31 research outputs found

    ์ •ํ•˜์ค‘ ๋ฐ ๋™ํ•˜์ค‘ ์กฐ๊ฑด์—์„œ ์›์ „ ๋ฐฐ๊ด€ ๊ฑด์ „์„ฑ ํ‰๊ฐ€๋ฅผ ์œ„ํ•œ ์œ ํšจํ•˜์ค‘ ๊ณ„์‚ฐ์‹ ๊ฐœ๋ฐœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์—๋„ˆ์ง€์‹œ์Šคํ…œ๊ณตํ•™๋ถ€, 2017. 2. ํ™ฉ์ผ์ˆœ.Attentions to the beyond design basis earthquake have been increased following the Fukushima Daiichi nuclear accidents on March 11, 2011. Especially, the refinement of the current analysis methodologies has emerged as one of high priority issues for the piping integrity evaluation. In this dissertation, a set of generalized formulations has been developed to take into account the effect of pipe restraint for consistent analysis of the crack opening displacement and crack stability of nuclear piping containing a postulated circumferential crack in order to enhance the confidence in the Leak-Before-Break (LBB) characteristics. For the current LBB analysis procedure, evaluation models for the crack opening displacement as well as those for crack stability analysis have been derived from the assumption that both ends of the pipe under analysis are free to rotate. In reality, however, the behavior of pipe with a crack can be restrained by connected components or structures. These aspects of restrained boundary conditions can make a significant favorable influence on the crack instability prediction and unfavorable impact on the prediction of leakage size crack by an underestimation of crack opening displacement (COD). In this regards, there have been attempts to evaluate the combined results of the restraint effects from the above two aspects. First, the equations to determine the onset of a crack extension were developed for various piping systems and loading conditions case by case. But generalized formulations which can be employed as the unified practical method has not been derived. Recently, the analytical expressions to evaluate the restraint effect on COD were proposed for both linear elastic and elastic-plastic analysis, with its applicability limited to a straight pipe with fixed ends subjected to pressure induced bending. Although significant efforts have been made in earlier studies to deal with the restraint effect on the calculation of COD and crack stability analysis separately, these are simultaneous phenomena caused by the decreases in the applied moment at the cracked section due to the pipe restraint. Therefore, it is desired to develop a unified formulation to determine the effective applied moment at a postulated cracked section considering the boundary conditions that can be utilized to a balanced analysis of both COD and flaw stability. This dissertation mainly serves to the aims for the development of generalized solutions that readily enable balanced evaluations of the restraint effect starting from the following questions: โ€ƒ i) How can we analytically evaluate the effective applied moment at the cracked section taking into account the pipe restraint effects? ii) Can the generalized formulations be applicable to various types of the piping geometries and loading conditions including dynamic loads including earthquake effect? iii) Can the developed formulations be verified against both finite element analysis and experimental results under static and dynamic loading conditions? iv) What is the impact of new formulations developed in this dissertation on pipe integrity analysis and future LBB designs? The first new formulation has been derived for a one-dimensional pipe subjected a pressure induced bending that is considered in the earlier studies. Based on the compliance approach, the formulation was then extended to the three-dimensional piping system and other types of loading conditions including the distributed load and relative displacement of supports. To verify the developed formula, a series of finite element analysis was conducted for the static and dynamic loading conditions. The static analyses were performed to evaluate the amount of restraint considering the anticipated loads of the normal operating conditions. In addition, the crack stability analysis assumes the faulted dynamic loading condition in which the seismic load is considered. Furthermore, the dynamic analysis using cracked pipe model accompanying the comparisons with experimental data also conducted to demonstrate that restraint coefficient is also available for transient loading conditions. As results, it is confirmed the generalized analytical formulations, finite element analysis and experimental data agree with each other very well in all examined conditions. Finally, using the developed formula, the effect of restraint on the LBB evaluation was investigated. All the analysis results of this dissertation indicated that the restraint effect on the applied moment has more significant influence on the crack stability evaluation than on COD. Therefore, the current LBB evaluation procedure, with no attention to the pipe restraint effect, can predict conservative results compared to the case in which the restraint effect is considered for the conditions examined herein. The developed formulation has two implications of the practical significance. First, if the restraint effect is implemented into the current practice of deterministic LBB analysis using the developed formulations, the piping system can be shown to possess greater safety margins. Second, the time history analysis of the piping system for various crack length can be replaced with a single uncracked pipe system analysis with the restraint coefficient without sacrificing accuracy at the significant saving in time and cost. Therefore, the generalized formulations developed in this dissertation can greatly help improve the applicability of the probabilistic fracture mechanics analysis and/or seismic fragility analysis that otherwise require a significant number of time-consuming calculations.Chapter 1 Introduction 1 1.1 Pipe integrity and the safety of nuclear power plants 1 1.2 Pipe integrity evaluation methods for Leak-Before-Break design 3 1.3 Effects of restraint on cracked pipe behavior 6 1.4 Effective applied moment at cracked section for evaluation of the restraint effect 9 Chapter 2 Literature Review 15 2.1 Effects of pipe restraint on crack stability 15 2.1.1 Theoretical evaluations 15 2.1.2 Experimental observations 17 2.2 Effects of restraint of pressure induced bending on COD evaluation 18 2.2.1 Investigation of restraint effects on COD using finite element analysis 18 2.2.2 Numerical expressions of restraint effects on COD 20 2.2.3 Efforts to expand the applicability 21 2.3 Effects of restraint on pipe integrity assessment 23 2.4 Methodology of dynamic analysis for cracked pipe 24 2.4.1 Nonlinear spring model 24 2.4.2 Connector element model 25 Chapter 3 Rationale and Approach 39 3.1 Research rationale from gaps in the literature 39 3.2 Research questions and approaches 41 Chapter 4 Development of Generalized Formulations on Effective Applied Moment 45 4.1 Effective applied moment formulation for pipe subjected to pressure induced bending 47 4.2 Compliance approach to improve the formulation 51 4.2.1 Compliance approach 51 4.2.2 Application of compliance approach to 1D pipe subjected to pressure induced bending 52 4.3 Development of generalized formulation 56 4.3.1 Consideration of the types of applied loading 57 4.3.2 Consideration of the complex piping configurations 60 4.4 Evaluation procedure to determine effective applied moment 68 Chapter 5 Validation of Developed Formulations 87 5.1 Validation under static loading conditions 88 5.1.1 Evaluation of PIB restraint effects on COD for 1D pipe 88 5.1.2 Evaluation of effective applied moment for 3D pipe under static loading conditions 97 5.2 Validation under dynamic loading conditions 100 5.2.1 Benchmark dynamic analysis using cracked pipe model 100 5.2.2 Validation of developed formulations using experimental measurements and dynamic analysis results 106 5.2.3 Evaluation of effective applied moment for 3d pipe under dynamic loading conditions 109 Chapter 6 Application of Developed Formulations 143 6.1 Applicability of developed formulations in LBB design 144 6.1.1 Validation methods 144 6.1.2 Validation results of COD and J-integral 146 6.2 Effects of pipe restraint on LBB evaluation 149 6.2.1 Piping evaluation diagram 149 6.2.2 Evaluation methods of the pipe restraint effects on LBB 150 6.2.3 Evaluation results 152 Chapter 7 Conclusions and Future Work 177 7.1 Summary and conclusions 177 7.2 Future work 181 Bibliography 185 Abbreviation 195 ์ดˆ ๋ก 199Docto

