19 research outputs found

    Neural Architecture Search considering energy efficiency of mobile device

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณตํ•™์ „๋ฌธ๋Œ€ํ•™์› ์‘์šฉ๊ณตํ•™๊ณผ, 2022.2. ์ด์˜๊ธฐ.๋ชจ๋ฐ”์ผ ๊ธฐ๊ธฐ ๋ฐ IoT ๊ธฐ๊ธฐ์™€ ๊ฐ™์€ ์ž„๋ฒ ๋””๋“œ ๋””๋ฐ”์ด์Šค์—์„œ ์‚ฌ์šฉ ๊ฐ€๋Šฅ ํ•œ ์˜จ ๋””๋ฐ”์ด์Šค AI ์„œ๋น„์Šค์— ๋Œ€ํ•œ ์ˆ˜์š”๊ฐ€ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ์˜จ ๋””๋ฐ”์ด์Šค AI ๋Š” ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ์ž„๋ฒ ๋””๋“œ ๋””๋ฐ”์ด์Šค์— ๋‚ด์žฅํ•˜๊ธฐ ์œ„ํ•œ ๊ธฐ์ˆ ๋กœ ํด๋ผ์šฐ๋“œ ๊ธฐ๋ฐ˜์˜ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ์ˆ  ๋Œ€๋น„ ์ €์ง€์—ฐ, ๊ฐ•ํ™”๋œ ๋ณด์•ˆ๊ณผ ๊ฐ™์€ ์žฅ์ ์ด ์žˆ์ง€๋งŒ, ์‹คํ–‰๋˜๋Š” ํ•˜๋“œ์›จ์–ด์— ์„ฑ๋Šฅ์ด ์˜์กด์ ์ด๋ฉฐ ์—ฐ์‚ฐ์„ ์œ„ํ•ด ํ”„๋กœ์„ธ์„œ, ๋ฉ”๋ชจ๋ฆฌ ์™€ ๊ฐ™์€ ๋งŽ์€ ์ปดํ“จํŒ… ์ž์›์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ณผ๋„ํ•œ ์ „๋ ฅ์„ ์†Œ๋น„ํ•œ๋‹ค. ์ด์™€ ๊ฐ™์€ ์ด์œ ๋กœ ๊ฒฝ๋Ÿ‰ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•  ๋•Œ ์—๋„ˆ์ง€ ํšจ์œจ์„ ๊ณ ๋ คํ•ด์•ผ ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ชจ๋ฐ”์ผ ๊ธฐ๊ธฐ์˜ ์—๋„ˆ์ง€ ํšจ์œจ์„ ๊ณ ๋ คํ•œ ์—๋„ˆ์ง€ ํšจ์œจ์ ์ธ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ๊ตฌ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ELP-NAS๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์ด ๋ชจ๋ฐ”์ผ ๊ธฐ๊ธฐ์—์„œ ์‹คํ–‰๋  ๋•Œ ๋ชจ๋ธ์˜ ์ข…๋‹จ๊ฐ„ ์†Œ๋น„ ์ „๋ ฅ๊ณผ ์ง€์—ฐ ์‹œ๊ฐ„์„ ์˜ˆ ์ธกํ•˜๊ณ , ์ด ์˜ˆ์ธก๊ฐ’๋“ค์„ ๋ชจ๋ธ์˜ ์ •ํ™•๋„์™€ ํ•จ๊ป˜ ๊ฐ•ํ™” ํ•™์Šต ๊ธฐ๋ฐ˜์˜ ์‹ ๊ฒฝ๋ง ์•„ํ‚คํ…์ฒ˜ ํƒ์ƒ‰์„ ํ†ตํ•ด ์„ฑ๋Šฅ ์ข‹์€ ๋ชจ๋ธ์„ ํƒ์ƒ‰ํ•˜๊ณ  ํ•™์Šตํ•œ๋‹ค. CIFAR-10 ๋ฐ์ดํ„ฐ ์„ธํŠธ์—์„œ ELP-NAS์˜ ์ •ํ™•๋„๋Š” ๋ฒ ์ด์Šค๋ผ์ธ ๋ชจ๋ธ ์ธ ENAS ๋Œ€๋น„ ์ •ํ™•๋„๋Š” 0.35% ๊ฐ์†Œํ•˜์—ฌ 1%๋ฏธ๋งŒ์œผ๋กœ ์•„์ฃผ ์ž‘์ง€๋งŒ, ์†Œ๋น„ ์ „๋ ฅ๊ณผ ์ง€์—ฐ ์‹œ๊ฐ„์€ ์•ฝ 40% ๊ฐœ์„ ๋œ ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค.The demand for on-device AI service-based image analysis technology that can be used in embedded devices such as mobile and IoT devices is increasing. On-device AI has advantages such as low latency and enhanced security, but AI performance is dependent on hardware performance and consumes excessive power by requiring a lot of computing resources such as processor and memory for AI operations. For this reason, there is a need to improve energy efficiency for on-device AI models. In this study, we propose ELP-NAS as a method of constructing a deep learning model considering the energy efficiency of mobile devices. ELP-NAS trains deep learning models using neural network architecture search to design optimal architectures in automatic machine learning. By applying the algorithm to predict the end-to-end energy consumption and latency of the deep learning model, the predicted energy consumption and latency of the discovered neural network architecture are used as a reward for reinforcement learning along with the accuracy of the model. In the CIFAR-10 data