.4a channel model 

which does not consider the human body effect on UWB channel has the best BER performance. 

The performance becomes worse when either PSE or SFDNB/SFDB model is included in UWB 

channel. And when both PSE and SFDNB/SFDB model are included, more Eb/No needs to 

meet the same BER performance on the same condition. And on the same Eb/No, BER 

performance with human bodies is worse than one with nobody. This result will be helpful to 

those who want to know the human body effect on BER performance in indoor LOS 

environments. 
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초    록 

 

이 논문에는 실내 환경에서 초광대역 (Ultra WideBand) 통신망이 설치된 경우 

송신단과 수신단 주변에 위치하는 인체가 해당 통신망의 채널에 미치는 영향에 대한 

연구가 나타나 있다. 기존 통신망과 달리 초광대역 통신망은 정보의 대용량 전송을 

위해 넓은 주파수 대역을 사용한다. 넓은 주파수 대역을 사용하므로 인접 통신망에 

간섭을 일으킬 여지가 있어 초광대역 통신망은 주로 낮은 전력으로 통신을 해야 

한다. 저전력을 사용해야 하는 초광대역 통신망은 가시경로 (Line-of-sight, LOS) 또는 

비가시경로 (Non-line-of-sight, NLOS) 중 경로 감쇄가 작은 환경에 주로 설치가 된다. 

이러한 환경에서는 초광대역 통신망의 채널은 송신단과 수신단 주변 환경에 크게 

영향을 받는다. 본 논문에서는 실내 환경에서 채널의 변화를 일으킬 수 있는 

송수신단 주변의 여러 요인 중 인체의 영향에 대해서 다루고자 한다.  

우선, 가시경로가 항상 확보되는 강의실 환경에서 인체의 밀집도에 따른 초광대역 

무선채널의 변화를 모델링 한다. 서로 다른 구조, 크기, 그리고 재질을 갖는 4곳의 

강의실에 대해서 측정을 수행하였으며, 각각의 강의실에는 인체의 수를 달리하여 

동일한 수신단 위치에서 실험을 반복적으로 수행하였다. 강의실 내의 사람은 정해진 

위치에 의자에 앉아 있으며 측정하는 동안 이동하는 사람은 없고 해당 자리에서 

필요 시 작은 움직임은 허용하였다. 단위 면적당 위치하는 사람의 수에 따라 

대표적인 초광대역 채널 파라미터인 경로 감쇄 모델과 지연분포 파라미터의 변화를 

분석하고 인체의 밀집도에 따른 선형적인 채널 파라미터를 제시하였다. 아울러 넓은 

주파수 대역을 사용하는 초광대역 통신망의 주파수 상관특성을 구하여 인체의 

밀집도에 따라 주파수 상관특성의 변화도 비교한다.  

다음으로는 일반 사무실 구조를 갖는 여러 환경에서 수신단 주변에 위치하는 인체에 

의해 Small-scale 페이딩의 영향을 보기 위해 같은 환경에서 인체가 존재하지 않을 

경우와 존재하는 경우에 대해서 Small-scale 페이딩을 측정하여 각각에 대해서 해당 

페이딩을 모델링하였다. Small-scale 페이딩을 얻기 위해 하나의 수신단 주변 좁은 

지역내의 49개의 측정 지점에서 측정을 수행하였다. 좁은 지역에서 측정한 49개의 

측정 결과를 이용하여 각각의 지연시간에서 Small-scale 페이딩을 구하여 Small-scale 
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페이딩을 가장 잘 맞는 확률분포를 찾아 해당 확률분포의 파라미터를 모델링하였다. 

이 논문의 마지막 부분에서는 사무실 환경에서 인체의 유무에 따라 다르게 모델링 

된 Small-scale 페이딩을 이용하여 임펄스 라디오 (Impulse Radio, IR) 초광대역 

통신망의 성능 분석을 하였다. 임펄스 라디오 초광대역 통신망은 넓은 주파수 

대역으로 인해 분해능이 좋아 레이크 (Rake) 수신기를 사용한다. 레이크 수신기는 

다중 경로의 수신 정보를 최대한 이용하여 신호 대 잡음비(SNR)를 크게 해주는 

효과가 있다.  임펄스 라디오 초광대역 통신망의 성능분석을 함에 있어서 이 

논문에서 제시한 초광대역 채널 모델과 기존 표준 채널 모델을 사용하였을 경우 

해당 통신망의 성능의 차이를 비교 분석하였다. 아울러 기존 표준 모델에서 

포함하지 않은 인체 Shadowing 모델을 소개하고 성능 분석에 포함하여 비교하였다. 

성능 분석 결과를 통해 기존 표준 모델에서 고려하지 않은 인체의 영향을 포함하게 

된 경우 임펄스 라디오 초광대역 통신망의 성능 열화가 발생하게 되어 이러한 

열화를 막기 위해서는 추가적인 신호 대 잡음비를 확보해줘야 한다. 

 

주요어 : 초광대역 채널 모델링, 인체, 임펄스 라디오 초광대역 통신망, Small-scale 

페이딩, 레이크 수신기, BER 성능 
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