    ์ œ๋„์  ํ–‰์œ„์ด๋ก ์„ ํ†ตํ•œ ๋™๋ถ์•„์ง€์—ญ ๋‹ค์žํ˜‘๋ ฅ์˜ ์ œ๋„ํ™” ๊ณผ์ • ๋ถ„์„: ๋‘๋งŒ๊ฐ• ๊ฐœ๋ฐœ๊ณ„ํš์˜ ์‚ฌ๋ก€์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ •์น˜์™ธ๊ตํ•™๋ถ€ ์™ธ๊ตํ•™์ „๊ณต, 2016. 8. ์‹ ์šฑํฌ.๋ณธ ์—ฐ๊ตฌ๋Š” 1990๋…„๋Œ€์— ์ถœ๋ฒ”ํ•˜์—ฌ 2016๋…„ ํ˜„์žฌ๊นŒ์ง€ ๋™๋ถ์•„ ์œ ์ผ์˜ ๋‹ค์žํ˜‘๋ ฅ๊ธฐ์ œ๋กœ์„œ ์กด์žฌํ•˜๊ณ  ์žˆ๋Š” ๋‘๋งŒ๊ฐ•๊ฐœ๋ฐœ๊ณ„ํš์ด ์ œ๋„ํ™” ๋˜์–ด ์˜จ ๊ณผ์ •์„ ๋ฉด๋ฐ€ํžˆ ์ถ”์ ํ•ด ๋ด„์œผ๋กœ์จ ๋‘๋งŒ๊ฐ•๊ฐœ๋ฐœ๊ณ„ํš์ด ํ˜•์„ฑ๋˜๊ณ  ๋ฐœ์ „ํ•  ์ˆ˜ ์žˆ์—ˆ๋˜ ์ œ๋„์  ๊ธฐ์ œ๋ฅผ ๋ฐํžˆ๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•˜๊ณ  ์žˆ๋‹ค. ๋‘๋งŒ๊ฐ•๊ฐœ๋ฐœ๊ณ„ํš์€ ๋‘๋งŒ๊ฐ• ์œ ์—ญ ์ ‘๊ฒฝ์ง€๋Œ€์— ์กด์žฌํ•˜๋Š” ์ธ์ ‘๊ตญ๊ฐ„ ์ž๋ณธ-๋…ธ๋™-์ž์›์˜ ์ƒํ˜ธ๋ณด์™„์„ฑ์„ ์ด์šฉํ•˜์—ฌ ํ•ด๋‹น์ง€์—ญ์„ ๊ณต๋™์œผ๋กœ ๊ฐœ๋ฐœํ•˜์ž๋Š” ์ทจ์ง€์—์„œ ์‹œ์ž‘๋œ ์†Œ์ง€์—ญํ˜‘๋ ฅ ํ”„๋กœ์ ํŠธ์ด๋‹ค. ๊ตญ์ œ๊ธฐ๊ตฌ์ธ ์œ ์—”๊ฐœ๋ฐœ๊ณ„ํš(UNDP)์˜ ์ฃผ๋„ ํ•˜์— 1990๋…„๋ถ€ํ„ฐ ์ถ”์ง„๋˜๊ธฐ ์‹œ์ž‘ํ•˜์—ฌ 1995๋…„ ๋‘๋งŒ๊ฐ•์œ ์—ญ๊ฐœ๋ฐœ๊ณ„ํš(TRADP: Tumen River Area Development Programme)์œผ๋กœ ๊ณต์‹ ์ถœ๋ฒ”๋˜์—ˆ์œผ๋‚˜, ์ดํ›„ ํšŒ์›๊ตญ ๊ฐ„ ์ดํ•ด๊ด€๊ณ„ ์กฐ์ •์˜ ์‹คํŒจ๋กœ ์‚ฌ์—…์ถ”์ง„์ด ์ค‘๋‹จ๋˜๋ฉฐ ์•ฝ 10๋…„๊ฐ„์˜ ์†Œ๊ฐ•๊ธฐ๋ฅผ ๊ฑฐ์น˜๋‹ค๊ฐ€, 2005๋…„ ๋Œ€์ƒ ์ง€์—ญ์„ ํ™•๋Œ€ํ•˜๊ณ  ์‚ฌ์—…๊ณ„ํš์„ ํ˜์‹ ํ•˜์—ฌ ๊ด‘์—ญ๋‘๋งŒ๊ฐ•๊ฐœ๋ฐœ๊ณ„ํš(GTI: Greater Tumen Initiative)์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ํ‹€๋กœ ์ „ํ™˜๋œ ์ดํ›„ ๋ณธ๊ฒฉ์ ์œผ๋กœ ๋‹ค์‹œ ํ™œ์„ฑํ™”๋˜๋Š” ๋ชจ์Šต์„ ๋ณด์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋‘๋งŒ๊ฐ•๊ฐœ๋ฐœ๊ณ„ํš์˜ ์ œ๋„ํ™” ๊ณผ์ •์— ๋Œ€ํ•˜์—ฌ ๋‘ ๊ฐ€์ง€ ์งˆ๋ฌธ์„ ์ œ๊ธฐํ•˜๊ณ ์ž ํ•˜๋Š”๋ฐ, ์ฒซ์งธ, ์–‘์ž์ฃผ์˜์  ๊ด€๊ณ„๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋Š” ๋™๋ถ์•„ ์ง€์—ญ์—์„œ ์™œ ์ด๋Ÿฌํ•œ ๋‹ค์žํ˜‘๋ ฅ๊ธฐ์ œ๊ฐ€ ํ˜•์„ฑ๋  ์ˆ˜ ์žˆ์—ˆ๋Š”๊ฐ€, ๊ทธ๋ฆฌ๊ณ  ๋‘˜์งธ, ๋‘๋งŒ๊ฐ•๊ฐœ๋ฐœ๊ณ„ํš์ด ์˜ค๋žœ ๊ธฐ๊ฐ„ ๋™์•ˆ ๋‘๋“œ๋Ÿฌ์ง€๋Š” ๊ฒฝ์ œ์  ์„ฑ๊ณผ๋ฅผ ๋ณด์ด์ง€ ๋ชปํ–ˆ์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์™œ ๋™๋ถ์•„ ๊ตญ๊ฐ€๋“ค์ด ์ด๋Ÿฌํ•œ ํ‹€์„ ์ง€์†์ ์œผ๋กœ ์œ ์ง€ํ•˜๋ฉฐ ๊ฒฐ๊ตญ ๋‹ค์‹œ ์ œ๋„์ ์œผ๋กœ ํ™œ์„ฑํ™”์‹œํ‚ค๊ฒŒ ๋˜์—ˆ๋Š”๊ฐ€์— ๋Œ€ํ•œ ์˜๋ฌธ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์งˆ๋ฌธ์— ๋Œ€ํ•˜์—ฌ ๋‘๋งŒ๊ฐ•๊ฐœ๋ฐœ๊ณ„ํš์— ๋Œ€ํ•œ ๊ธฐ์กด์—ฐ๊ตฌ์—์„œ๋Š” ์ฃผ๋กœ ๊ตญ๊ฐ€์ฃผ์˜์ ์ธ ์„ค๋ช…์„ ์ œ์‹œํ•˜๊ณ  ์žˆ๋‹ค. ๋™๋ถ์•„ ๊ตญ๊ฐ€๋“ค, ํŠนํžˆ ๋ถ-์ค‘-๋Ÿฌ ์ ‘๊ฒฝ์ง€๋Œ€์˜ ์ค‘๊ตญ๊ณผ ๋Ÿฌ์‹œ์•„, ๋ถํ•œ์ด ์ตœ๊ทผ ๋‘๋งŒ๊ฐ•์ง€์—ญ์— ๋Œ€ํ•œ ์ „๋žต์  ๊ด€์‹ฌ์„ ์ œ๊ณ ํ•˜๊ฒŒ ๋˜๋ฉด์„œ ํ•ด๋‹น ์ง€์—ญ์˜ ๊ฐœ๋ฐœ์— ์ ๊ทน์ ์œผ๋กœ ๊ฐœ์ž…ํ•˜๊ฒŒ ๋˜์—ˆ๊ณ , ์ด๋Ÿฌํ•œ ๊ตญ๊ฐ€์ „๋žต์  ๊ด€์‹ฌ์„ ํ† ๋Œ€๋กœ ๋‘๋งŒ๊ฐ•๊ฐœ๋ฐœ๊ณ„ํš์˜ ์ œ๋„์  ๋ฐœ์ „ ๋˜ํ•œ ํ™œ์„ฑํ™”๋  ์ˆ˜ ์žˆ์—ˆ๋‹ค๋Š” ์ง€์ ์ด๋‹ค. ํŠนํžˆ ๊ธฐ์กด์—ฐ๊ตฌ์—์„œ๋Š” 2009๋…„ ์ค‘๊ตญ์ด ๋ฐœํ‘œํ•œ ์ฐฝ์ง€ํˆฌ ์‚ฌ์—…์ด ๋‘๋งŒ๊ฐ•๊ฐœ๋ฐœ๊ณ„ํš์„ ์žฌ์ƒ์‹œํ‚ค๋Š” ๊ฒฐ์ •์ ์ธ ์ „ํ™˜๊ตญ๋ฉด์„ ๋ถˆ๋Ÿฌ์™”๋‹ค๊ณ  ์„ค๋ช…ํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๊ตญ๊ฐ€์ฃผ์˜์  ์ ‘๊ทผ์€ ์™œ ์ค‘๊ตญ์„ ๋น„๋กฏํ•œ ๊ด€๋ จ๊ตญ๋“ค์˜ ๋‘๋งŒ๊ฐ•์ง€์—ญ์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ๊ฐ‘์ž๊ธฐ ๋†’์•„์ง€๊ฒŒ ๋˜์—ˆ์œผ๋ฉฐ, ์™œ ๊ฐ๊ตญ์˜ ๊ฐœ๋ณ„์ „๋žต์  ๊ด€์‹ฌ์ด GTI๋ผ๋Š” ๋‹ค์ž์  ํ‹€์„ ํ™œ์„ฑํ™”์‹œํ‚ค๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ๊ตฌํ˜„๋˜์—ˆ๋Š”์ง€๋ฅผ ์ถฉ๋ถ„ํžˆ ์„ค๋ช…ํ•ด์ฃผ์ง€ ๋ชปํ•˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์งˆ๋ฌธ์— ๋Œ€ํ•œ ๋‹ต์„ ๋ชจ์ƒ‰ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ GTI๊ฐ€ ๋ฐœ์ „ํ•ด ์˜จ ์—ญ์‚ฌ์  ๊ณผ์ •์„ ์ถ”์ ํ•˜๋ฉฐ, ์–ด๋–ค ๊ธฐ์ œ๊ฐ€ ๋™๋ถ์•„ ๊ตญ๊ฐ€๋“ค์˜ ๋‘๋งŒ๊ฐ• ์ง€์—ญ์— ๋Œ€ํ•œ ๊ด€์‹ฌ์„ ์œ ๋„ํ•˜์˜€๊ณ  ๋‹ค์ž์  ํ‹€์˜ ํ˜•์„ฑ ๋ฐ ์ง€์†์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜์˜€๋Š”์ง€๋ฅผ ์‚ดํŽด๋ณด์•˜๋‹ค. ๊ทธ๋Ÿฌํ•œ ๊ณผ์ •์—์„œ ํ˜„์žฌ GTI๊ฐ€ ์ œ๋„์  ํ™œ์„ฑํ™”๋ฅผ ์ด๋ฃจ๊ฒŒ ๋œ ๊ฒƒ์€ ์• ์ดˆ์— TRADP๊ฐ€ ๋‹ค์ž์  ํ‹€๋กœ ๊ตฌ์„ฑ๋˜๊ณ  ๊ทธ๋Ÿฌํ•œ ํ‹€์ด ์ œ๋„์ ์œผ๋กœ ๊ณ ์ฐฉ๋˜์–ด ์ง€์†๋˜์—ˆ๊ธฐ ๋•Œ๋ฌธ์ด๋ผ๋Š” ๊ฒฐ๋ก ์— ๋„๋‹ฌํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ทธ๋Ÿฌํ•œ ํ‹€์ด ๊ณ ์ฐฉ๋˜๊ฒŒ ๋œ ๋ฐ์—๋Š” ๊ตญ๊ฐ€ํ–‰์œ„์ž์˜ ์—ญํ• ๋ณด๋‹ค, ํ•ด๋‹น ์ง€์—ญ์— ๋†’์€ ์ดํ•ด๊ด€๊ณ„๋ฅผ ๊ฐ€์ง„ ๋น„๊ตญ๊ฐ€ํ–‰์œ„์ž๋“ค์˜ ์ œ๋„์  ํ–‰์œ„๊ฐ€ ๋ณด๋‹ค ์ค‘์š”ํ•œ ์—ญํ• ์„ ๋‹ด๋‹นํ•˜์˜€์Œ์„ ๋ฐํžˆ๊ณ ์ž ํ•˜์˜€๋‹ค. ๊ฒฐ๊ตญ ๋‘๋งŒ๊ฐ•๊ฐœ๋ฐœ๊ณ„ํš์ด ๋‹ค์ž์ ์ธ ํ‹€๋กœ์„œ ๋™๋ถ์•„์ง€์—ญ์— ํ˜•์„ฑ๋˜๊ณ , ์˜ค๋žœ ๊ธฐ๊ฐ„ ๋™์•ˆ ์ง€์†๋˜๋ฉฐ ๋‹ค์‹œ ์ œ๋„์ ์œผ๋กœ ํ™œ์„ฑํ™”๋  ์ˆ˜ ์žˆ์—ˆ๋˜ ๊ฒƒ์€, ์ฃผ๋ณ€์  ํ–‰์œ„์ž์˜ ์ œ๋„์  ํ˜์‹ ๋…ธ๋ ฅ๊ณผ ์ค‘์‹ฌํ–‰์œ„์ž์˜ ์ „๋žต์ด ์ƒํ˜ธ์ž‘์šฉ์„ ํ•˜๋ฉฐ ๋งž๋ฌผ๋ฆฌ๋Š” ๊ณผ์ •์—์„œ ๊ฐ€๋Šฅํ•˜์˜€๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์ฆ‰, ์šฐ์„  GTI๋ผ๋Š” ๋‹ค์ž๊ธฐ๊ตฌ์˜ ํ˜•์„ฑ์„ ๋ณธ์งˆ์ ์œผ๋กœ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ–ˆ๋˜ ๊ฒƒ์€ ๊ทธ๋Ÿฌํ•œ ์ œ๋„์  ํ‹€์„ ๊ตฌ์„ฑํ•˜๊ณ  ๊ทธ ํ‹€ ์•ˆ์— ๊ตญ๊ฐ€ํ–‰์œ„์ž๋ฅผ ์œ ์ธํ•˜๊ณ ์ž ํ–‰ํ•œ ์ฃผ๋ณ€์  ํ–‰์œ„์ž๋“ค์˜ ๋‹ค์–‘ํ•œ ์ œ๋„์  ํ˜์‹ ๋…ธ๋ ฅ์ด ์ œ๋„์  ๊ณ ์ฐฉํšจ๊ณผ(lock-in effect)๋ฅผ ๋ฐœ์ƒ์‹œ์ผฐ๊ธฐ ๋•Œ๋ฌธ์ด์—ˆ์ง€๋งŒ, ์ด๋Ÿฌํ•œ ์ฃผ๋ณ€์  ํ–‰์œ„์ž๋“ค์˜ ์ œ๋„์  ๋…ธ๋ ฅ์ด ์‹ค์ œ์ ์ธ ์„ฑ๊ณผ๋กœ ์ด์–ด์งˆ ์ˆ˜ ์žˆ์—ˆ๋˜ ๊ฒƒ์€ ๋˜ํ•œ ๊ตญ๊ฐ€ํ–‰์œ„์ž๋“ค์ด ์ „๋žต์  ๊ด€์‹ฌ์„ ๋ณด์ด๋ฉฐ ๋ฌผ์งˆ์  ํ™˜๊ฒฝ์„ ์กฐ์„ฑํ•ด ์ค€ ๋•๋ถ„์ด์—ˆ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์ œ๋„๋ณ€ํ™”์˜ ๊ณผ์ •์€ ํ–‰์œ„์ž ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์ด ์ง€์—ญ๊ตฌ์กฐ์™€ ๋ณตํ•ฉ์ ์œผ๋กœ ์—ฐ๊ณ„๋˜๋ฉฐ ์ œ๋„์˜ ๋ณ€ํ™”๊ฐ€ ์ˆ˜๋ฐ˜๋˜๋Š” ์ผ๋ จ์˜ ๊ณผ์ •์„ ์ž˜ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค. ์ฆ‰, ์–‘์ž๊ด€๊ณ„๋กœ ๊ตฌ์„ฑ๋œ ๋™๋ถ์•„ ๊ตญ์ œ๊ด€๊ณ„์˜ ๊ตฌ์กฐ์  ์••๋ ฅ์ด ์ž‘์šฉํ•˜๊ณ  ์žˆ๋Š” ์ƒํ™ฉ์—์„œ, ์ฃผ๋ณ€ ํ–‰์œ„์ž๊ฐ€ ๋‹ค์ž์ ์ธ ํ‹€์„ ๋งŒ๋“ค๊ณ  ๊ทธ ์•ˆ์— ์ค‘์‹ฌ ํ–‰์œ„์ž๋ฅผ ๊ณ ์ฐฉ์‹œํ‚ด์œผ๋กœ์จ ์ค‘์‹ฌ ํ–‰์œ„์ž๋กœ ํ•˜์—ฌ๊ธˆ ๊ตฌ์กฐ์  ์ œ์•ฝ์„ ์ผ๋ถ€ ์™„ํ™”์‹œํ‚ค๊ณ  ์ œ๋„์  ๋ณ€ํ™”๋ฅผ ์ถ”๋™ํ•  ์ˆ˜ ์žˆ๋„๋ก ์ด‰์ง„ํ•˜๋Š” ๊ณผ์ •์—์„œ GTI๋ผ๋Š” ๋‹ค์ž์  ํ‹€์ด ํƒ„์ƒํ•˜๊ณ  ํ™œ์„ฑํ™”๋  ์ˆ˜ ์žˆ์—ˆ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ๋”ฐ๋ผ์„œ GTI์˜ ์ œ๋„ํ™” ๊ณผ์ •์€ ์ „๋ฐ˜์ ์œผ๋กœ ์ฃผ๋ณ€์  ํ–‰์œ„์ž๊ฐ€ ์ค‘์‹ฌํ–‰์œ„์ž๋ฅผ ๊ฒฌ์ธํ•˜์—ฌ ์ œ๋„์  ๊ฒฝ๋กœ์˜์กด์„ฑ์„ ํ˜•์„ฑํ•˜๋Š” ์ƒํ–ฅ์‹ ์ œ๋„ํ™”์˜ ๊ณผ์ •์ด์—ˆ๋‹ค๊ณ  ๋ถ„์„ํ•  ์ˆ˜ ์žˆ๊ฒ ๋‹ค.โ… . ์„œ๋ก  1 1. ๋ฌธ์ œ์ œ๊ธฐ ๋ฐ ์—ฐ๊ตฌ์งˆ๋ฌธ 1 2. ์—ฐ๊ตฌ๋ฐฉ๋ฒ• 3 1) ์—ฐ๊ตฌ๋Œ€์ƒ ๋ฐ ์‹œ๊ธฐ 3 2) ์—ฐ๊ตฌ๋ฐฉ๋ฒ• ๋ฐ ์ž๋ฃŒ 6 3) ๋…ผ๋ฌธ์˜ ๊ตฌ์„ฑ 7 โ…ก. ๊ธฐ์กด์—ฐ๊ตฌ๊ฒ€ํ†  ๋ฐ ๋ถ„์„ํ‹€ 8 1. ์„ ํ–‰์—ฐ๊ตฌ ๊ฒ€ํ†  8 2. ์‹ ์ œ๋„์ฃผ์˜์  ์ ‘๊ทผ 15 3. ์ œ๋„์  ํ–‰์œ„์ด๋ก ์˜ ์ ์šฉ 22 4. ์†Œ๊ฒฐ ๋ฐ ๋ถ„์„ํ‹€ 29 โ…ข. ๋‘๋งŒ๊ฐ•๊ฐœ๋ฐœ๊ณ„ํš์˜ ๋ฐœ์ „๊ณผ์ • ๋ฐ ์ œ๋„์  ๋ณ€ํ™” 33 1. ํƒœ๋™๊ธฐ(1988-1998): TRADP ํ˜•์„ฑ๊ธฐ 37 1) TRADP ๊ตฌ์ƒ ๋ฐ ์ œ๋„ํ™” ๊ณผ์ • 37 2) ๊ฐ๊ตญ ์ดˆ๊ธฐ์ž…์žฅ 55 2. ์†Œ๊ฐ•๊ธฐ(1999-2008): TRADPGTI ์ „ํ™˜๊ธฐ 60 1) TRADP์˜ ๋ถ€์ง„ ๋ฐ ๊ฐ๊ตญ ์ž…์žฅ๋ณ€ํ™” 60 2) GTI ๊ตฌ์ƒ ๋ฐ ์ œ๋„ํ™” ๊ณผ์ • 66 3. ์žฌ์ƒ๊ธฐ(2009-2016): GTI ๊ฐœํ˜ ๋ฐ ๊ตญ์ œ๊ธฐ๊ตฌํ™” 70 1) ๊ฐ๊ตญ ์ž…์žฅ๋ณ€ํ™” 70 2) GTI์˜ ์ œ๋„์  ๊ฐœํ˜ 73 โ…ฃ. ๋‘๋งŒ๊ฐ•๊ฐœ๋ฐœ๊ณ„ํš์˜ ์ œ๋„ํ™” ๊ณผ์ • ๋ถ„์„ 82 1. ์ฃผ๋ณ€์  ํ–‰์œ„์ž์˜ ์ œ๋„์  ํ˜์‹ ํšจ๊ณผ 84 1) ์ดˆ๊ธฐ ๊ตฌ์ƒ๋‹จ๊ณ„ 85 2) ํ›„๊ธฐ ๊ฐœํ˜๋‹จ๊ณ„ 95 2. ๋™๋ถ์•„ ๊ตญ์ œ์ •์„ธ ๋ฐ ๊ตญ๊ฐ€์ „๋žต์˜ ๋ณ€ํ™” 103 1) ์ดˆ๊ธฐ ๊ตฌ์ƒ๋‹จ๊ณ„ 103 2) ํ›„๊ธฐ ๊ฐœํ˜๋‹จ๊ณ„ 106 3. ์ข…ํ•ฉ์  ๋ถ„์„ 109 4. ํ•œ๊ณ„์  117 โ…ค. ๊ฒฐ๋ก  121 ์ฐธ๊ณ  ๋ฌธํ—Œ 125 Abstract 138Maste

    ์„ค๊ณ„๊ธฐ์ค€ ์ดˆ๊ณผ์ง€์ง„์— ๋Œ€ํ•œ ๋น„๊ท ์—ด ๋ฐ ์›์ฃผ๋ฐฉํ–ฅ ๊ด€ํ†ต๊ท ์—ด ๋ฐฐ๊ด€์˜ ๋‚ด์ง„ ๊ฑด์ „์„ฑ ํŠน์„ฑ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์—๋„ˆ์ง€์‹œ์Šคํ…œ๊ณตํ•™๋ถ€, 2014. 2. ํ™ฉ์ผ์ˆœ.With technological improvements in design and construction, the magnitude of safety shutdown earthquake (SSE) is increasing for several new nuclear power plants (NPPs). However, in recent years we have witnessed a few prominent examples of beyond design basis events near nuclear power plants (NPPs), including the Fukushima in Japan and the North Anna in U.S.A.. As a follow-up to the Fukushima accident, old NPPs in EU and Korea are being subjected to stress tests to evaluate the integrity of their safety shutdown function under extreme conditions. In this procedure, the potential magnitude of an earthquake is reevaluated through a probabilistic approach. In light of these, it is becoming difficult to ignore the probability of earthquake exceeding the design basis. Furthermore with the expected evolution of cracks in pipes of NPPs, it has become very important to monitor the integrity of the plant structure. In particular, in weldments of piping in the pressurized water reactor (PWR) primary system, such as pressurizer surge line nozzles, cracks are likely to initiate and grow with time owing to various environmental effects. Presently, certain non-destructive examination methods are applied for detecting such cracks in pipeshowever, these can only be applied at 10 years of the inspection period. In addition, to avoid the unnecessary replacement of components, the American Society of Mechanical Engineers Boiler and Pressure Vessel (ASME B&PV) Code Sec. XI specifies an allowable flaw size. Although we noted that some unexpected cracks were detected. Therefore, from a long-term viewpoint, it is essential to consider cracks in pipe analysis. Toward this end, the present thesis focuses on seismic analysis for uncracked and cracked pipes to understand the dynamic behavior of the structure under a beyond design basis earthquake. According to the ASME B&PV Code Sec. III, a pipe under seismic loading is subjected to two types of loads: the seismic inertial moment (MSI) due to vibration and the seismic anchor motion moment (MSAM) due to relative displacement between multiple anchors. The response spectrum analysis can be used to calculate MSI, and seismic anchor motion analysis can be used to calculate MSAM. These analyses are general procedures, but they can be used to provide the values of these two loads separately. In contrast, a time history analysis can be used to consider two loads simultaneously and provide a more realistic solution. This study aimed to (i) understand the characteristics of each method and then (ii) compare the dynamic behavior of uncracked and cracked pipes using time history analysis using ABAQUS that is a commercial finite element analysis tool. First, an uncracked pipe was analyzed using general seismic analysis and time history analysis to understand the characteristics of each method. It was found that time history analysis generally produced a less conservative solution. Then, various conditions were considered in cracked pipe analysisโ€”pipe length, crack position, and excitation mode. The crack was simulated using hinge element which is one of connector element in ABAQUS. It was confirmed that the applied load on the pipe can decrease by 4-70% owing to crackshowever, it is difficult to find a clear trend that can explain all cases. Additional computations were performed using a simplified model and conditions, and a qualitative interpretation of the complicated cracked pipe analysis result was performed. The main factors that can affect the change in the safety margin under seismic load are (i) the magnitude of the effect of a crack evolution on the change in stiffness and (ii) the relation between the natural frequency of the structure and the applied vibration. Since the Fukushima accidents the evaluation of the structural integrity of NPP pipings is moving from a deterministic approach to a probabilistic analysis. To calculate the probability of pipe rupture, the exact prediction of the dynamic behavior of a pipe under particular conditions may be a key point. Therefore, the ultimate application of this thesis results is defined to provide complete measures for probabilistic fracture mechanics.Chapter 1 Introduction 1 1.1 Beyond design basis earthquake, and the follow-up 1 1.2 Nondestructive evaluation of cracks in pipes in old NPPs 2 1.3 Objective 3 Chapter 2 Literature Review 5 2.1 Seismic loading 5 2.1.1 Loading type 5 2.1.2 Characteristics of major load 6 2.2 Seismic analysis of pipes 7 2.2.1 General analysis procedure 7 2.2.2 Time history analysis 8 2.3 Experimental analysis of dynamic behavior of pipe under seismic loading 8 2.4 Computational analysis of dynamic behavior of pipe under seismic loading 9 Chapter 3 Research Design 15 3.1 Problem definition and goals 15 3.2 Seismic analysis scheme 16 3.3 Seismic analysis of containment building 16 3.3.1 Model 16 3.3.2 Input data 17 3.3.3 Output : data generated for pipe analysis 17 3.4 Seismic analysis of pipe 18 3.4.1 Response spectrum analysis 18 3.4.2 Anchor motion analysis 19 3.4.3 Time history analysis 19 Chapter 4 Seismic Behavior of Uncracked Pipe 29 4.1 Purpose of analysis 29 4.2 Input and setup 29 4.2.1 Geometry and element 29 4.2.2 Material 30 4.2.3 Damping 30 4.2.4 Setup 30 4.3 Contribution of MSI and MSAM 31 4.4 Characteristics of general analysis and time history analysis 32 Chapter 5 Seismic Behavior of Cracked Pipe 41 5.1 Purpose of analysis 41 5.2 Input and setup 41 5.2.1 Geometry and element 41 5.2.2 Material 42 5.2.3 Damping 42 5.2.4 Setup 42 5.3 Description of cracked pipe behavior 43 5.3.1 Connector element 43 5.3.2 Behavior of connector element 43 5.4 Decrease of applied load at crack position due to crack 44 5.4.1 Depending on pipe length 45 5.4.2 Depending on crack position 46 5.4.3 Depending on excitation mode 46 Chapter 6 Discussion 57 6.1 Model simplification 57 6.2 Static analysis 57 6.3 Quasi static analysis 58 6.4 Time history of applied moment 59 6.5 Considering natural frequency 60 Chapter 7 Conclusions and Future Work 71 7.1 Summary and findings 71 7.2 Future work 72 Bibliography 73 ์ดˆ ๋ก 77 ๊ฐ์‚ฌ์˜ ๊ธ€ 80Maste

    Development of Superior Seed Production Model through the Analysis of Cone and Seed Characteristics in a 1.5 Generation Seed Orchard of Pinus koraiensis

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ๋†๋ฆผ์ƒ๋ฌผ์ž์›ํ•™๋ถ€, 2021. 2. ๊ฐ•๊ทœ์„.๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ์žฃ๋‚˜๋ฌด ๊ฐœ๋Ÿ‰์ฑ„์ข…์›์—์„œ ๊ตฌํ™”์ˆ˜ ๋ฐ ๊ตฌ๊ณผ ์ƒ์‚ฐ์— ๋Œ€ํ•œ ์œ ์ „์  ํŠน์„ฑ์„ ๊ทœ๋ช…ํ•˜๊ณ  ์„ ํ˜•์  ๊ตฌ๊ณผ ์ฑ„์ทจ ๋ฐฉ์•ˆ์„ ๊ณ ์•ˆํ•˜์—ฌ ์ง€์†์ ์œผ๋กœ ํ™œ์šฉํ•˜๋Š”๋ฐ ์žˆ๋‹ค. 1) ํด๋ก ๋ณ„ ๊ตฌํ™”์ˆ˜ ๋ฐ ๊ตฌ๊ณผ ์ƒ์‚ฐ๋Ÿ‰์„ ์กฐ์‚ฌํ•˜์—ฌ ์ด์— ๋Œ€ํ•œ ๋ณ€์ด๋ฅผ ๋ถ„์„ํ•˜๊ณ  ์œ ์ „์  ํŠน์„ฑ์„ ์ถ”์ •ํ•˜์˜€์œผ๋ฉฐ, 2) ๊ตฌํ™”์ˆ˜ ๋ฐ ๊ตฌ๊ณผ ์ƒ์‚ฐ๋Ÿ‰์— ๋Œ€ํ•œ ์œ ํšจ์ง‘๋‹จํฌ๊ธฐ๋ฅผ ์ถ”์ •ํ•˜๊ณ  parental balance curve๋ฅผ ํ†ตํ•ด ํด๋ก  ๊ฐ„ ๊ฐœํ™”ยท๊ฒฐ์‹ค๋Ÿ‰์— ๋Œ€ํ•œ ๊ท ํ˜•๋„๋ฅผ ์ถ”์ •ํ•˜์˜€๋‹ค. ์•„์šธ๋Ÿฌ 3) ๊ตฌ๊ณผ ๋ฐ ์ข…์ž ๋ถ„์„์„ ํ†ตํ•ด ํ˜„ ์ฑ„์ข…์›์˜ ์ข…์ž๊ฒฐ์‹ค ์ƒํƒœ๋ฅผ ํŒŒ์•…ํ•˜๊ณ , 4) ํด๋ก ๋‹น ์ถฉ์‹ค์ข…์ž ์ƒ์‚ฐ๋Ÿ‰๊ณผ ์žฌ์ ์ƒ์žฅ์ง€์ˆ˜(GCA)์— ๋”ฐ๋ฅธ ํด๋ก ๋ณ„ ์œก์ข…๊ฐ€(breeding value)๋กœ ์ถฉ์‹ค์ข…์ž ์ƒ์‚ฐ๊ณผ ์žฌ์ ์ƒ์žฅ์ด ์šฐ์ˆ˜ํ•œ ๊ฐ€๊ณ„ ๋ฐ ๊ฐœ์ฒด๋ฅผ ์šฐ์„  ์„ ๋ฐœํ•˜์—ฌ ์ ์ ˆํ•œ ์„ ๋ฐœ์œจ์— ๋”ฐ๋ผ ๊ตฌ๊ณผ๋ฅผ ์ฑ„์ทจํ•˜๋Š” ์„ ํ˜•์  ๊ตฌ๊ณผ ์ฑ„์ทจ ๋ฐฉ์•ˆ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๋ณธ ์ฑ„์ข…์›์—์„œ 2018-2020๋…„ ์•”ยท์ˆ˜๊ตฌํ™”์ˆ˜ ๋ฐ ์œ ๊ตฌ๊ณผ, ์„ฑ์ˆ™๊ตฌ๊ณผ ์ƒ์‚ฐ๋Ÿ‰์„ ์ผ์›๋ถ„์‚ฐ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, 2019๋…„ ์œ ๊ตฌ๊ณผ ์ƒ์‚ฐ๋Ÿ‰์„ ์ œ์™ธํ•œ ๋ชจ๋“  ํ•ญ๋ชฉ์—์„œ ํด๋ก  ๊ฐ„์˜ ์œ ์˜๋ฏธํ•œ ์ฐจ์ด๊ฐ€ ์žˆ์—ˆ๋‹ค. ํŠนํžˆ ํ‘œ์ค€ํ™” ์‹œํ‚จ ์ž๋ฃŒ๋กœ ์ƒ์‚ฐ๋Ÿ‰์„ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ, ์ˆ˜๊ตฌํ™”์ˆ˜ ์ƒ์‚ฐ๋Ÿ‰์ด ํ‰๊ท  ์ดํ•˜์ธ ํด๋ก ๋“ค์ด ๋งค๋…„ ๋ฐ˜๋ณต๋˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์˜€๋‹ค. ๋ถ„์‚ฐ์„ฑ๋ถ„์œผ๋กœ ์ถ”์ •๋œ ์œ ์ „๋ ฅ์€ ์ˆ˜๊ตฌํ™”์ˆ˜์— ๋น„ํ•ด ์•”๊ตฌํ™”์ˆ˜๊ฐ€ ๋‹ค์†Œ ๋‚ฎ์•„ ๊ฐœ์ฒด ๊ฐ„ ๋ณ€์ด๊ฐ€ ํฐ ํŽธ์ž„์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ฐ ๊ตฌํ™”์ˆ˜ ๋ฐ ๊ตฌ๊ณผ์˜ ์—ฐ๋„๋ณ„ ์ƒ๊ด€๋ถ„์„ ๊ฒฐ๊ณผ, ๋Œ€๋ถ€๋ถ„์˜ ํ•ด์— ์ •์˜์ƒ๊ด€์„ ๋ณด์˜€๋‹ค. ๋”๋ถˆ์–ด ์ˆ˜๊ตฌํ™”์ˆ˜์™€ ์•”๊ตฌํ™”์ˆ˜ ์ƒ์‚ฐ๋Ÿ‰ ๊ฐ„์˜ ์ƒ๊ด€์€ ๋งค๋…„ ์œ ์˜ํ•˜์ง€ ์•Š์€ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํด๋ก ๊ฐ„ ์•”ยท์ˆ˜๊ตฌํ™” ์ƒ์‚ฐ์— ๋Œ€ํ•œ ๊ธฐ์—ฌ๋„๋ฅผ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ์ข…์ž ์ƒ์‚ฐ๋Ÿ‰์ด ์ €์กฐํ–ˆ๋˜ 2018๋…„์— ํด๋ก  ๊ฐ„์˜ ๊ธฐ์—ฌ๋„๊ฐ€ ๊ฐ€์žฅ ๋ถˆ๊ท ํ˜• ํ•˜์˜€์œผ๋ฉฐ ์•”๊ตฌํ™”์ˆ˜ ๋ณด๋‹ค ์ˆ˜๊ตฌํ™”์ˆ˜๊ฐ€ ์ผ๋ถ€ ์†Œ์ˆ˜ ํด๋ก ์— ์˜ํ•ด ์ƒ์‚ฐ๋˜๊ณ  ์žˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ตฌ๊ณผ์ƒ์‚ฐ์— ๋Œ€ํ•œ ์œ ํšจ์ง‘๋‹จํฌ๊ธฐ ์ถ”์ •์€ 2019๋…„์— 8.9, 2020๋…„๋„์—๋Š” 24.3๋กœ ํฐ ์ฐจ์ด๋ฅผ ๋ณด์—ฌ ์ข…์ž์˜ ์œ ์ „์  ๋‹ค์–‘์„ฑ์—๋„ ํฐ ์ฐจ์ด๊ฐ€ ์žˆ์„ ๊ฒƒ์œผ๋กœ ์ถ”์ •๋˜์—ˆ๋‹ค. ๊ตฌ๊ณผ ๋ฐ ์ข…์ž ํŠน์„ฑ์„ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ๊ตฌ๊ณผ ๋ฐ ์ข…์ž์˜ ํ˜•ํƒœ์  ํŠน์„ฑ์€ ํด๋ก  ๊ฐ„์— ์ฐจ์ด๊ฐ€ ์œ ์˜๋ฏธํ•œ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๊ตฌ๊ณผ๋ถ„์„ ๊ฒฐ๊ณผ, ์ข…์ž ๋ถ„๋ฅ˜ ํ•ญ๋ชฉ ๋ณ„๋กœ ํด๋ก  ๊ฐ„์˜ ์ฐจ์ด๊ฐ€ ์œ ์˜๋ฏธํ•œ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๊ณ  ํ‰๊ท  ์ฒซํ•ด ๊ณ ์‚ฌ๋ฐฐ์ฃผ ๋น„์œจ๊ณผ ํ‰๊ท  ์ƒํ•ด์ข…์ž ๋น„์œจ์ด ๋†’์€ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์‹œํ•œ ์„ ํ˜•์  ๊ตฌ๊ณผ ์ฑ„์ทจ ๋ชจํ˜•์œผ๋กœ ๊ตฌ๊ณผ๋ฅผ ์ฑ„์ทจํ•  ๊ฒฝ์šฐ, ์„ ๋ฐœ์œจ์— ๋”ฐ๋ผ ๊ฐœ๋Ÿ‰ํšจ๊ณผ๊ฐ€ ์ฆ๊ฐ€ํ•˜์—ฌ ์ข…์ž์˜ ์œ ์ „์  ๊ฐ€์น˜๋ฅผ ํ–ฅ์ƒ์‹œํ‚ฌ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ํšจ์œจ์ ์œผ๋กœ ์ข…์ž๋ฅผ ์ƒ์‚ฐํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.The purposes of this study were to estimate genetic characteristics of strobilus, conelet and cone production and to develop and continuously utilize linear cone collection model in a clonal seed orchard of Korean pine (Pinus koraiensis S. et Z.). The production of strobili, conelets and cones per clone was investigated for three consecutive years (2018~2020) to analyze the genetic variation of cone and seed characteristics. The effective population size was estimated for the production of strobilus, conelet and cone production and also parental balance curve was drawn to estimate fertility variation among clones. The status of cone and seed production was figured out through cone analysis. Then, the linear cone collection model was proposed to collect cones from selected ramets and/or clones (families) showing excellent growth and filled seed production based on filled seed production and clonal GCA. As a result of one-way variance analysis of the production of female strobili, male strobili, conelets and cones (2018~2020), significant differences among clones were found in all characteristics except for the conelet production in 2019. In particular, clones with poor strobilus production tended to be continuously poor. Broad-sense heritability estimated from variance components was lower in the number of female strobilus compared to the number of male strobilus, indicating that there was larger variation among the individuals than the clones. The year by year correlation of strobilus, conelet and cone production showed positive in all years. In addition, the correlation between the production of female strobilus and male strobilus was found to be insignificant each year. The production of strobilus production among clones was the most unbalanced when the seed production was poor in 2018, Male strobilus production was more screwed than female, implying that only a few clones was contributing to the male strobilus production. The effective population sizes for cone production were 8.9 and 24.3 in 2019 and 2020, respectively. This result reveals the decrease of genetic diversity in seeds from the seed orchard. One-way variance analysis of cone and seed characteristics showed that the morphological characteristics of the cone and seed differed significantly among clones. Cone analysis showed the highly significant difference of morphological seed traits among clones and also average ratio of damaged seeds and aborted seeds in the first year. It was expected that if cones were collected with the linear cone collection model presented in this study, genetic gain would increase according to the selection rate and the genetic quality of seeds and the production of superior seeds could also be improved.์ œ 1 ์žฅ ์„œ ๋ก  1 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ 1 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ ๋ชฉ์  4 ์ œ 2 ์žฅ ์—ฐ ๊ตฌ ์‚ฌ 5 ์ œ 1 ์ ˆ ์žฃ๋‚˜๋ฌด(Pinus koraiensis )์˜ ์ง‘๋‹จ์œ ์ „ํ•™์  ์—ฐ๊ตฌ 5 ์ œ 2 ์ ˆ ์žฃ๋‚˜๋ฌด ์ง‘๋‹จ์˜ ๊ฐœํ™”ยท๊ฒฐ์‹ค ํŠน์„ฑ ๋ณ€์ด ์—ฐ๊ตฌ 7 ์ œ 3 ์ ˆ ์žฃ๋‚˜๋ฌด์˜ ์„ ๋ฐœ๊ณผ ๊ฐœ๋Ÿ‰ํšจ๊ณผ ์ถ”์ • ์—ฐ๊ตฌ 8 ์ œ 3 ์žฅ ์žฌ ๋ฃŒ ๋ฐ ๋ฐฉ ๋ฒ• 9 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ ๋Œ€์ƒ์ง€ 9 ์ œ 2 ์ ˆ ์•”ยท์ˆ˜๊ตฌํ™”์ˆ˜, ์œ ๊ตฌ๊ณผ ๋ฐ ๊ตฌ๊ณผ ์ƒ์‚ฐ๋Ÿ‰ ์กฐ์‚ฌ 10 ์ œ 3 ์ ˆ ํ†ต๊ณ„๋ถ„์„ ๋ฐ ์œ ์ „๋ ฅ ์ถ”์ • 11 ์ œ 4 ์ ˆ ์œ ํšจ์ง‘๋‹จํฌ๊ธฐ ๋ฐ ์œ ์ „๋‹ค์–‘์„ฑ ์ถ”์ • 13 ์ œ 5 ์ ˆ Parental balance curve 14 ์ œ 6 ์ ˆ ๊ตฌ๊ณผยท์ข…์ž ๋ถ„์„ ๋ฐ X-ray ์ข…์ž์ถฉ์‹ค๋„ ๊ฒ€์‚ฌ 14 ์ œ 7 ์ ˆ ์„ ํ˜•์  ๊ตฌ๊ณผ ์ฑ„์ทจ ๋ฐฉ์•ˆ 18 ์ œ 4 ์žฅ ์—ฐ ๊ตฌ ๊ฒฐ ๊ณผ 20 ์ œ 1 ์ ˆ ์•”โˆ™์ˆ˜๊ตฌํ™”์ˆ˜, ์œ ๊ตฌ๊ณผ ๋ฐ ์„ฑ์ˆ™๊ตฌ๊ณผ ์ƒ์‚ฐ๋Ÿ‰ ๋ณ€์ด 20 1. ์—ฐ๊ฐ„ ๊ฐœํ™”ยท๊ฒฐ์‹ค๋Ÿ‰ ๋ณ€์ด 20 2. ์•”โˆ™์ˆ˜๊ตฌํ™”์ˆ˜, ์œ ๊ตฌ๊ณผ ๋ฐ ๊ตฌ๊ณผ ์ƒ์‚ฐ๋Ÿ‰ ์œ ์ „๋ ฅ ์ถ”์ • 33 3. ์•”โˆ™์ˆ˜๊ตฌํ™”์ˆ˜, ์œ ๊ตฌ๊ณผ ๋ฐ ๊ตฌ๊ณผ ์ƒ์‚ฐ๋Ÿ‰ ๊ฐ„ ์ƒ๊ด€๋ถ„์„ 35 4. ์œ ํšจ์ง‘๋‹จํฌ๊ธฐ ๋ฐ ํด๋ก  ๊ฐ„ ๊ท ํ˜•๋„ ์ถ”์ • 37 ์ œ 2 ์ ˆ ๊ตฌ๊ณผ ๋ฐ ์ข…์ž ๋ถ„์„ 40 1. ๊ตฌ๊ณผ์˜ ํ˜•ํƒœ์  ํŠน์ง• 40 2. ์ข…์ž์˜ ํ˜•ํƒœ์  ํŠน์ง• 45 3. ๊ตฌ๊ณผ๋ถ„์„ 50 4. ๊ตฌ๊ณผ ๋ฐ ์ข…์ž ํŠน์„ฑ ๊ฐ„ ์ƒ๊ด€๋ถ„์„ 63 ์ œ 3 ์ ˆ ์„ ํ˜•์  ๊ตฌ๊ณผ ์ฑ„์ทจ ๋ฐฉ์•ˆ 65 ์ œ 5 ์žฅ ๊ณ  ์ฐฐ 68 ์ œ 1 ์ ˆ ๊ฐœํ™” ยท ๊ฒฐ์‹ค๋Ÿ‰ ๋ณ€์ด 68 ์ œ 2 ์ ˆ ๊ตฌ๊ณผ ๋ฐ ์ข…์ž ๋ถ„์„ 71 ์ œ 3 ์ ˆ ์„ ํ˜•์  ๊ตฌ๊ณผ ์ฑ„์ทจ ๋ฐฉ์•ˆ 74 ์ œ 6 ์žฅ ๊ฒฐ ๋ก  76 ์ฐธ๊ณ ๋ฌธํ—Œ 78 Abstract 86Maste

    ์ „ํ•˜๋ฅผ ๋„์ž…ํ•œ ๊ณ ์ฐจ๊ฐ€์ง€๊ตฌ์กฐ ํด๋ฆฌ๊ธ€๋ฆฌ์„ธ๋กค(HPG)์˜ PVDF ๋ถ„๋ฆฌ๋ง‰ ํ‘œ๋ฉด๊ฐœ์งˆ์— ์˜ํ•œ ์˜ค์—ผ ์ €๊ฐ ์˜ํ–ฅ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2015. 