set, the accuracy of the ELP-NAS was 95.26%, which is equivalent to the accuracy of the ENAS selected as the baseline, 95.61%, but it was confirmed that the power consumption and execution time were improved by about 40% compared to the baseline model.I. ์„œ๋ก  1 1.1 ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  1 1.2 ์—ฐ๊ตฌ ๋ฒ”์œ„ 3 1.3 ์—ฐ๊ตฌ์˜ ๊ตฌ์„ฑ 4 II. ๊ด€๋ จ ์—ฐ๊ตฌ 5 2.1 ์‹ ๊ฒฝ๋ง ์•„ํ‚คํ…์ฒ˜ ํƒ์ƒ‰ 5 2.1.1 ํƒ์ƒ‰ ์˜์—ญ ์„ค๊ณ„ 7 2.1.2 ํƒ์ƒ‰ ์ „๋žต 9 2.1.3 ์„ฑ๋Šฅ ํ‰๊ฐ€ ์ „๋žต 10 2.2 ์„ ํ–‰ ์—ฐ๊ตฌ 12 III. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• 18 3.1 ๋ฌธ์ œ ์ •์˜ 18 3.2 ELP ์•Œ๊ณ ๋ฆฌ์ฆ˜ 21 3.3 ELP-NAS ์‹œ์Šคํ…œ 22 3.4 ์„ฑ๋Šฅ ํ‰๊ฐ€ ๋ฐฉ๋ฒ• 27 IV. ์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ 28 4.1 ์‹คํ—˜ ๊ฐœ์š” 28 4.2 ์‹คํ—˜ ํ™˜๊ฒฝ ์„ค์ • 28 4.3 ์‹คํ—˜ ๊ฒฐ๊ณผ ๋ฐ ๋ถ„์„ 37 4.3.1 ๋ชฉํ‘œ๊ฐ’ ์„ค์ • ์‹คํ—˜ ๊ฒฐ๊ณผ 37 4.3.2 ๊ฐ•์„ฑ ์ œ์•ฝ ์กฐ๊ฑด ์‹คํ—˜ ๊ฒฐ๊ณผ 39 4.3.3 ์—ฐ์„ฑ ์ œ์•ฝ ์กฐ๊ฑด ์‹คํ—˜ ๊ฒฐ๊ณผ 41 4.3.4 ์‹คํ—˜ ๊ฒฐ๊ณผ ๋ถ„์„ 43 4.4 ๋ชจ๋ธ ์„ฑ๋Šฅ ๋น„๊ต 46 V. ๊ฒฐ๋ก  50 5.1 ๊ณ ์ฐฐ 50 5.2 ์—ฐ๊ตฌ ํ•œ๊ณ„์  51 5.3 ํ–ฅํ›„ ๊ณผ์ œ 52 ์ฐธ๊ณ  ๋ฌธํ—Œ 53 Abstract 57์„

    A study on the implementation of the tractography program in diffusion tensor imaging

    No full text
    ์˜๊ณตํ•™๊ณผ/์„์‚ฌ[ํ•œ๊ธ€] ํ™•์‚ฐํ…์„œ ์ž๊ธฐ๊ณต๋ช…์˜์ƒ์€ ๋Œ€๋‡Œ ์‹ ๊ฒฝ๊ณ„์˜ ๊ธฐํ•˜ํ•™์  ๊ตฌ์กฐ๋ฅผ ์•ˆ์ „ํ•˜๊ณ  ๋น„์นจ์Šต์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ ์ง„๋‹จํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ˆ ์ด๋‹ค. ๋Œ€๋‡Œ์— ์žˆ๋Š” ๋ฐฑ์งˆ์€ ๊ทธ ์†์ด ๋ฌผ๋กœ ์ฑ„์›Œ์ ธ ์žˆ๊ณ , ๊ธธ๊ณ  ๊ฐ€๋Š๋‹ค๋ž€ ์‹ ๊ฒฝ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์–ด, ํ™•์‚ฐ์„ ์ด์šฉํ•œ ์‹ ๊ฒฝ์˜ ๊ฒฝ๋กœ๋ฅผ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค. ์•„์ฃผ ๋ฏธ์„ธํ•œ ๋‹จ์œ„๋กœ ์ผ์ •ํ•œ ๋ฒ•์น™์ด ์—†์ด ์šด๋™ํ•˜๋Š” ๋ฌผ๋ถ„์ž์˜ ํ™•์‚ฐ์€ ์„œ๋กœ ๋‹ค๋ฅธ 6๊ฐœ์˜ ๊ฒฝ์‚ฌ์ž๊ธฐ์žฅ์œผ๋กœ ์ธก์ •๋œ ์ž๊ธฐ๊ณต๋ช…์˜์ƒ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ๊ณ„์‚ฐ๋˜์–ด์ง„๋‹ค. ๊ณ„์‚ฐ๋˜์–ด์ง„ ํ™•์‚ฐ์„ ํ™•์‚ฐ๊ณ„์ˆ˜๋ผ๊ณ  ๋ถ€๋ฅด๋ฉฐ, ํ™•์‚ฐ๊ณ„์ˆ˜๋กœ๋ถ€ํ„ฐ ๊ณ ์œ ๊ฐ’, ๊ณ ์œ ๋ฒกํ„ฐ, FA๊ฐ’์„ ์–ป์„ ์ˆ˜ ์žˆ๋Š”๋ฐ ์ด ๊ฐ’๋“ค์€ ๊ฐ ํ™”์†Œ์˜ ํฌ๊ธฐ, ๋ฐฉํ–ฅ, ๋น„๋“ฑ๋ฐฉ์„ฑ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์–ป์–ด์ง„ ๊ฐ ํ™”์†Œ์˜ ๊ณ ์œ ๊ฐ’๊ณผ ๊ณ ์œ ๋ฒกํ„ฐ๋กœ๋ถ€ํ„ฐ ํ™•์‚ฐ์˜ ๋ฐฉํ–ฅ์„ ๊ฐ€๋ฅดํ‚ค๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ํ™”์†Œ์˜ ํฌ๊ธฐ๋ณด๋‹ค ์ž‘์€ ์‹ค์ˆ˜ ๋‹จ์œ„์˜ ๊ฐ’์„ ๋ฒกํ„ฐ์™€ ๊ณฑํ•˜์—ฌ ์ ์ฐจ ๋”ํ•ด๋‚˜๊ฐ€๋Š” FACT๋ฐฉ๋ฒ•์œผ๋กœ ๊ฐ ํ™”์†Œ์˜ ๋ฒกํ„ฐ๋“ค์„ ์—ฐ๊ฒฐํ•˜๋Š” Tractography๋ฅผ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. Tractography์˜ ์ •๋ฐ€์„ฑ์„ ๊ฒ€์ฆํ•˜๊ธฐ์œ„ํ•˜์—ฌ ์‹คํ—˜ํ•œ ์‹ ๊ฒฝ์€ ๋ผˆ๋Œ€๊ทผ์œก์˜ ์ˆ˜์˜์šด๋™์„ ์กฐ์ ˆํ•˜๋Š” ๊ฒ‰์งˆ์ฒ™์ˆ˜๋กœ์ค‘์—์„œ ๋Œ€๋‡Œ๋ฅผ ์ง€๋‚˜๋Š” ๊ฒฝ๋กœ์ด๋ฉฐ, ํ•ด๋ถ€ํ•™์ ์ธ ๊ฒ‰์งˆ์ฒ™์ˆ˜๋กœ์˜ ํŠน์ง•์ธ ์ค‘์‹ฌ์•ž์ด๋ž‘, ์†์„ฌ์œ ๋ง‰, ๋Œ€๋‡Œ๋‹ค๋ฆฌ๋ฅผ ๊ฒฝ์œ ํ•˜์—ฌ ํ•ด๋ถ€ํ•™์ ์ธ ๋ชจ์–‘๊ณผ ์ผ์น˜ํ•จ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. [์˜๋ฌธ]Diffusion