2. ๊ณฝ์Šน์—ฝ.Surface charged polyvinylidene fluoride (PVDF) ultra/micro (UF/MF) filtration membranes were prepared by covalent assembly of various charged hyperbranched polyglycerol (HPG) to endow fouling resistance against numerous charged water contaminants. First, we prepared three types of charged HPG, i.e., neutral, positive, negative charges, by end-group modification. Next, PVDF flat membranes were treated with plasma irradiation to introduce functional groups, such as O-O, -OOH, -NH2, CONH, etc. Finally, the charged HPG was covalently bonded with the modified membrane surface using phenylene diisocyanate as a linking agent. Successful polymerization and charged modification of HPGs were examined by combined results of Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance (1H-NMR). Attenuated total reflectance (ATR) FT-IR and X-ray photoelectron spectroscopy (XPS) spectra detected addition of the neutral HPG and charged HPGs on the surface of the charge-modified membrane. Enhancement of hydrophilic property of charge-modified membrane without severe change of their morphology was observed by analysis of water contact angle (CA) and field emission scanning electron microscope (FE-SEM). Charge characteristic of membranes were detected by ion exchange capacity (IEC) and zeta potential analysis, revealed successful charge modification. Assessment of anti-fouling property was conducted by charged proteins (bovine serum albumin and lysozyme) contained water. These results indicated that hydrophilic property and electrostatic repulsive force between charged membrane surface and identical charged contaminants decreased foulants adsorption on membrane surface. Therefore, positively or negatively charge-modified membranes exhibited best antifouling performance to co-ionized protein solution. Likewise, the neutral charge-modified membrane showed intermediate performance to both protein solutions. In addition, the charge-modified membranes occurs adsorption of counter charged proteins, which can improve charged protein separation. Thus, membrane surface modification with charged HPG makes eco-friendly membrane, that might be used as application of various wastewater and charged particle-separation.CONTENTS ABSTRACT....................................................................................................i CONTENTS.................................................................................................iv 1. Introduction ..........................................................................................1 2. Experimental ............................................................................................5 2.1. Materials............................................................................................5 2.2. Synthesis of hyperbranched polyglycerol with precisely one focal amino functionality (NH2-HPG) โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ7 2.2.1. Synthesis of N,N-dibenzyl tris(hydroxymethyl) aminomethane (Bz2THAM)โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ7 2.2.2. Synthesis of N,N-dibenzyl tris(hydroxymethyl) aminomethane initiated hyperbranched polyglycerol (Bz2-HPG)............................................8 2.2.3. Deprotection to hyperbranched polyglycerol analogues with exactly one amino group (NH2-HPG) .........................................................................8 2.3. Synthesis of positively charged hyperbranched polyglycerol (NH2-PHPG) ..............................................................................................9 2.3.1. Synthesis of benzyl protected quarternized ammonium hyperbranched polyglycerol (Bz2-PHPG) ..................................................................................................9 2.3.2. Deprotection to positively charged hyperbranched polyglycerol analogues with exactly one amino group (NH2-HPG)...................................10 2.4. Synthesis of negatively charged hyperbranched polyglycerol (NH2-NHPG) โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ10 2.4.1. Synthesis of benzyl protected hyperbranched polyglycerol sulfate (Bz2-NHPG)โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ10 2.4.2. Deprotection to negatively charged hyperbranched polyglycerol analogues with exactly one amino group (NH2-NHPG) โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ11 2.5. Surface modification of PVDF membrane by NH2(EG)HPGโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ12 2.5.1. Introduction of functional group into PVDF membrane by plasma treatmentโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ12 2.5.2. Grafting NH2(EG)HPG onto the PVDF membrane by cross linking agentโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ12 2.6. Characteristics of membranesโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ21 2.6.1. Analysis of surface chemical compositionsโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ21 2.6.2. Membrane morphology โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ22 2.6.3. Ion-exchange capacity (IEC) determinationโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ22 2.6.4. Determination of zeta potentialsโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..23 2.7. Evaluation of membrane performanceโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.24 2.7.1.Measurement of membrane flux change due to protein fouling (BSA, Lyz)โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ24 2.7.2. Mixed protein separation (BSA-Hb) โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ26 3. Results and Discussion ..........................................................................30 3.1. Characteristics of NH2-HPG, NH2-PHPG, NH2-NHPGโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ30 3.1.1. FT-IR and 1H-NMRโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ30 3.2. Characteristics of membrane โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ38 3.2.1. ATR-IR and XPSโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ38 3.2.2. Surface morphology and water contact angle of membrane โ€ฆโ€ฆโ€ฆ46 3.2.3. Charge Property of membrane surface (IEC and Zeta potential) โ€ฆ50 3.3. Protein ultrafiltrationโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ54 4. Conclusions ............................................................................................64 5. References โ€ฆ..........................................................................................66 KOREAN ABSTRACT .............................................................................74Maste

    The Effect of Regional Social Overhead Capital Investment on Marginal Productivity of Private Capital and Private Investment

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ํ™˜๊ฒฝ๋Œ€ํ•™์› : ํ™˜๊ฒฝ๊ณ„ํšํ•™๊ณผ, 2015. 2. ์ด์˜์„ฑ.์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ์€ ์ƒ์‚ฐ ํ™œ๋™์„ ๊ฐ„์ ‘์ ์œผ๋กœ ์ง€์›ํ•˜๋Š” ์—ญํ• ์„ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ด๋ฅผ ํ†ตํ•ด ๋ฏผ๊ฐ„์˜ ์ƒ์‚ฐ์„ฑ์ด ์˜ฌ๋ผ๊ฐ€๋ฉด ๋ฏผ๊ฐ„๋ถ€๋ฌธ์˜ ํˆฌ์ž๋ฅผ ์ด‰์ง„ํ•˜๋Š” ์—ญํ• ์„ ํ•œ๋‹ค. ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ ํˆฌ์ž๋ฅผ ํ†ตํ•ด ๋ฏผ๊ฐ„์ž๋ณธ์ด ์ถ•์ ๋˜๋ฉด ๊ฒฝ์ œ๋ ฅ์„ ๊ฐ€์ง€๊ณ  ์ง€์—ญ์ด ์„ฑ์žฅํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐ”ํƒ•์ด ๋œ๋‹ค. ๊ทธ๋Ÿฐ๋ฐ ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ ํˆฌ์ž์— ๋Œ€ํ•œ ์žฌ์›์„ ๋งˆ๋ จํ•˜๋Š” ๊ณผ์ •์—์„œ ๋ฏผ๊ฐ„์ž๋ณธ์„ ์ผ์ • ๋ถ€๋ถ„ ๋Œ์–ด๋‹ค ์“ฐ๊ธฐ ๋•Œ๋ฌธ์— ๋ฏผ๊ฐ„ํˆฌ์ž๋Š” ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ ํˆฌ์ž๋กœ ์ธํ•ด ์œ„์ถ•๋  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ ํˆฌ์ž ์ง€์ถœ์ด ๋ฏผ๊ฐ„ํˆฌ์ž๋ฅผ ๊ตฌ์ถ•ํ•˜๋Š” ํšจ๊ณผ๊ฐ€ ์žˆ๋Š”์ง€ ์‚ดํŽด๋ณด๊ณ , ๋™์‹œ์— ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ์ด ๋ฏผ๊ฐ„์ž๋ณธ์˜ ํ•œ๊ณ„์ƒ์‚ฐ์„ฑ์— ํšจ์œจ์ ์œผ๋กœ ์ž‘์šฉํ•˜์—ฌ ๋ฏผ๊ฐ„ํˆฌ์ž๋ฅผ ์œ ์ธํ•˜๋Š” ํšจ๊ณผ๊ฐ€ ์กด์žฌํ•˜๋Š”์ง€ ์‚ดํŽด๋ณด๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ ํˆฌ์ž์˜ ํšจ์œจ์„ฑ์„ ์‚ดํŽด๋ณด๊ณ  ํˆฌ์ž์˜ ๋‹น์œ„์„ฑ์„ ํ‰๊ฐ€ํ•œ๋‹ค๋Š” ์ ์—์„œ ๋ณธ ์—ฐ๊ตฌ์˜ ์˜์˜๊ฐ€ ์žˆ๋‹ค. ์—ฐ๊ตฌ๋ฒ”์œ„๋Š” ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ์˜ ํŒŒ๊ธ‰ํšจ๊ณผ๋ฅผ ๊ณ ๋ คํ•˜์—ฌ, ๊ด‘์—ญ์‹œยท๋„ ๋‹จ์œ„์™€ ๊ถŒ์—ญ ๋‹จ์œ„๋กœ ๋‚˜๋ˆ„์–ด ์‚ดํŽด๋ณด๊ธฐ๋กœ ํ•œ๋‹ค. ์ด์— ๋”ฐ๋ผ ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ์Šคํ†ก๊ณผ ๋ฏผ๊ฐ„์ž๋ณธ์Šคํ†ก์— ๊ด€ํ•œ ์ž๋ฃŒ๋ฅผ ๋ถ„์„๋ชจํ˜•์— ๋งž๊ฒŒ ์ง€์—ญ๋ณ„๋กœ ์ถ”๊ณ„ํ•˜์˜€๋‹ค. ์ง€์—ญ๋ณ„ ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ ํˆฌ์ž ์ง€์ถœ์ด ๋ฏผ๊ฐ„์ž๋ณธ์˜ ํ•œ๊ณ„์ƒ์‚ฐ์„ฑ๊ณผ ๋ฏผ๊ฐ„ํˆฌ์ž์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์—ฐ๋ฆฝ๋ฐฉ์ •์‹ ๋ชจํ˜•์œผ๋กœ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋ถ„์„๊ฒฐ๊ณผ, ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ ํˆฌ์ž ์ง€์ถœ์ด ๋ฏผ๊ฐ„ํˆฌ์ž๋ฅผ ๊ตฌ์ถ•ํ•˜๋Š” ํšจ๊ณผ๋Š” ์—†์—ˆ๋‹ค. ์˜คํžˆ๋ ค ๋น„์ˆ˜๋„๊ถŒ์—์„œ ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ์ด ํšจ์œจ์ ์ด์ง€ ๋ชปํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋ฏผ๊ฐ„ํˆฌ์ž๋ฅผ ์œ ์ธํ•˜์ง€ ๋ชปํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ˆ˜๋„๊ถŒ์—์„œ๋Š” ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ ํˆฌ์ž๊ฐ€ ๋ฏผ๊ฐ„์ž๋ณธ์˜ ํ•œ๊ณ„์ƒ์‚ฐ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ , ์ด์— ๋”ฐ๋ผ ๋ฏผ๊ฐ„ํˆฌ์ž๋ฅผ ์œ ์ธํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ด‘์—ญ์‹œยท๋„ ๋‹จ์œ„์—์„œ๋Š” ๋น„์ˆ˜๋„๊ถŒ์—์„œ์˜ ๋†’์€ ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ ํˆฌ์ž ๋•Œ๋ฌธ์— ์ˆ˜๋„๊ถŒ์˜ ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ ํšจ์œจ์„ฑ์ด ์ƒ์‡„๋˜์—ˆ๋‹ค. ๊ฒฐ๊ตญ ์šฐ๋ฆฌ๋‚˜๋ผ์—์„œ ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ ํˆฌ์ž์— ๋”ฐ๋ฅธ ๋ฏผ๊ฐ„ํˆฌ์ž ์œ ์ธ์ด ์ €์กฐํ•œ ์›์ธ์—๋Š” ๊ตฌ์ถ•ํšจ๊ณผ๋ณด๋‹ค๋„ ๋น„์ˆ˜๋„๊ถŒ์—์„œ ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ์ด ํšจ์œจ์ ์ด์ง€ ๋ชปํ•˜๊ธฐ ๋•Œ๋ฌธ์ธ ๊ฒƒ์œผ๋กœ ํ’€์ดํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ด‘์—ญ์‹œ์™€ ๋„(้“) ์ง€์—ญ์„ ๋น„๊ตํ•œ ๋ถ„์„์—์„œ๋„ ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ ํšจ๊ณผ์˜ ์ฐจ์ด๊ฐ€ ์กด์žฌํ•˜์˜€๋‹ค. ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ์ด ๋ฏผ๊ฐ„์ž๋ณธ์˜ ํ•œ๊ณ„์ƒ์‚ฐ์„ฑ์„ ๋†’์ด๊ณ  ๋ฏผ๊ฐ„ํˆฌ์ž๋ฅผ ์œ ์ธํ•˜๋Š” ํšจ๊ณผ๋Š” ๋„(้“) ์ง€์—ญ๋ณด๋‹ค ๊ด‘์—ญ์‹œ์—์„œ ๋” ๋†’์•˜๋‹ค. ๊ด‘์—ญ์‹œ์˜ ๊ฒฝ์šฐ ๊ฒฝ์ œ๋ฐœ์ „๋‹จ๊ณ„๊ฐ€ ๋†’๊ณ  ์™•์„ฑํ•œ ๊ฒฝ์ œ๋ ฅ๊ณผ ์ˆ˜์š”๊ฐ€ ๋’ท๋ฐ›์นจ๋˜์ง€๋งŒ, ๋„(้“) ์ง€์—ญ์€ ๋ฐœ์ „๋‹จ๊ณ„๊ฐ€ ๋‚ฎ์€ ์ €๊ฐœ๋ฐœ์ง€์—ญ์ด ๋งŽ๊ธฐ ๋•Œ๋ฌธ์— ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ์˜ ํšจ๊ณผ๊ฐ€ ๋‚ฎ์€ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค. ๊ณผ๋„ํ•œ ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธํˆฌ์ž๋Š” ๋‹จ์ˆœํžˆ ์˜ˆ์‚ฐ๋‚ญ๋น„๋ผ๋Š” ๋ฌธ์ œ๋ฅผ ๋„˜์–ด, ๋ฏผ๊ฐ„ํˆฌ์ž๋ฅผ ์œ„์ถ•ํ•˜๊ณ  ์„ฑ์žฅ์ž ์žฌ๋ ฅ์„ ์ €ํ•ดํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ๋‚ณ์„ ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๊ฒฐ๊ณผ์— ๋”ฐ๋ฅด๋ฉด, ์žฌ์›์ด์šฉ๊ณผ ์ž์›๋ฐฐ๋ถ„์˜ ํšจ์œจ์„ฑ์ด๋ผ๋Š” ์ธก๋ฉด์—์„œ ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ ํˆฌ์ž์˜ ๋‹น์œ„์„ฑ์€ ๊ฒฐ๊ตญ ์ˆ˜๋„๊ถŒ๊ณผ ๊ด‘์—ญ์‹œ๋งŒ ํ•ด๋‹น๋œ๋‹คํ•  ์ˆ˜ ์žˆ๋‹ค. ์ˆ˜๋„๊ถŒ๊ณผ ๊ด‘์—ญ์‹œ์—์„œ๋Š” ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ ํˆฌ์ž๋ฅผ ๋Š˜๋ฆด์ˆ˜๋ก ํˆฌ์ž ํšจ์œจ์„ฑ์ด ์ปค์ง€๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๊ทธ๋ ‡๋‹ค๊ณ  ํ•ด์„œ ๋น„์ˆ˜๋„๊ถŒ(ํŠนํžˆ ๋„(้“) ์ง€์—ญ)์— ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ ํˆฌ์ž๋ฅผ ํ•˜์ง€ ๋ง์•„์•ผ ํ•œ๋‹ค๋Š” ๊ฒƒ์€ ์•„๋‹ˆ๋‹ค. ์ง€๊ธˆ์ฒ˜๋Ÿผ ๋น„์ˆ˜๋„๊ถŒ์—์„œ ์ˆ˜๋„๊ถŒ๋ณด๋‹ค ํ›จ์”ฌ ๋†’๊ฒŒ ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ ํˆฌ์ž๊ฐ€ ์ง€์ถœ๋˜๋Š” ์ƒํ™ฉ์€ ์žฌ์ • ์ธก๋ฉด๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ž์›๋ฐฐ๋ถ„ ํšจ์œจ์„ฑ์—๋„ ์ €ํ•ด๋˜๊ธฐ ๋•Œ๋ฌธ์— ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ์˜ ์งˆ์„ ๊ฐœ์„ ํ•˜์—ฌ ํšจ์œจ์„ฑ์„ ๋†’์ผ ์ˆ˜ ์žˆ๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ํˆฌ์ž๊ฐ€ ์ด๋ฃจ์–ด์ ธ์•ผ ํ•˜๊ฒ ๋‹ค.Since Social Overhead Capital (SOC) indirectly supports production activity, the increase of private productivity through it accelerates investment in the private sector. SOC investment within a region accumulates private capital, and this becomes the economic power and a background for growth. However, utilizing private capital during the process of providing finances for investment could shrink private investment. The purpose of this study is to evaluate the crowding out effect of SOC investment expenditure, and also the crowding in effect of SOC capital through effectively impacting marginal productivity of private capital. Through this we investigate the efficiency of SOC investment and assess the appropriateness of investments. Considering the spillover effect of SOC, the scope of the study is divided into metropolitan citiesยทprovinces and districts. Data of SOC stock and private capital stock were estimated regionally according to the analysis model. The effect of SOC investment expenditure on the marginal productivity of private capital and private investment was analyzed by a simultaneous equations model. As the result, SOC investment spending did not enhance private investment. All the more, the ineffective SOC at non-capital regions is not capable of attracting private investments. At the capital region, SOC investment enhances the marginal productivity of private capital, and consequently drives private investment. However, at metropolitan citiesยทprovinces unit, the high SOC investment of non-capital regions, the high SOC investment counterbalanced the efficiency. Thus we concluded that the reason for low attraction of private investment through SOC investment not lies on the establishing capabilities itself, but the inefficiency of SOC at non-capital regions. The comparison between metropolitan cities and provinces also revealed differences in SOC effect. SOC increases marginal productivity of private capital and attracts private investment better in metropolitan cities than in provinces. Metropolitan cities are highly developed in terms of economy, and backed by economic power and demand, but provinces more often possess underdeveloped regions, thus resulting in lower SOC effect. Excessive SOC investment goes beyond simple budget wasteit shrinks private investment and hinders growth potential. According to this study, on the aspect of resources and efficiency of distribution, the appropriateness of SOC investment only applies to capital and metropolitan city regions. The more SOC investment at capital and metropolitan city regions, the more the investment efficiency. This does not mean non capital regions (especially province regions) should be excluded from SOC investments. The current situation where non capital regions spend far greater SOC investment compared to capital region undermines financial aspect and also hinders efficient distribution of resources. Therefore investment should be made in a direction that improves SOC quality and enhances efficiency.์ œ 1 ์žฅ ์„œ๋ก  1 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ๊ณผ ๋ชฉ์  1 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ์˜ ๋ฒ”์œ„์™€ ๋ฐฉ๋ฒ• 4 ์ œ 3 ์ ˆ ์—ฐ๊ตฌ์˜ ๊ตฌ์„ฑ 5 ์ œ 2 ์žฅ ๊ด€๋ จ ์ด๋ก  ๋ฐ ์„ ํ–‰์—ฐ๊ตฌ 6 ์ œ 1 ์ ˆ ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ๊ณผ ์ง€์—ญ๊ฒฝ์ œ ์„ฑ์žฅ 6 ์ œ 2 ์ ˆ ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ๊ณผ ๋ฏผ๊ฐ„์ž๋ณธ์˜ ํ•œ๊ณ„์ƒ์‚ฐ์„ฑ 9 1. ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ๊ณผ ๋ฏผ๊ฐ„๋ถ€๋ฌธ์˜ ๋น„์šฉ์ ˆ๊ฐ 9 2. ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ๊ณผ ์ง€์—ญ ๋‚ด ์‚ฐ์—…๊ตฌ์กฐ 11 ์ œ 3 ์ ˆ ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ ํˆฌ์ž์™€ ๋ฏผ๊ฐ„ํˆฌ์ž 13 1. ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ ํˆฌ์ž ์ง€์ถœ์— ๋”ฐ๋ฅธ ๊ตฌ์ถ•ยท์œ ์ธํšจ๊ณผ 13 2. ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ ์ง€์ถœ ํšจ๊ณผ์— ๊ด€ํ•œ ์—ฐ๊ตฌ 16 ์ œ 3 ์žฅ ๋ถ„์„๋ชจํ˜•๊ณผ ์ž๋ฃŒ 24 ์ œ 1 ์ ˆ ๋ถ„์„๋ชจํ˜• 24 ์ œ 2 ์ ˆ ๋ถ„์„๋ฐฉ๋ฒ• 28 ์ œ 3 ์ ˆ ์ž๋ฃŒ 29 1. ์ง€์—ญ๋ณ„ ์ž๋ณธ์Šคํ†ก ์ถ”๊ณ„์™€ ํˆฌ์ž ์ž๋ฃŒ 29 2. ๋ฏผ๊ฐ„์ž๋ณธ์˜ ํ•œ๊ณ„์ƒ์‚ฐ์„ฑ 37 ์ œ 4 ์žฅ ์‹ค์ฆ๋ถ„์„ 39 ์ œ 1 ์ ˆ ๊ด‘์—ญ์‹œยท๋„ ์ฐจ์› ๋ถ„์„ 39 1. ์ถ”๊ณ„ ์ž๋ฃŒ์˜ ์ž๋ณธ์Šคํ†กยทํˆฌ์ž ๊ฒฝํ–ฅ 39 1) ์ง€์—ญ๋ณ„ยท์—ฐ๋„๋ณ„ ์ž๋ณธ์Šคํ†ก ๊ฒฝํ–ฅ 39 2) ์ง€์—ญ๋ณ„ยท์—ฐ๋„๋ณ„ ํˆฌ์ž ๊ฒฝํ–ฅ 43 2. ๊ด‘์—ญ์‹œยท๋„๋ณ„ ์ž๋ณธ์Šคํ†ก๊ณผ ์‚ฐ์ถœ ๊ฒฝํ–ฅ 47 3. ๊ด‘์—ญ์‹œยท๋„๋ณ„ ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ ํˆฌ์ž ์ง€์ถœ์ด ๋ฏผ๊ฐ„ํˆฌ์ž์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ 49 1) ์ƒ์‚ฐํ•จ์ˆ˜ ์ถ”์ •๊ฒฐ๊ณผ 49 2) ๋ฏผ๊ฐ„์ž๋ณธ์˜ ํ•œ๊ณ„์ƒ์‚ฐ์„ฑ ์ถ”์ด 51 3) ๋ฏผ๊ฐ„ํˆฌ์ž ์—ฐ๋ฆฝ๋ฐฉ์ •์‹ ์ถ”์ •๊ฒฐ๊ณผ 54 4) ๊ด‘์—ญ์‹œยท๋„์˜ ์ƒํ˜ธ์ž‘์šฉ ์ถ”์ •๊ฒฐ๊ณผ 57 4. ์ˆ˜์ • ๊ฐ๊ฐ€์ƒ๊ฐ๋ฅ  ์ถ”์ •๊ฒฐ๊ณผ 59 ์ œ 2 ์ ˆ ๊ถŒ์—ญ ์ฐจ์› ๋ถ„์„ 61 1. ์ถ”๊ณ„ ์ž๋ฃŒ์˜ ์ž๋ณธ์Šคํ†กยทํˆฌ์ž ๊ฒฝํ–ฅ 61 1) ์ง€์—ญ๋ณ„ยท์—ฐ๋„๋ณ„ ์ž๋ณธ์Šคํ†ก ๊ฒฝํ–ฅ 61 2) ์ง€์—ญ๋ณ„ยท์—ฐ๋„๋ณ„ ํˆฌ์ž ๊ฒฝํ–ฅ 64 2. ๊ถŒ์—ญ๋ณ„ ์ž๋ณธ์Šคํ†ก๊ณผ ์‚ฐ์ถœ ๊ฒฝํ–ฅ 67 3. ๊ถŒ์—ญ๋ณ„ ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ ํˆฌ์ž ์ง€์ถœ์ด ๋ฏผ๊ฐ„ํˆฌ์ž์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ 69 1) ์ƒ์‚ฐํ•จ์ˆ˜ ์ถ”์ •๊ฒฐ๊ณผ 69 2) ๋ฏผ๊ฐ„์ž๋ณธ์˜ ํ•œ๊ณ„์ƒ์‚ฐ์„ฑ ์ถ”์ด 71 3) ๋ฏผ๊ฐ„ํˆฌ์ž ์—ฐ๋ฆฝ๋ฐฉ์ •์‹ ์ถ”์ •๊ฒฐ๊ณผ 74 ์ œ 5 ์žฅ ๊ฒฐ๋ก  ๋ฐ ์‹œ์‚ฌ์  81 ์ฐธ๊ณ ๋ฌธํ—Œ 86 Abstract 93Docto