Tensor Magnetic Resonance Imaging(DT-MRI) is a method which makes it possible to study in the human brain in vivo and non-invasively the architecture of axonal fibers in the central nervous system. In white matter fibers there is a pronounced directional dependence on diffusion. Diffusion is calculated from MR dataset that measured by six gradients independently. Calculated diffusion is called diffusion constant that is based on eigenvalue, eigenvector and FA value. These values are represented each voxels of magnitude, direction and anisotrophy.Tractograpy that connect vectors of each pixels using FACT method from eigenvalue and eigenvector of each pixels in this paper. Nerve that experiment to verify tractography''''s precision passes CST. Implemented tractography agree with anatomical path of CST.ope

    ์†Œ์™€ ๋ฐฑ์„œ์˜ ์‹ ์žฅ transamidinase์˜ ๋ถ„๋ฆฌ ๋ฐ ๊ตฌ์กฐ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    ์˜ํ•™๊ณผ/๋ฐ•์‚ฌ[์˜๋ฌธ] [ํ•œ๊ธ€] Transamidinase(L-arginine: glycine amidinotransferase, EC 2. 1.4. 1)๋Š” ์ฒ™์ถ”๋™๋ฌผ์˜ ์—๋„ˆ์ง€๋Œ€์‚ฌ์— ๊ด€์—ฌํ•˜๋Š” ๋งค์šฐ ์ค‘์š”ํ•œ ๊ธฐ์งˆ์ธ creatine์˜ ์ƒํ•ฉ์„ฑ ๊ณผ์ •์ค‘ ์ฒซ๋ฒˆ์งธ ๋ฐ˜์‘์ธ ar ginine๊ณผ glycine์œผ๋กœ๋ถ€ํ„ฐ ornithine๊ณผ guanidinoacetic acid๊ฐ€ ํ˜•์„ฑ๋˜๋Š” ๊ณผ์ •์„ ์ด‰๋งคํ•œ ๋‹ค(Borsook๊ณผ Dubnoff 1941). ์ด ํšจ์†Œ์˜ ํ™œ์„ฑ์€ Borsook๊ณผ Dubnoff(1941)์— ์˜ํ•ด ํฌ์œ ๋™ ๋ฌผ์˜ ์‹ ์žฅ์—์„œ ์ตœ์ดˆ๋กœ ๋ณด๊ณ ๋œ ์ด๋ž˜๋กœ, ์ฅ์˜ ๋‡Œ (Defalco์™€ Davies 1961), ์ฅ ๊ฐ„์žฅ(Gerber ๋“ฑ, 1962), ์ฅ ๊ณ ํ™˜(Koszalka 1968), ๊ทธ๋ฆฌ๊ณ  ๊ฐœ ์ทŒ์žฅ(Walker์™€ Walker 1959)๋“ฑ ์—ฌ๋Ÿฌ ๋™๋ฌผ ์˜ ์—ฌ๋Ÿฌ ์žฅ๊ธฐ์—์„œ ๋ณด๊ณ ๋˜์–ด ์žˆ๋‹ค. ๋˜ํ•œ Van Pilsum๋“ฑ(1972)์€ ์ด ํšจ์†Œ์˜ ํ™œ์„ฑ์„ ์—ฌ๋Ÿฌ ์ฒ™์ถ”๋™๋ฌผ๊ณผ ๋ฌด์ฒ™์ถ”๋™๋ฌผ์˜ ๊ฐ ์žฅ๊ธฐ์— ์„œ ๋น„๊ตํ•˜๊ณ , ์‚ฌ๋žŒ์„ ํฌํ•จํ•œ ๋Œ€๋ถ€๋ถ„์˜ ๋™๋ฌผ์˜ ์‹ ์žฅ๊ณผ ์ทŒ์žฅ์—์„œ ๊ทธ ํ™œ์„ฑ์ด ๋‹ค๋ฅธ ์กฐ์ง์— ๋น„ ํ•ด ๋†’๋‹ค๊ณ  ๋ณด๊ณ ํ•˜์˜€๋‹ค. Transamidinase๋Š” ์ตœ์ดˆ๋กœ Ratner์™€ Rochovansky(1956)์— ์˜ํ•ด ๋ผ ์ง€ ์‹ ์žฅ์—์„œ ๋ถ„๋ฆฌ ์ •์ œ๋˜์—ˆ๊ณ , ๊ทธํ›„ ์ฅ ์‹ ์žฅ(McGuire๋“ฑ, 1980), ์†Œ ์‹ ์žฅ(Im๋“ฑ, 1983) ๋“ฑ ์—์„œ ๋ถ„๋ฆฌ ์ •์ œ๋˜์—ˆ์œผ๋ฉฐ, ๊ทธ ๋ถ„์ž๋Ÿ‰์€ 82,600โˆผ100,000์œผ๋กœ์„œ ์ข…์˜ ์ฐจ์ด์—†์ด ๋น„์Šทํ•˜๋ฉฐ, ์ฅ (McGuire๋“ฑ, 1980)์™€ ์†Œ(Im๋“ฑ, 1983)์˜ ๊ฒฝ์šฐ ๋‘๊ฐœ์˜ ๋™์ผํ•œ ์†Œ๋‹จ์œ„๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค๊ณ  ๋ณด๊ณ ๋˜์–ด ์žˆ๋‹ค. ํ•œํŽธ McGuire๋“ฑ(1980)์€ DEAE-cellulose์— ์˜ํ•ด ์ฅ ์‹ ์žฅ transamidinase๋Š” ฮฑ์™€ ฮฒ์˜ ๋‘ isoenzyme์œผ๋กœ ๋ถ„๋ฆฌ๋˜๋ฉฐ, ์ด ๋‘ ํšจ์†Œ๋Š” ๊ทธ ๋ถ„์ž๋Ÿ‰, ๋“ฑ์ „์ , ํ•ญ์›์„ฑ ๋“ฑ์ด ์œ ์‚ฌํ•˜์ง€๋งŒ, ๋ผ์ง€ ์‹ ์žฅ transamidinase์™€๋Š” ์ด์˜จ ๊ตํ™˜ ์ˆ˜์ง€์— ๋ถ€์ฐฉํ•˜๋Š” ์„ฑ์งˆ๋“ฑ์— ์ฐจ์ด๊ฐ€ ์žˆ๋‹ค๊ณ  ๋ณด๊ณ  ํ•˜์˜€์œผ๋ฉฐ, ์†Œ ์‹ ์žฅ์—์„œ ์ˆœ์ˆ˜ ๋ถ„๋ฆฌํ•œ transamidinase๊ฐ€ Ping-Pong Bi Bi๋ฐ˜์‘๊ธฐ์ „์— ์˜ํ•˜์—ฌ ์ด‰๋งค์ž‘์šฉ์„ ํ•˜๋Š” ๊ฒƒ์ด ๋ฐํ˜€์ง„ ๋ฐ” ์žˆ๋‹ค(Im๋“ฑ, 1983). ์ด์™€ ๊ฐ™์ด ์‹ ์žฅ transamidinase๋Š” ๊ทธ ์„ฑ์งˆ์ด ์ข…์— ๋”ฐ๋ผ ๋งŽ์€ ์ฐจ์ด๊ฐ€ ์žˆ์œผ๋ฉฐ, ๋˜ํ•œ ๋ถ„๋ฆฌํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋”ฐ๋ผ ๋‹จ์ผ ๋‹จ๋ฐฑ์งˆ ํ˜น์€ ๋‘๊ฐœ์˜ isoenzyme์œผ๋กœ ๋ถ„๋ฆฌ๋˜๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ์ด์— ์ €์ž๋Š” ์†Œ์™€ ์ฅ ์‹ ์žฅ์—์„œ ๊ฐ™์€ ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ transamidinase๋ฅผ ๋ถ„๋ฆฌํ•˜๊ณ , ์ด ๋‘ ๋‹จ๋ฐฑ์งˆ์˜ ๋ถ„์ž๋Ÿ‰, ์†Œ๋‹จ์œ„ ๊ตฌ์„ฑ ์—ฌ๋ถ€, ๋“ฑ์ „์ , N-terminal์•„๋ฏธ๋…ธ์‚ฐ, ์•„๋ฏธ๋…ธ์‚ฐ ๊ตฌ์„ฑ ์„ฑ ๋ถ„ ๋“ฑ ๊ตฌ์กฐ์ ์ธ ์„ฑ์งˆ์„ ๋ถ„์„, ๋น„๊ตํ•˜์—ฌ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฒฐ๊ณผ๋ฅผ ์–ป์—ˆ๋‹ค. 1. ์†Œ์™€ ์ฅ ์‹ ์žฅ transamidinase๋Š” ํ™ฉ์‚ฐ ์•”๋ชจ๋Š„์ฒ˜๋ฆฌ, Sephadex G-150 gel filtration c hromatography ๋ฐ ๋‘๋ฒˆ์˜ DEAE-Sephadex A-50 ์ด์˜จ๊ตํ™˜ chromatography๋ฅผ ํ†ตํ•˜์—ฌ ๊ฐ๊ฐ ฮฑ ์™€ ฮฒ-transamidinase๋กœ ๋ถ„๋ฆฌ๋˜์—ˆ์œผ๋ฉฐ, ์†Œ ์‹ ์žฅ์—์„œ๋Š” ๊ฐ๊ฐ 297.3๋ฐฐ, 161.8๋ฐฐ, ๊ทธ๋ฆฌ๊ณ  ์ฅ ์‹ ์žฅ์—์„œ๋Š” ๊ฐ๊ฐ 219.4๋ฐฐ, 99.5๋ฐฐ ๋ถ„๋ฆฌ ์ •์ œํ•˜์˜€๋‹ค. ์ด๋•Œ specific activity๋Š” ์†Œ๋Š” ๊ฐ ๊ฐ3.272, 1.780 ฮผmoles ornithine(orn)/hr/mg protein์ด์—ˆ๊ณ , ์ฅ๋Š” ๊ฐ๊ฐ 2.194, 0.995 ฮผmoles orn/hr/mg protein์ด์—ˆ์œผ๋ฉฐ, ํšจ์†Œ ํ™œ์„ฑ ํšŒ์ˆ˜๋Š” ์†Œ ์‹ ์žฅ์—์„œ๋Š” ๊ฐ๊ฐ 16%, 4%, ์ฅ ์‹ ์žฅ์—์„œ๋Š” ๊ฐ๊ฐ 5%, 2%์ด์—ˆ๋‹ค. ์ด์™€ ๊ฐ™์ด ๋ถ„๋ฆฌ๋œ ์†Œ์™€ ์ฅ์˜ ฮฑ์™€ ฮฒ-transamidinase๋Š” S DS-PAGE(10%)์—์„œ ๊ฐ๊ฐ ํ•˜๋‚˜์˜ ๋‹จ๋ฐฑ์งˆ๋กœ ๋‚˜ํƒ€๋‚œ ์‚ฌ์‹ค๋กœ ๋ฏธ๋ฃจ์–ด ์ด ํšจ์†Œ๊ฐ€ ์ˆœ์ˆ˜ ๋ถ„๋ฆฌ ์ •์ œ ๋œ ๊ฒƒ์œผ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค. 2. SDS-PAGE(10%)์— ์˜ํ•ด ์†Œ์™€ ์ฅ์˜ ฮฑ์™€ ฮฒ-transamidinase์˜ ๋ถ„์ž๋Ÿ‰์€ ์†Œ์™€ ์ฅ์˜ ๊ฒฝ ์šฐ ๋™์ผํ•˜๊ฒŒ ฮฑ๋Š” ์•ฝ 44,000, ฮฒ๋Š” ์•ฝ 42,000์œผ๋กœ ๊ณ„์‚ฐ๋˜์—ˆ์œผ๋ฉฐ, Sephadex G-200(superfi ne) gel filtration chromatography์— ์˜ํ•ด์„œ๋Š” ๊ทธ ๋ถ„์ž๋Ÿ‰์ด ๊ฐ๊ฐ ์•ฝ 88,000๊ณผ 84,000์œผ ๋กœ ๊ณ„์‚ฐ๋˜์—ˆ๋‹ค. ์ด ๊ฒฐ๊ณผ๋กœ ๋ฏธ๋ฃจ์–ด ๋ณด์•„ ์†Œ์™€ ์ฅ ์‹ ์žฅ์˜ ฮฑ์™€ ฮฒ-transamidinase๋Š” ๋‘๊ฐœ์˜ ๋™์ผํ•œ ์†Œ๋‹จ์œ„๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋Š” ํšจ์†Œ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค. 3. Isoelectric focusing gel์ „๊ธฐ ์˜๋™๋ฒ•์— ์˜ํ•ด ๊ฒฐ์ •๋œ ์ด ํšจ์†Œ์˜ nativeํ˜• ๋“ฑ์ „์ ์€ ์†Œ์™€ ์ฅ์—์„œ ๋ณ„ ์ฐจ์ด์—†์ด ฮฑ-transamodinane๋Š” ์•ฝ 6.4, ฮฒ-transamidinase๋Š” ์•ฝ 6.2์ด์—ˆ ์œผ๋ฉฐ, denature ์‹œํ‚จ ํ›„ ํ™˜์›์‹œํ‚ค๋ฉด ๊ฐ๊ฐ ์•ฝ 7.0, 6.6์œผ๋กœ์„œ, ์ด ํšจ์†Œ๋Š” ์•ฝ์‚ฐ์„ฑ ๋‹จ๋ฐฑ์งˆ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค. 4. Dansylation๋ฐฉ๋ฒ•์— ์˜ํ•ด ์†Œ์™€ ์ฅ์˜ ฮฑ์™€ ฮฒ-transamidinase์˜ N-terminal์•„๋ฏธ๋…ธ์‚ฐ์ด ๋ชจ๋‘ glutamic acid/glutamine์œผ๋กœ ๋˜์–ด ์žˆ์Œ์„ ๋ฐŸํ˜”๋‹ค. ๋˜ํ•œ ์†Œ์™€ ์ฅ์˜ ฮฑ์™€ ฮฒ-transa midinase์˜ ์•„๋ฏธ๋…ธ์‚ฐ ๊ตฌ์„ฑ ์„ฑ๋ถ„์„ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ์— ์˜ํ•˜๋ฉด ์†Œ์˜ ๊ฒฝ์šฐ a์™€ ฮฒ-transamidinas e์˜ ์•„๋ฏธ๋…ธ์‚ฐ ๊ตฌ์„ฑ ์„ฑ๋ถ„์€ serine, glutamic acid/glutamine, glycine, lysine๋“ฑ์˜ ์•„๋ฏธ ๋…ธ์‚ฐ์€ ์†Œ๋‹จ์œ„๋‹น 10๊ฐœ ์ด์ƒ์˜ ์ฐจ์ด๊ฐ€ ์žˆ๋Š” ๋“ฑ, ์ƒ๋‹นํ•œ ์ฐจ์ด๊ฐ€ ์žˆ๋Š” ๋ฐ˜๋ฉด์—, ์ฅ์˜ ๊ฒฝ์šฐ์— ๋Š” ฮฑ์™€ ฮฒ-transamidinase์˜ ์•„๋ฏธ๋…ธ์‚ฐ ๊ตฌ์„ฑ ์„ฑ๋ถ„์€ serine๊ณผ glycine์˜ ๊ฒฝ์šฐ ์•ฝ๊ฐ„์˜ ์ฐจ ์ด๊ฐ€ ์žˆ์„ ๋ฟ ํฐ ์ฐจ์ด๊ฐ€ ์—†์—ˆ๋‹ค. ํ•œํŽธ ์†Œ์™€ ์ฅ๋ฅผ ๋น„๊ตํ•ด ๋ณด์•˜์„ ๋•Œ์—๋„ ๊ทธ ์•„๋ฏธ๋…ธ์‚ฐ ๊ตฌ์„ฑ ์„ฑ๋ถ„์— ์ฐจ์ด๊ฐ€ ์žˆ์—ˆ๋‹ค. ์ด์™€ ๊ฐ™์€ ๊ตฌ์กฐ์ ์ธ ์„ฑ์งˆ์„ ์ข…ํ•ฉํ•˜๋ฉด, ์†Œ์™€ ์ฅ ์‹ ์žฅ transamidin ase๋Š” ๊ทธ ์ผ์ฐจ ๊ตฌ์กฐ์ธ ์•„๋ฏธ๋…ธ์‚ฐ ๋ฐฐ์—ด์ˆœ์„œ๋Š” ๋™์ผํ•˜์ง€ ์•Š์œผ๋‚˜, ์ƒ๋‹นํžˆ ๋งŽ์€ ์ •๋„์˜ sequen ce homology๋ฅผ ํ•จ์œ ํ•˜๊ณ  ์žˆ๋Š” ๋‹จ๋ฐฑ์งˆ๋กœ ์‚ฌ๋ฃŒ๋˜๋ฉฐ, ์ด๋Ÿฐ ์‚ฌ์‹ค๋กœ ๋ฏธ๋ฃจ์–ด ์ด์ œ๊นŒ์ง€ ์•Œ๋ ค์ ธ ์žˆ๋Š” transamidinase์˜ ์ข…์— ๋”ฐ๋ฅธ ์—ฌ๋Ÿฌ ์„ฑ์งˆ์˜ ์ฐจ์ด๋Š” ์ด๊ฐ™์€ ์•„๋ฏธ๋…ธ์‚ฐ ๋ฐฐ์—ด ์ˆœ์„œ์˜ ์ฐจ์ด ๋กœ ์ธํ•œ ๋‹จ๋ฐฑ์งˆ์˜ 2์ฐจ ๋ฐ 3์ฐจ ๊ตฌ์กฐ์˜ ์ฐจ์ด์— ๊ธฐ์ธํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค. Purification and Structure of Transamidinase from Bovine and Rat Kidney Young Yoon Kim Department of Medical Science The Graduate School, Yonsei University (Directed by Professor Yoon Soo KiM, M.D., Ph.D.) Two forms(ฮฑ and ฮฒ) of transamidinase(EC 2.1.4.1, L-arginine: glycine amidinotransferase) have been purified from both bovine and rat kidneys by a series of steps including ammonium sulfate precipitation, Sephadex G-150 gel filtration chromatography and DEAE-Sephadex A-50 ion exchange chromatography, and they were homogeneous as judged by a single band obtained from each enzyme when analyzed by SDS-polyacrylamide gel electrophoresis(10%). The molecular weights measured by 9el filtration chromatography on Sephadex G-200 were 88,000 for bovine and rat ฮฑ-transamidinases and 84,000 for bovine and rat ฮฒ-transamidinases and SDS-polyacrylamide gel electrophoresis showed the molecular weights of 44,000 and 42,000 respectively, indicating that ฮฑ and ฮฒ-transamidinases of both bovine and rat consist of two identical subunits. Isoelectric points of bovine and rat ฮฑ-transamidinases were 6.4 in native rotate and 7.0 under reducing conditions, and 6.2 and 6.6 respectively for bovine and rat ฮฒ-transamidinases suggesting that the enzymes are weak acidic proteins. All two forms of bovine and rat transamidinases have glutamic acid/glutamine as their N-terminal amino acid as determined by dansylation method. The results of amino acid composition analysis showed that a and ฮฒ-transamidinases of bovine kidney have different compositions, the differences being most prominent in serine, glutamic acid/glutamine, glycine and lysine residues, whereas rat kidney ฮฑ and ฮฒ-transamidinases have quite similar amino acid compositions except a small difference in serine and glycine residues. The results also showed that there are differences in amino acid compositions between bovine and rat enzymes although they have identical N-termini, similar pI values and molecular weights. From these results, it is concluded that ฮฑ and ฮฒ-transamidinases from both bovine and rat contain a large degree of sequence homology even though their amino acid sequences are different, and therefore it is suggested that the known species differences of transamidinases are due to the differences in secondary and tertiary structures of these proteins resulting from their different primary amino acid sequences.restrictio