    ๊ฐ€์ƒ ๋ฐด๋“œ๋ฅผ ํ™œ์šฉํ•œ ์ดˆ๋ถ„๊ด‘ ์˜์ƒ๊ณผ ๋‹ค์ค‘๋ถ„๊ด‘ ์˜์ƒ์˜ ๋ธ”๋กํ™” ๊ธฐ๋ฐ˜ ์˜์ƒ์œตํ•ฉ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ฑด์„คํ™˜๊ฒฝ๊ณตํ•™๋ถ€, 2014. 2. ๊น€์šฉ์ผ.์ดˆ๋ถ„๊ด‘ ์„ผ์„œ๋Š” ๋ถ„๊ด‘ํ•ด์ƒ๋„์™€ ๊ณต๊ฐ„ํ•ด์ƒ๋„ ๊ฐ„์˜ trade-off ํ˜„์ƒ์œผ๋กœ ์ธํ•˜์—ฌ ์ •๋ฐ€ํ•œ ๋ถ„๊ด‘์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š” ๋Œ€์‹  ๋‚ฎ์€ ๊ณต๊ฐ„์ •๋ณด๋ฅผ ๊ฐ–๋Š”๋‹ค. ์ด๋Ÿฌํ•œ ์ดˆ๋ถ„๊ด‘ ์˜์ƒ์˜ ํ•œ๊ณ„๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ดˆ๋ถ„๊ด‘ ์˜์ƒ์„ ์ด์šฉํ•œ ์˜์ƒ์œตํ•ฉ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜๊ณ  ์žˆ์œผ๋‚˜, ์ดˆ๋ถ„๊ด‘ ์˜์ƒ๊ณผ ๊ณ ํ•ด์ƒ๋„ ์˜์ƒ์˜ ๋ถ„๊ด‘ ๋ฒ”์œ„๊ฐ€ ๋‹ค๋ฅผ ๊ฒฝ์šฐ ๋ฐœ์ƒํ•˜๋Š” ๋ถ„๊ด‘ ๋ฐ ๊ณต๊ฐ„ ์ •๋ณด์˜ ์™œ๊ณก์„ ๊ฐœ์„ ํ•˜๋Š” ์—ฐ๊ตฌ๋Š” ๋ฏธ์ง„ํ•œ ์‹ค์ •์ด๋‹ค. ๋˜ํ•œ, ๋†’์€ ๋ถ„๊ด‘ํ•ด์ƒ๋„๋ฅผ ์ œ๊ณตํ•˜๋Š” ๊ณ ํ•ด์ƒ๋„ ๋‹ค์ค‘๋ถ„๊ด‘ ์˜์ƒ์ด ํƒ‘์žฌ๋œ ์ฐจ์„ธ๋Œ€ ์ดˆ๋ถ„๊ด‘ ์œ„์„ฑ์˜์ƒ์ด ๊ณ„ํš๋˜๋ฉด์„œ ์ดˆ๋ถ„๊ด‘ ์˜์ƒ๊ณผ ๊ณ ํ•ด์ƒ๋„ ๋‹ค์ค‘๋ถ„๊ด‘ ์˜์ƒ ๊ฐ„์˜ ์œตํ•ฉ์—ฐ๊ตฌ์˜ ํ•„์š”์„ฑ์ด ์ œ๊ธฐ๋˜๊ณ  ์žˆ๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ๋Š” ์ฐจ์„ธ๋Œ€ ์ดˆ๋ถ„๊ด‘ ์œ„์„ฑ์˜์ƒ์˜ ํ™œ์šฉ๋„๋ฅผ ๋†’์ด๊ธฐ ์œ„ํ•œ ์ดˆ๋ถ„๊ด‘ ์˜์ƒ์˜ ์‚ฌ์ „ ์—ฐ๊ตฌ๋กœ์„œ, ๋‹ค๋ฅธ ๋ถ„๊ด‘ ๋ฒ”์œ„์˜ ๊ณ ํ•ด์ƒ๋„ ๋‹ค์ค‘๋ถ„๊ด‘ ์˜์ƒ์„ ํ™œ์šฉํ•˜์—ฌ ์ดˆ๋ถ„๊ด‘ ์˜์ƒ์˜ ๋ถ„๊ด‘์ •๋ณด๋Š” ๋ณด์กดํ•˜๋˜ ๊ณต๊ฐ„์ •๋ณด๋ฅผ ๊ฐœ์„ ํ•˜๋Š” ์˜์ƒ์œตํ•ฉ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ดˆ๋ถ„๊ด‘ ์˜์ƒ ๋ฐด๋“œ์™€ ๋‹ค์ค‘๋ถ„๊ด‘ ์˜์ƒ ๋ฐด๋“œ๊ฐ„์˜ ๋‹ค๋ฅธ ๋ถ„๊ด‘ ๋ฒ”์œ„์— ๋”ฐ๋ฅธ ์˜ํ–ฅ์„ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•ด, ์ดˆ๋ถ„๊ด‘ ์˜์ƒ ๋ฐด๋“œ์™€ ๋‹ค์ค‘๋ถ„๊ด‘ ์˜์ƒ ๋ฐด๋“œ์˜ ์กฐํ•ฉ์„ ํ†ตํ•œ ๋ธ”๋กํ™” ๊ธฐ๋ฐ˜์˜ ์˜์ƒ์œตํ•ฉ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์ดˆ๋ถ„๊ด‘ ์˜์ƒ๊ณผ ์ค‘๋ณต๋˜์ง€ ์•Š๋Š” ๋‹ค์ค‘๋ถ„๊ด‘ ์˜์ƒ์˜ ๋ถ„๊ด‘ํŒŒ์žฅ๋Œ€์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ถ„๊ด‘ ๋ฐ ๊ณต๊ฐ„ ์™œ๊ณก์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ๋ถ„๊ด‘ํ˜ผํ•ฉ๊ธฐ๋ฒ•์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค์ค‘๋ถ„๊ด‘ ๋ฐด๋“œ๋ฅผ ์ถ”๊ฐ€์ ์œผ๋กœ ์ƒ์„ฑํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ๋ธ”๋กํ™” ๊ธฐ๋ฐ˜์˜ ์˜์ƒ์œตํ•ฉ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํ‰๊ฐ€๋ฅผ ์œ„ํ•ด CASI ์˜์ƒ์„ ํ™œ์šฉํ•˜์˜€์œผ๋ฉฐ, ๋‹ค๋ฅธ ๋ถ„๊ด‘ํŒŒ์žฅ๋Œ€์˜ ์ดˆ๋ถ„๊ด‘ ์˜์ƒ๊ณผ ๋‹ค์ค‘๋ถ„๊ด‘ ์˜์ƒ์œผ๋กœ ์ด๋ฃจ์–ด์ง„ ๋ชจ์˜์˜์ƒ๊ณผ ์‹ค์ œ์˜์ƒ์— ์ ์šฉํ•˜์˜€๋‹ค. ์‹œ๊ฐ์ /์ •๋Ÿ‰์  ํ‰๊ฐ€๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ธฐ์กด์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๋น„๊ตํ•˜์—ฌ ์ƒ๋Œ€์ ์œผ๋กœ ํ–ฅ์ƒ๋œ ๊ณต๊ฐ„์ •๋ณด์™€ ๋‚ฎ์€ ๋ถ„๊ด‘ ์™œ๊ณก์„ ๋ณด์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด, ๋ถ€๋ถ„์ ์œผ๋กœ ๋‹ค๋ฅธ ๋ถ„๊ด‘ํŒŒ์žฅ๋Œ€๋ฅผ ๊ฐ€์ง„ ์ดˆ๋ถ„๊ด‘ ์˜์ƒ๊ณผ ๋‹ค์ค‘๋ถ„๊ด‘ ์˜์ƒ์— ๋Œ€ํ•˜์—ฌ ๋ถ„๊ด‘ํŠน์„ฑ์„ ํšจ๊ณผ์ ์œผ๋กœ ๋ณด์กดํ•˜๊ณ  ๋†’์€ ํ•ด์ƒ๋„๋ฅผ ๊ฐ–๋Š” ์ดˆ๋ถ„๊ด‘ ์˜์ƒ์„ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.Hyperspectral sensors provide meticulous spectral information. However, low spatial resolution of hyperspectral images limits their capability for precise and detailed analysis. Some image fusion algorithms were introduced to enhance the spatial quality of the hyperspectral satellite images, but these do not successfully reduce spectral and spatial distortion occurring from the wavelength difference between hyperspectral and multispectral images. The necessity of the image fusion with hyperspectral and multispectral images is also emphasized as future satellite is planning to offer both hyperspectral and multispectral images. Thus, this study introduced the hyperspectral image fusion using multispectral images having higher spatial resolution and partially different wavelength range from the hyperspectral image as a preliminary study of future satellite system. This study also focused on the image fusion algorithm to enhance the spatial quality and to preserve the spectral information of hyperspectral images. The proposed algorithms were based on the blocks of associated hyperspectral and multispectral bands to reduce the influence of different spectral characteristics between hyperspectral and multispectral bands. It also generated an additional band by the spectral-unmixing-based simulation to lessen the spectral and spatial distortion on the bands in the wavelength range, which did not exist in multispectral images. The proposed block-based image fusion algorithm was applied on synthetic and actual Compact Airborne Spectrographic Imager (CASI) data sets including hyperspectral and multispectral images in different wavelength range. Then, its results were compared with existing methods by visual and statistical evaluation, and the proposed block-based fusion algorithm produced fused images with enhanced spatial details and less spectral distortions. This study demonstrates that the proposed algorithm effectively improved the spatial details and preserved the spectral characteristics on hyperspectral image even if the wavelength range of multispectral image did not coincide with that of hyperspectral image. 1. Introduction 1 1.1 Background 1 1.2 Literature Review 3 1.3 Scope of This Study 7 2. Image Fusion Methods 9 2.1 General Image Fusion Methods 9 2.2 Spectral-unmixing-based Image Fusion Methods 13 3. Block-based Image Fusion Algorithm with Simulated Band Generation 17 3.1 Generation of Simulated Band for Multispectral Image 19 3.1.1 Spectral-unmixing-based Simulation 19 3.1.2 Spectral Adjustment of Simulated Band 22 3.2 Block-based Image Fusion 27 3.2.1 Generation of Band Blocks by Band Association 27 3.2.2 Injection of High Frequency Approximation 32 3.3 Statistical Measurements for Quality Analysis 33 4. Results 36 4.1 Data 36 4.1.1 CASI Hyperspectral Image 36 4.1.2 Preprocessing 39 4.1.3 Test Data Sets 39 4.2 Performance Evaluation 41 4.2.1 Visual Interpretation 42 4.2.2 Statistical Analysis 51 5. Conclusion 60 Reference 62 Appendix 71Maste

    A Study on Depression Level Following Different Retirement Types in Middle and Late Life: The Mediating Role of Change in Self-esteem