    Study on the synthesis and role of the testicular creatine in rats

    No full text
    ์˜ํ•™๊ณผ/์„์‚ฌ[ํ•œ๊ธ€] ๊ทผ์œก์ด๋‚˜ ์‹ ๊ฒฝ์กฐ์ง์—์„œ creatine์€ creatine phosphate์˜ ํ˜•ํƒœ๋กœ high energy phosphat e๋ฅผ ์ €์žฅํ•˜์—ฌ ATP์˜ ํ•จ๋Ÿ‰์„ ์œ ์ง€์‹œ์ผœ ์ฃผ๋Š” ์—ญํ• ์„ ํ•˜๊ณ  ์žˆ๋‹ค(stryer, 1981) ์–ด๋Š ์กฐ์ง์ด creatine์„ energy reservoir๋กœ ์‚ฌ์šฉํ•˜๋ ค๋ฉด creatine๊ณผ crestine kinase ํ™œ์„ฑ์ด ์š”๊ตฌ๋œ๋‹ค . ์ •์ž๋Š” ์šด๋™๊ธฐ์ „์ด ๊ทผ์œก์กฐ์ง๊ณผ ๊ฐ™๊ณ (Summers ๋ฐ Gibbons, 1971) ์ตœ๊ทผ ์ •์ž๋‚ด์—๋„ creat ine kinase์˜ ํ™œ์„ฑ์ด ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์กŒ๋‹ค(Schmechta, 1980). ์ €์ž๋Š” ๊ณ ํ™˜์—์„œ์˜ creati ne์˜ ๊ธฐ๋Šฅ์„ ๋ณด๊ธฐ ์œ„ํ•˜์—ฌ ๋ฐฑ์„œ์˜ ๊ณ ํ™˜๋‚ด creatine ํ•จ๋Ÿ‰์„ Van Pi1sum์˜ ๋ฐฉ๋ฒ•์œผ๋กœ ์ธก์ •ํ•˜ ์—ฌ ๋‹ค๋ฅธ ์กฐ์ง๊ณผ ๋น„๊ตํ•˜์˜€๋‹ค. ๊ณ ํ™˜์˜ creatine ํ•จ๋Ÿ‰์€ 39.82ยฑ3.36 ใŽ/g wet tlssue๋กœ์„œ ๊ทผ์œก์กฐ์ง์˜ 57.92ยฑ10.25 ใŽ /g wet tissue์™€ ๋น„์ˆซํ•˜๋ฉฐ ๋‡Œ์กฐ์ง (15.45ยฑ6.47 ใŽ/g wet tissue) ์ด๋‚˜ ์‹ฌ์žฅ๊ทผ์œก (20.0ยฑ 2.91 ใŽ/g wet tissue) ๋ณด๋‹ค ๋งŽ์€ ์–‘์˜ creatine์„ ํ•จ์œ ํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์‹ ์žฅ ์€ 29.55ยฑ2.52 ใŽ/g wet tissue์˜ creatine์„ ํ•จ์œ ํ•˜๋ฉฐ ๊ฐ„์กฐ์ง์€ 12.68ยฑ1.94 ใŽ/g wet tissue๋ฅผ ํ•จ์œ ํ•˜๊ณ  ์žˆ๋‹ค. Creatinine์˜ ํ•จ๋Ÿ‰์€ ๊ณ ํ™˜์ด 45.84ยฑ4.08 ใŽ/g wet tissue๋กœ ๊ทผ์œก์กฐ์ง์˜ 24.14ยฑ 7.73 ใŽ/g wet tissue, ์‹ฌ์žฅ๊ทผ์œก์˜ 23.7lยฑ 4.73 ใŽ/g wet tissue, ๋‡Œ์กฐ์ง์˜ l7.24ยฑ 1.l9 ใŽ/ g wet tissue์— ๋น„ํ•ด ๋†’์€ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์‹ ์žฅ์กฐ์ง์€ 14.92 +3.45 ใŽ/gwe t tissue, ๊ฐ„์กฐ์ง์€ 9.59ยฑ1.26 ใŽ/g wet tissue์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด์™€๊ฐ™์€ ์‹คํ—˜๊ฒฐ๊ณผ๋กœ ๊ณ ํ™˜์กฐ์ง์—์„œ creatine์€ ATP๋ฅผ ์ƒ์‚ฐํ•˜๋Š”๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•  ๊ฒƒ ์ด๋ผ ์ƒ๊ฐ๋œ๋‹ค. [์˜๋ฌธ] It is clear that creatine plays a reservoir of high energy phosphate bond as creatine phosphate and maintains ATP levels in skeletal muscle and nervous tissues. Creatine and creatine kinase activity are required to utilize creatine phosphate as high energy phosphate. The mechanism of the movement of sperm flagella is very similar with that of skeletal muscle, and creatine kinase activity was detected in human sperm. The contents of creatine in testis of rats were determined by the method of Van Pilsum and compared with other organs for the Study of the physiological role of creatine in testis. Creatine content of testes was 39.82ยฑ3.36 ใŽ/g wet tissue compared with skeletal muscle, 52.92ยฑ10.25 ใŽ/g wet tissue. It was relatively high compared with brain, (15.45ยฑ6.49 ใŽ/g wet tissue), heart(20.0ยฑ2.91 uใŽ/g wet tissue), kidney(29.55ยฑ2.52 ใŽ/g wet tissue) and liver(12.68ยฑ1.94 ใŽ/g wet tissue). Creatinine content of testes (45.84ยฑ4.08 ใŽ/g wet tissue) was very high, compared with skeletal muscle(24.14ยฑ7.73 ใŽ/g wet tissue), heart(23.71ยฑ4.73 ใŽ/g wet tissue), brain(17.24ยฑ1.19 ใŽ/g wet tissue), kidney(14.92ยฑ3.45 ใŽ/g wet tissue), and liver(9.59ยฑ1.26 ใŽ/g wet tissue). I suppose that creatine may he a part of potent system for generation of ATP from ADP hydrolizing creatine phosphate.restrictio

    Neural Architecture Search considering energy efficiency of mobile device

    Get PDF
    ๋ชจ๋ฐ”์ผ ๊ธฐ๊ธฐ ๋ฐ IoT ๊ธฐ๊ธฐ์™€ ๊ฐ™์€ ์ž„๋ฒ ๋””๋“œ ๋””๋ฐ”์ด์Šค์—์„œ ์‚ฌ์šฉ ๊ฐ€๋Šฅ ํ•œ ์˜จ ๋””๋ฐ”์ด์Šค AI ์„œ๋น„์Šค์— ๋Œ€ํ•œ ์ˆ˜์š”๊ฐ€ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ์˜จ ๋””๋ฐ”์ด์Šค AI ๋Š” ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ์ž„๋ฒ ๋””๋“œ ๋””๋ฐ”์ด์Šค์— ๋‚ด์žฅํ•˜๊ธฐ ์œ„ํ•œ ๊ธฐ์ˆ ๋กœ ํด๋ผ์šฐ๋“œ ๊ธฐ๋ฐ˜์˜ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ์ˆ  ๋Œ€๋น„ ์ €์ง€์—ฐ, ๊ฐ•ํ™”๋œ ๋ณด์•ˆ๊ณผ ๊ฐ™์€ ์žฅ์ ์ด ์žˆ์ง€๋งŒ, ์‹คํ–‰๋˜๋Š” ํ•˜๋“œ์›จ์–ด์— ์„ฑ๋Šฅ์ด ์˜์กด์ ์ด๋ฉฐ ์—ฐ์‚ฐ์„ ์œ„ํ•ด ํ”„๋กœ์„ธ์„œ, ๋ฉ”๋ชจ๋ฆฌ ์™€ ๊ฐ™์€ ๋งŽ์€ ์ปดํ“จํŒ… ์ž์›์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ณผ๋„ํ•œ ์ „๋ ฅ์„ ์†Œ๋น„ํ•œ๋‹ค. ์ด์™€ ๊ฐ™์€ ์ด์œ ๋กœ ๊ฒฝ๋Ÿ‰ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•  ๋•Œ ์—๋„ˆ์ง€ ํšจ์œจ์„ ๊ณ ๋ คํ•ด์•ผ ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ชจ๋ฐ”์ผ ๊ธฐ๊ธฐ์˜ ์—๋„ˆ์ง€ ํšจ์œจ์„ ๊ณ ๋ คํ•œ ์—๋„ˆ์ง€ ํšจ์œจ์ ์ธ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ๊ตฌ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ELP-NAS๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์ด ๋ชจ๋ฐ”์ผ ๊ธฐ๊ธฐ์—์„œ ์‹คํ–‰๋  ๋•Œ ๋ชจ๋ธ์˜ ์ข…๋‹จ๊ฐ„ ์†Œ๋น„ ์ „๋ ฅ๊ณผ ์ง€์—ฐ ์‹œ๊ฐ„์„ ์˜ˆ ์ธกํ•˜๊ณ , ์ด ์˜ˆ์ธก๊ฐ’๋“ค์„ ๋ชจ๋ธ์˜ ์ •ํ™•๋„์™€ ํ•จ๊ป˜ ๊ฐ•ํ™” ํ•™์Šต ๊ธฐ๋ฐ˜์˜ ์‹ ๊ฒฝ๋ง ์•„ํ‚คํ…์ฒ˜ ํƒ์ƒ‰์„ ํ†ตํ•ด ์„ฑ๋Šฅ ์ข‹์€ ๋ชจ๋ธ์„ ํƒ์ƒ‰ํ•˜๊ณ  ํ•™์Šตํ•œ๋‹ค. CIFAR-10 ๋ฐ์ดํ„ฐ ์„ธํŠธ์—์„œ ELP-NAS์˜ ์ •ํ™•๋„๋Š” ๋ฒ ์ด์Šค๋ผ์ธ ๋ชจ๋ธ ์ธ ENAS ๋Œ€๋น„ ์ •ํ™•๋„๋Š” 0.35% ๊ฐ์†Œํ•˜์—ฌ 1%๋ฏธ๋งŒ์œผ๋กœ ์•„์ฃผ ์ž‘์ง€๋งŒ, ์†Œ๋น„ ์ „๋ ฅ๊ณผ ์ง€์—ฐ ์‹œ๊ฐ„์€ ์•ฝ 40% ๊ฐœ์„ ๋œ ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค.The demand for on-device AI service-based image analysis technology that can be used in embedded devices such as mobile and IoT devices is increasing. On-device AI has advantages such as low latency and enhanced security, but AI performance is dependent on hardware performance and consumes excessive power by requiring a lot of computing resources such as processor and memory for AI operations. For this reason, there is a need to improve energy efficiency for on-device AI models. In this study, we propose ELP-NAS as a method of constructing a deep learning model considering the energy efficiency of mobile devices. ELP-NAS trains deep learning models using neural network architecture search to design optimal architectures in automatic machine learning. By applying the algorithm to predict the end-to-end energy consumption and latency of the deep learning model, the predicted energy consumption and latency of the discovered neural network architecture are used as a reward for reinforcement learning along with the accuracy of the model. In the CIFAR-10 data set, the accuracy of the ELP-NAS was 95.26%, which is equivalent to the accuracy of the ENAS selected as the baseline, 95.61%, but it was confirmed that the power consumption and execution time were improved by about 40% compared to the baseline model.I. ์„œ๋ก  1 1.1 ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  1 1.2 ์—ฐ๊ตฌ ๋ฒ”์œ„ 3 1.3 ์—ฐ๊ตฌ์˜ ๊ตฌ์„ฑ 4 II. ๊ด€๋ จ ์—ฐ๊ตฌ 5 2.1 ์‹ ๊ฒฝ๋ง ์•„ํ‚คํ…์ฒ˜ ํƒ์ƒ‰ 5 2.1.1 ํƒ์ƒ‰ ์˜์—ญ ์„ค๊ณ„ 7 2.1.2 ํƒ์ƒ‰ ์ „๋žต 9 2.1.3 ์„ฑ๋Šฅ ํ‰๊ฐ€ ์ „๋žต 10 2.2 ์„ ํ–‰ ์—ฐ๊ตฌ 12 III. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• 18 3.1 ๋ฌธ์ œ ์ •์˜ 18 3.2 ELP ์•Œ๊ณ ๋ฆฌ์ฆ˜ 21 3.3 ELP-NAS ์‹œ์Šคํ…œ 22 3.4 ์„ฑ๋Šฅ ํ‰๊ฐ€ ๋ฐฉ๋ฒ• 27 IV. ์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ 28 4.1 ์‹คํ—˜ ๊ฐœ์š” 28 4.2 ์‹คํ—˜ ํ™˜๊ฒฝ ์„ค์ • 28 4.3 ์‹คํ—˜ ๊ฒฐ๊ณผ ๋ฐ ๋ถ„์„ 37 4.3.1 ๋ชฉํ‘œ๊ฐ’ ์„ค์ • ์‹คํ—˜ ๊ฒฐ๊ณผ 37 4.3.2 ๊ฐ•์„ฑ ์ œ์•ฝ ์กฐ๊ฑด ์‹คํ—˜ ๊ฒฐ๊ณผ 39 4.3.3 ์—ฐ์„ฑ ์ œ์•ฝ ์กฐ๊ฑด ์‹คํ—˜ ๊ฒฐ๊ณผ 41 4.3.4 ์‹คํ—˜ ๊ฒฐ๊ณผ ๋ถ„์„ 43 4.4 ๋ชจ๋ธ ์„ฑ๋Šฅ ๋น„๊ต 46 V. ๊ฒฐ๋ก  50 5.1 ๊ณ ์ฐฐ 50 5.2 ์—ฐ๊ตฌ ํ•œ๊ณ„์  51 5.3 ํ–ฅํ›„ ๊ณผ์ œ 52 ์ฐธ๊ณ  ๋ฌธํ—Œ 53 Abstract 57์„

    Economic Cooperation and Humanitarian Assistance between South and North Korea from the Viewpoint of Green๏ผpeace

    No full text
    ์ด ๊ธ€์—์„œ๋Š” ๋‚จ๋ถ๊ด€๊ณ„์˜ ์ƒˆ๋กœ์šด ์‹œ๋„๋กœ ์ œ์‹œ๋˜๊ณ  ์žˆ๋Š” ๋…น์ƒ‰ํ‰ํ™”์˜ ์˜๋ฏธ๋ฅผ ๋‚จ๋ถ๊ฒฝํ˜‘ ๊ณผ ๋Œ€๋ถ์ง€์›์˜ ์ฐจ์›์—์„œ ์‚ดํŽด๋ณด๊ณ  ์žˆ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ๋Š” ๋…น์ƒ‰ํ‰ํ™”์ฐฝ์ถœ์„ ์œ„ํ•ด ๋‚จ๋ถ๊ฒฝํ˜‘ ๋ฐ ๋Œ€๋ถ์ง€์›์„ ์–ด๋–ค ๋ฐฉํ–ฅ์œผ๋กœ ์ถ”์ง„ํ•˜๊ณ  ๊ทธ ๋‚ด์šฉ๊ณผ ์ „๋žต์„ ์–ด๋–ป๊ฒŒ ๊ฐ€์ ธ๊ฐ€์•ผ ํ•  ๊ฒƒ์ธ์ง€๋ฅผ ์ œ ์‹œํ•˜๊ณ  ์žˆ๋‹ค. ๋…น์ƒ‰ํ‰ํ™”์™€ ๊ด€๋ จ๋œ ๋‚จ๋ถ๊ฒฝํ˜‘์€ ์ €ํƒ„์†Œ ๋…น์ƒ‰์„ฑ์žฅ์„ ๊ธฐ๋ณธ๋ฐฉํ–ฅ์œผ๋กœ ์‚ผ๊ณ , ๋‚จ ํ•œ ์ •๋ถ€๊ฐ€ ์ฃผ์ฒด๊ฐ€ ๋˜์–ด ๋ถํ•œ ์ฃผ๋ฏผ์˜ ์‚ถ๊ณผ ๋ฐ€์ ‘ํ•œ ๋ฐฉํ–ฅ์œผ๋กœ ์ถ”์ง„ํ•˜๋˜, ๊ทธ๊ฒƒ์ด ๋…น์ƒ‰ํ‰ํ™” ๋ฅผ ์ฐฝ์ถœํ•˜๋Š” ์ผ์— ํ•œ ๊ฑธ์Œ ๋” ๋‹ค๊ฐ€๊ฐˆ ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ๋‚จ๋ถ๊ฒฝํ˜‘๊ณผ ๋Œ€๋ถ ์ง€์›์˜ ์„ธ๋ถ€์ ์ธ ์ถ”์ง„ ์‚ฌ์—…์—๋Š” ์žฌ์ƒ ์—๋„ˆ์ง€ ํ˜‘๋ ฅ์‚ฌ์—…, ๋†์—…์ƒ์‚ฐ ๊ธฐ๋ฐ˜์กฐ์„ฑ, ์‚ฐ๋ฆผ๋ณต๊ตฌ, ๋น„ ๋ฌด์žฅ์ง€๋Œ€ ์ผ์›์˜ ํ‰ํ™”๊ฒฝ์ œ์‚ฌ์—…, ์ž์ „๊ฑฐ ์ƒ์‚ฐ์„ ํฌํ•จํ•œ ์‚ฐ์—…๋ถ„์•ผ์—์„œ์˜ ํ˜‘๋ ฅ ๋“ฑ์„ ๋“ค ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋ฅผ ์‹ค์งˆ์ ์œผ๋กœ ์ถ”์ง„ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋‚จ๋ถํ•œ ๊ณตํžˆ ์ด๋ฅผ ์œ„ํ•œ ์‹ค์งˆ์ ์ธ ์กฐ์น˜ ๊ฐ€ ๋‹จํ–‰๋˜์–ด์•ผ ํ•˜๋ฉฐ, ์ •์ฑ… ๋ฐ ์ œ๋„๊ฐœํ˜๊ณผ ํ•จ๊ป˜ ๊ตญ์ œ์‚ฌํšŒ์˜ ๋Œ€๋ถ ์š”๊ตฌ์‚ฌํ•ญ์ด ์ˆ˜์šฉ๋˜์–ด์•ผ ํ•  ๊ฒƒ์ด๋‹ค. ์ด๋ณด๋‹ค ๋” ์ค‘์š”ํ•œ ๊ฒƒ์€ ๋‚จ๋ถ๊ด€๊ณ„์˜ ํš๊ธฐ์  ๊ฐœ์„ ์ด ์ด๋ฃจ์–ด์ ธ์•ผ ํ•  ๊ฒƒ์ด๋ผ๋Š” ์ ์ด๋‹ค
    corecore