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‚ฌํšŒ๋ณต์ง€ํ•™๊ณผ, 2016. 8. ํ•˜์ •ํ™”.๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ์ค‘ยท๊ณ ๋ น์ž ์€ํ‡ด์œ ํ˜•์— ๋”ฐ๋ฅธ ์šฐ์šธ์ˆ˜์ค€์— ์ฐจ์ด๊ฐ€ ์žˆ๋Š”์ง€ ๋น„๊ตํ•˜๊ณ , ๊ทธ ๊ด€๊ณ„๋ฅผ ์€ํ‡ด ์ „ํ›„ ์ž์•„์กด์ค‘๊ฐ์˜ ๋ณ€ํ™”๊ฐ€ ๋งค๊ฐœํ•˜๋Š”์ง€ ํ™•์ธํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๊ณ ๋ นํ™” ์‚ฌํšŒ์— ์ง„์ž…ํ•˜๋ฉฐ, ์ƒ์• ํ›„๊ธฐ ์ฃผ๋œ ์‚ถ์˜ ์‚ฌ๊ฑด์ธ ์€ํ‡ด์— ๋Œ€ํ•œ ๋…ผ์˜ ์—ญ์‹œ ํ™œ๋ฐœํ•˜๊ฒŒ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ๊ทธ ์ค‘์—์„œ๋„ ๋ณธ ์—ฐ๊ตฌ๋Š” ์€ํ‡ด๊ฐ€ ๊ฐœ์ธ์˜ ๊ฑด๊ฐ•์ด๋‚˜ ์‚ถ์— ์–ด๋–ค ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€์— ์ดˆ์ ์„ ๋‘”๋‹ค. ์ด๋ฅผ ์œ„ํ•ด Pearlin์˜ ์ŠคํŠธ๋ ˆ์Šค ๊ณผ์ • ๋ชจ๋ธ์„ ์ ์šฉํ•˜์—ฌ ๊ฐœ์ธ์˜ ์‚ถ์˜ ๋ถˆ๊ท ํ˜•์„ ์ดˆ๋ž˜ํ•˜๋Š” ์‚ถ์˜ ์ „ํ™˜๊ธฐ์ธ ์€ํ‡ด๋ฅผ ์ŠคํŠธ๋ ˆ์Šค์›์œผ๋กœ ์ƒ์ •ํ•˜๊ณ , ์ด๋Ÿฌํ•œ ์ŠคํŠธ๋ ˆ์Šค์›์ด ์–ด๋–ค ๊ณผ์ •์„ ๊ฑฐ์ณ ์ŠคํŠธ๋ ˆ์Šค ๋ฐ˜์‘, ํŠนํžˆ ์‹ฌ๋ฆฌ์  ๊ฑด๊ฐ•๊ณผ ๊ด€๋ จ๋œ ์šฐ์šธ๊นŒ์ง€ ์ด์–ด์ง€๋Š”์ง€ ์‚ดํŽด๋ณธ๋‹ค. ํŠนํžˆ ์ฃผ๋œ์ผ์ž๋ฆฌ๋Š” ๊ฐœ์ธ์˜ ์ž์•„๊ฐœ๋… ํ˜•์„ฑ์— ์ง€๋Œ€ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์ณค์„ ๊ฒƒ์ด๋ผ๋Š” ๋งฅ๋ฝ์„ ๊ณ ๋ คํ•ด ๊ฒฐ๊ตญ ์€ํ‡ด๋ฅผ ๊ฒช์€ ์ค‘ยท๊ณ ๋ น์ž๋Š” ์ž์•„๊ฐœ๋…, ๊ทธ ์ค‘์—์„œ๋„ ์ž์•„์— ๋Œ€ํ•œ ํ‰๊ฐ€์  ๋ถ€๋ถ„์„ ๋‹ด๋‹นํ•˜๋Š” ์ž์•„์กด์ค‘๊ฐ์˜ ์ €ํ•˜๋ฅผ ๊ฒช๊ฒŒ ๋˜๊ณ , ์ด๋Ÿฌํ•œ ์‹ฌ๋ฆฌ์  ๊ธฐ์ œ๋ฅผ ํ†ตํ•ด ๋†’์€ ์šฐ์šธ์ˆ˜์ค€์„ ๋ณด์ผ ๊ฒƒ์ด๋ผ๊ณ  ๊ฐ€์ •ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์ŠคํŠธ๋ ˆ์Šค์›๋กœ์„œ์˜ ์€ํ‡ด๊ฐ€ ์‹ฌ๋ฆฌ์  ๊ฑด๊ฐ•๊นŒ์ง€ ์ด์–ด์ง€๋Š” ๊ณผ์ •์„ ํ™•์ธํ•˜๊ธฐ์— ์•ž์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” ์€ํ‡ด๋ฅผ ์ด๋ถ„๋ฒ•์ ์œผ๋กœ๋งŒ ์ •์˜ํ•˜์ง€ ์•Š๊ณ  ๋ณ€ํ™”ํ•˜๋Š” ๋…ธ๋™์‹œ์žฅ์„ ๊ณ ๋ คํ•ด ์œ ํ˜•ํ™”๋ฅผ ์‹œ๋„ํ•˜์˜€๋‹ค. ์ด๋Š” ์ฃผ๋œ์ผ์ž๋ฆฌ๋ฅผ ๋– ๋‚˜ ์ฆ‰์‹œ ์€ํ‡ด์ƒํƒœ์— ์ ‘์–ด๋“œ๋Š” ์ „ํ†ต์  ๊ฐœ๋…์œผ๋กœ์˜ ์™„์ „์€ํ‡ด์™€๋Š” ๋‹ฌ๋ฆฌ, ์ตœ๊ทผ์˜ ์ค‘ยท๊ณ ๋ น์ž๋“ค์€ ๊ฐ€๊ต์ผ์ž๋ฆฌ, ์ฐฝ์—… ๋“ฑ์˜ ์ ์ง„์ ์€ํ‡ด๋ฅผ ๊ฑฐ์น˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์•„์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์ ์ง„์ ์€ํ‡ด์ž ์ง‘๋‹จ์€ ์ฃผ๋œ์ผ์ž๋ฆฌ๋ฅผ ์ข…๋ฃŒํ•˜๋Š” ๊ณผ์ •์— ์žˆ๋‹ค๋Š” ์ ์—์„œ ์€ํ‡ด์ž์—๋Š” ํ•ด๋‹น๋˜์ง€๋งŒ, ๊ฐ‘์ž‘์Šค๋Ÿฌ์šด ๋น„๊ฒฝ์ œํ™œ๋™ ์ƒํƒœ๋กœ์˜ ์ „ํ™˜์„ ๊ฒช๋Š” ์™„์ „์€ํ‡ด์ž ์ง‘๋‹จ๊ณผ๋Š” ๋‹ค๋ฅธ ๊ฒฝํ—˜์„ ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Š” ์—ญํ• ์ด๋ก ์— ๋”ฐ๋ผ ์™„์ „์€ํ‡ด์ž์˜ ๊ฒฝ์šฐ ๊ฐœ์ธ์˜ ์ž์•„๊ฐœ๋…์„ ํ˜•์„ฑํ•˜๋Š”๋ฐ ๊ธฐ์—ฌํ•œ ์ฃผ๋œ์ผ์ž๋ฆฌ๋ฅผ ์žƒ๋Š” ๊ฒƒ์ด ํฐ ํ˜ผ๋ž€๊ณผ ์ŠคํŠธ๋ ˆ์Šค๋กœ ์ด์–ด์งˆ ์ˆ˜ ์žˆ๋Š” ๋ฐ˜๋ฉด, ์ง€์†์ด๋ก ์— ๋”ฐ๋ฅด๋ฉด ์ ์ง„์ ์€ํ‡ด์ž์˜ ๊ฒฝ์šฐ ์ฃผ๋œ์ผ์ž๋ฆฌ๋Š” ๋– ๋‚˜๋”๋ผ๋„ ๋น„์Šทํ•œ ์ง์—…์—ญํ• ์„ ์ง€์†ํ•จ์œผ๋กœ์จ ์—ญํ• ์ „์ด๋ฅผ ๋ณด๋‹ค ์ ์‘์ ์œผ๋กœ ๊ฒฝํ—˜ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๋งฅ๋ฝ์—์„œ์ด๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ค‘ยท๊ณ ๋ น์ž์˜ ์€ํ‡ด์œ ํ˜•์— ๋”ฐ๋ผ ์šฐ์šธ์ˆ˜์ค€์—๋Š” ์–ด๋–ค ์ฐจ์ด๋ฅผ ๋ณด์ด๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  ๊ทธ ์ฐจ์ด๋ฅผ ์€ํ‡ด ์ „ํ›„ ์ž์•„์กด์ค‘๊ฐ์˜ ๋ณ€ํ™”๊ฐ€ ๋งค๊ฐœํ•˜๋Š”์ง€ ํ™•์ธํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์„ค์ •ํ•œ ์—ฐ๊ตฌ๋ฌธ์ œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ์ค‘ยท๊ณ ๋ น์ž์˜ ์€ํ‡ด์œ ํ˜•์— ๋”ฐ๋ผ ์šฐ์šธ์ˆ˜์ค€์˜ ์ฐจ์ด๋ฅผ ๋ณด์ด๋Š”๊ฐ€? ๋‘˜์งธ, ์ค‘ยท๊ณ ๋ น์ž์˜ ์€ํ‡ด์œ ํ˜•์— ๋”ฐ๋ผ ์ž์•„์กด์ค‘๊ฐ ๋ณ€ํ™”์— ์ฐจ์ด๋ฅผ ๋ณด์ด๋Š”๊ฐ€? ์…‹์งธ, ์ค‘ยท๊ณ ๋ น์ž์˜ ์€ํ‡ด์œ ํ˜• ๋ณ„ ์šฐ์šธ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์€ํ‡ด ์ „ํ›„ ์ž์•„์กด์ค‘๊ฐ ๋ณ€ํ™”๊ฐ€ ๋งค๊ฐœํ•˜๋Š”๊ฐ€? ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋ฌธ์ œ๋ฅผ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ํ•œ๊ตญ๋ณด๊ฑด์‚ฌํšŒ์—ฐ๊ตฌ์›๊ณผ ์„œ์šธ๋Œ€ํ•™๊ต ์‚ฌํšŒ๋ณต์ง€์—ฐ๊ตฌ์†Œ์—์„œ ์กฐ์‚ฌํ•œ ํ•œ๊ตญ๋ณต์ง€ํŒจ๋„ 8์ฐจ(2013๋…„๋„), 9์ฐจ(2014๋…„๋„), 10์ฐจ(2015๋…„๋„) ์ž๋ฃŒ๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋ถ„์„๋Œ€์ƒ์€ 8์ฐจ์‹œ์ธ 2013๋…„๋„ ๊ธฐ์ค€ ๋งŒ 50์„ธ ์ด์ƒ์ด๋ฉฐ ์ฃผ๋œ์ผ์ž๋ฆฌ์— ๊ทผ๋ฌด ์ค‘์ด๊ณ , 9์ฐจ์‹œ์™€ 10์ฐจ์‹œ์˜ ๊ทผ๋กœ์ •๋ณด์— ์‘๋‹ตํ•œ 1,030๋ช…์˜ ์ค‘ยท๊ณ ๋ น์ž์ด๋‹ค. ์ด๋•Œ ์ฃผ๋œ์ผ์ž๋ฆฌ๋Š” ์‘๋‹ต์ž๊ฐ€ ์ตœ์†Œ 10๋…„ ๋™์•ˆ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ์—ฐ๊ฐ„ ๊ทผ๋กœ์‹œ๊ฐ„์ด ์ตœ์†Œ 1,600์‹œ๊ฐ„ ์ด์ƒ์ธ ํ’€ํƒ€์ž„ ์ผ์ž๋ฆฌ๋กœ ์ƒ์ •ํ•˜์˜€๋‹ค. ์ดํ›„ ์‘๋‹ต์ž๋“ค์˜ 9์ฐจ์‹œ์™€ 10์ฐจ์‹œ ์‚ฌ์ด์˜ ๊ทผ๋กœ์ •๋ณด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํŒŒํŠธํƒ€์ž„์œผ๋กœ ์ „ํ™˜ํ•˜๊ฑฐ๋‚˜ ๊ฐ€๊ต์ผ์ž๋ฆฌ์— ์ง„์ž…ํ•จ์œผ๋กœ์จ ์ ์ฐจ์ ์œผ๋กœ ๋…ธ๋™์‹œ์žฅ์—์„œ ์ดํƒˆํ•˜๋Š” ์ค‘ยท๊ณ ๋ น์ž๋ฅผ ์ ์ง„์ ์€ํ‡ด์ž๋กœ ์ •์˜ํ•˜๋ฉฐ, ์ฃผ๋œ์ผ์ž๋ฆฌ๋ฅผ ๋– ๋‚œ ํ›„ ์ง€์†์ ์œผ๋กœ ๋น„๊ฒฝ์ œํ™œ๋™ ์ƒํƒœ์ธ ์ค‘ยท๊ณ ๋ น์ž๋ฅผ ์™„์ „์€ํ‡ด์ž๋กœ ๊ตฌ๋ถ„ํ•˜์˜€๋‹ค. ์ค€๊ฑฐ์ง‘๋‹จ์€ 8์ฐจ์‹œ ๋‹น์‹œ์˜ ์ฃผ๋œ์ผ์ž๋ฆฌ๋ฅผ 10์ฐจ์‹œ๊นŒ์ง€ ์ง€์†ํ•˜๊ณ  ์žˆ๋Š” ์ฃผ๋œ์ผ์ž๋ฆฌ ์ข…์‚ฌ์ž๋กœ ๋‘”๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ์—ฐ๊ตฌ๋ฌธ์ œ๋ฅผ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ์•ž์„œ ๊ตฌ๋ถ„ํ•œ ์€ํ‡ด์œ ํ˜•์— ๋”ฐ๋ผ 10์ฐจ์‹œ์ธ 2015๋…„ ์šฐ์šธ๊ฐ ๋ฐ ์ž์•„์กด์ค‘๊ฐ ์ˆ˜์ค€ ์ฐจ์ด๊ฐ€ ์žˆ๋Š”์ง€ ํ™•์ธํ•˜๊ณ  ๋งค๊ฐœํšจ๊ณผ๋ฅผ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด Baron & Kenny์˜ ์ธ๊ณผ์  ๋‹จ๊ณ„์ ‘๊ทผ๋ฒ•์— ๋”ฐ๋ฅธ ๋‹ค์ค‘ํšŒ๊ท€๋ถ„์„์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ์ข…๋‹จ์ž๋ฃŒ๋ฅผ ํ™œ์šฉํ•œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ธฐ์ดˆ์ ์ธ ์ธ๊ตฌ์‚ฌํšŒ ๋ฐ ๊ฑด๊ฐ•๊ด€๋ จ ๋ณ€์ˆ˜๋ฅผ ํ†ต์ œํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ์€ํ‡ด ํ›„ ์ž์•„ ๋ฐ ์‹ฌ๋ฆฌ์  ๊ฑด๊ฐ•์˜ ๋ณ€ํ™”๋ฅผ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ๊ธฐ์ดˆ์„ ์ธ 8์ฐจ์‹œ์˜ ์ž์•„์กด์ค‘๊ฐ๊ณผ ์šฐ์šธ๊ฐ์„ ํ†ต์ œ์‹œ์ผฐ๋‹ค. ์ด๋Š” ์€ํ‡ด ์—ฐ๊ตฌ์—์„œ ํ”ํžˆ ๋ฐœ์ƒํ•˜๋Š” ์„ ํƒ์  ํŽธํ–ฅ์˜ ๋ฌธ์ œ๋ฅผ ์–ด๋Š ์ •๋„ ๋ฐฐ์ œํ•˜๊ณ  ๊ธฐ์ดˆ์„  ์ง‘๋‹จ์˜ ์„ฑ์งˆ์„ ๋น„๊ต์  ๋™์ผํ•˜๊ฒŒ ์„ค์ •ํ•จ์œผ๋กœ์จ ์ธ๊ณผ๊ด€๊ณ„๋ฅผ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•จ์ด๋‹ค. ๋ถ„์„๊ฒฐ๊ณผ๋ฅผ ์ •๋ฆฌํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ์ฃผ๋œ์ผ์ž๋ฆฌ ์ข…์‚ฌ์ž์™€ ๋น„๊ตํ–ˆ์„ ๋•Œ ์ ์ง„์ ์€ํ‡ด์ž๋Š” ์ข…์†๋ณ€์ˆ˜์ธ ์šฐ์šธ์ˆ˜์ค€์— ์œ ์˜๋ฏธํ•œ ์ฐจ์ด๋ฅผ ๋ณด์ด์ง€ ์•Š์•˜๋‹ค. ๋ฐ˜๋ฉด, ์™„์ „์€ํ‡ด์ž๋Š” ์ฃผ๋œ์ผ์ž๋ฆฌ ์ข…์‚ฌ์ž๋ณด๋‹ค ์šฐ์šธ์ˆ˜์ค€์ด ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜๋ฏธํ•˜๊ฒŒ ๋†’์•˜๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ์™„์ „ํžˆ ๋…ธ๋™์‹œ์žฅ์„ ์ดํƒˆํ•˜๋Š” ๊ฒƒ ๋ณด๋‹ค๋Š” ๋Œ€์ฒด์ ์œผ๋กœ ๊ธฐ์กด์˜ ์ผ์ž๋ฆฌ๋“  ์ƒˆ๋กœ์šด ์ผ์ž๋ฆฌ๋“  ์ง์—…์—ญํ• ์„ ์œ ์ง€ํ•˜๋Š” ๊ฒƒ์ด ์ค‘ยท๊ณ ๋ น์ž์˜ ์‹ฌ๋ฆฌ์  ๊ฑด๊ฐ•์— ๋” ์ ์‘์ ์ผ ์ˆ˜ ์žˆ์Œ์„ ์˜๋ฏธํ•œ๋‹ค. ๋‘˜์งธ, ๋งค๊ฐœ๋ณ€์ˆ˜์ธ ์ž์•„์กด์ค‘๊ฐ์— ๋Œ€ํ•œ ๊ฒฐ๊ณผ ์—ญ์‹œ ์ฃผ๋œ์ผ์ž๋ฆฌ ์ข…์‚ฌ์ž์™€ ์ ์ง„์ ์€ํ‡ด์ž๋Š” ์œ ์˜๋ฏธํ•œ ์ฐจ์ด๋ฅผ ๋ณด์ด์ง€ ์•Š์•˜๋‹ค. ๋ฐ˜๋ฉด, ์™„์ „์€ํ‡ด์ž๋Š” ์ฃผ๋œ์ผ์ž๋ฆฌ ์ข…์‚ฌ์ž๋ณด๋‹ค ์€ํ‡ด ํ›„ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜๋ฏธํ•˜๊ฒŒ ๋‚ฎ์€ ์ž์•„์กด์ค‘๊ฐ์„ ๋ณด๊ณ ํ–ˆ๋‹ค. ์ฆ‰ ๊ฐ™์€ ๊ธฐ๊ฐ„ ๋™์•ˆ ์ฃผ๋œ์ผ์ž๋ฆฌ๋ฅผ ์œ ์ง€ํ•˜๊ฑฐ๋‚˜ ์ด๋ฅผ ๋Œ€์ฒดํ•˜๋Š” ์ง์—…์—ญํ• ์„ ๊ฐ–๋Š” ์ค‘ยท๊ณ ๋ น์ž์— ๋น„ํ•ด ์™„์ „์€ํ‡ด์ž์˜ ์€ํ‡ด ํ›„ ์ž์•„์กด์ค‘๊ฐ์ด ์•…ํ™”๋จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์…‹์งธ, ์™„์ „์€ํ‡ด ๊ฒฝํ—˜์€ ์šฐ์šธ์— ์ง์ ‘์˜ํ–ฅ์„ ์ฃผ๊ธฐ๋„ ํ•˜์ง€๋งŒ, ์ž์•„์กด์ค‘๊ฐ ์ €ํ•˜๋ฅผ ๊ฑฐ์ณ ๊ฐ„์ ‘์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค๋Š” ๋ถ€๋ถ„๋งค๊ฐœํšจ๊ณผ๊ฐ€ ๊ฒ€์ฆ๋˜์—ˆ๋‹ค. ์ด๋Š” ์™„์ „์€ํ‡ด๊ฐ€ ์ŠคํŠธ๋ ˆ์Šค์›์œผ๋กœ ์ž‘์šฉํ•˜๊ณ , ์ž์•„์กด์ค‘๊ฐ์ด๋ผ๋Š” ๋‚ด์ ์ž์›์˜ ์ €ํ•˜๋ฅผ ๊ฑฐ์ณ ์šฐ์šธ๋กœ ๋ฐœํ˜„๋œ๋‹ค๋Š” ์ŠคํŠธ๋ ˆ์Šค ๊ณผ์ • ๋ชจ๋ธ, ๋‚˜์•„๊ฐ€ ์—ญํ• ์ด๋ก ์˜ ๊ฐ€์ •์„ ์ง€์ง€ํ•˜๋Š” ๊ฒฐ๊ณผ์ด๋‹ค. ๋ฐ˜๋ฉด, ์ด๋Ÿฌํ•œ ๋งค๊ฐœํšจ๊ณผ๊ฐ€ ์ ์ง„์ ์€ํ‡ด์ž ์ง‘๋‹จ์—์„œ๋Š” ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•˜๋‹ค. ๊ฒฐ๊ตญ ์ด๋“ค ์ง‘๋‹จ์—์„œ๋Š” ์ฃผ๋œ์ผ์ž๋ฆฌ๊ฐ€ ๋‹ค๋ฅธ ์ง์—…์—ญํ• ๋กœ ๋Œ€์ฒด๋จ์œผ๋กœ์จ ์ž์•„ ๋ฐ ์‹ฌ๋ฆฌ์  ๊ฑด๊ฐ•์„ ๋น„๊ต์  ์•ˆ์ •์ ์œผ๋กœ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ์—ˆ๊ณ , ์ด๋Š” ์ง€์†์ด๋ก ์˜ ๋งฅ๋ฝ๊ณผ๋„ ์—ฐ๊ฒฐ๋˜๋Š” ๊ฒฐ๊ณผ์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ฐœ๋…์ , ๋ฐฉ๋ฒ•๋ก ์ ์œผ๋กœ ์„ ํ–‰์—ฐ๊ตฌ์˜ ํ•œ๊ณ„์ ์„ ๋ณด์™„ํ•˜๊ณ ์ž ํ–ˆ์ง€๋งŒ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ถ€๋ถ„์—์„œ ํ•œ๊ณ„์ ์„ ๊ฐ–๋Š”๋‹ค. ์ฒซ์งธ, ์€ํ‡ด๋Š” ์‚ฌํšŒ๊ฒฝ์ œ์ ์ง€์œ„์˜ ๋Œ€๋ฆฌ๋ณ€์ˆ˜๋กœ ์ž‘์šฉํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ , ๋˜ํ•œ ๋‘˜์งธ, ์ •๋ณด๊ฐ€ ํ’๋ถ€ํ•œ ํŒจ๋„๋ฐ์ดํ„ฐ๋ฅผ ์žฌ๊ตฌ์„ฑํ•ด์„œ ์‚ฌ์šฉํ–ˆ๋‹ค๋Š” ์ ์„ ๊ณ ๋ คํ–ˆ์„ ๋•Œ ๋ณธ ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋ฅผ ์ผ๋ฐ˜ํ™”์‹œํ‚ค๊ธฐ์—๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ์…‹์งธ, ์ฃผ๋œ์ผ์ž๋ฆฌ ๋ฐ ์ ์ง„์ ์€ํ‡ด์ž์˜ ํ˜„์žฌ ์ผ์ž๋ฆฌ ํŠน์„ฑ์ด ๊ณ ๋ ค๋˜์ง€ ์•Š์•˜๋‹ค๋Š” ์ , ๋˜ํ•œ ๋„ท์งธ, ์ฃผ๋œ์ผ์ž๋ฆฌ์— ๋Œ€ํ•œ ์ฃผ๊ด€์  ์˜๋ฏธ๊ฐ€ ๊ณ ๋ ค๋˜์ง€ ์•Š์•˜๋‹ค๋Š” ์  ๋“ฑ์„ ํ†ตํ•ด ๋ˆ„๋ฝ๋œ ์ •๋ณด๋ฅผ ํฌํ•จํ•œ ํ›„์†์—ฐ๊ตฌ์˜ ํ•„์š”์„ฑ์„ ์ œ์‹œํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ๋ณธ ์—ฐ๊ตฌ๋Š” ๋‹ค์Œ์˜ ์ด๋ก ์ , ์‹ค์ฒœ์  ํ•จ์˜๋ฅผ ๊ฐ–๋Š”๋‹ค. ์ฒซ์งธ, ๋ณ€ํ™”ํ•˜๋Š” ๋…ธ๋™์‹œ์žฅ์„ ๊ณ ๋ คํ•˜์—ฌ ์€ํ‡ด์œ ํ˜•ํ™”๋ฅผ ์‹œ๋„ํ•จ์œผ๋กœ์จ ์ž์นซ ๊ณผ์†Œํ‰๊ฐ€๋  ์ˆ˜ ์žˆ๋Š” ์€ํ‡ด์ž์˜ ๊ฒฝํ—˜์„ ๋ณด๋‹ค ์„ธ๋ถ€์ ์œผ๋กœ ์‚ดํŽด๋ณด์•˜๋‹ค๋Š” ์ ์ด๋‹ค. ๋‘˜์งธ, ์€ํ‡ด์ž์˜ ๊ฐœ์ธ ๋‚ด์ ์ธ ๋ถ€๋ถ„์— ์ดˆ์ ์„ ๋‘์—ˆ์œผ๋ฉฐ, ๋‚˜์•„๊ฐ€ ์€ํ‡ด๊ฐ€ ์ž์•„๊ฐœ๋… ๋ฐ ์ •์ฒด๊ฐ์—๋„ ๋ถ€์ •์ ์ธ ์˜ํ–ฅ์„ ์ค„ ์ˆ˜ ์žˆ์Œ์„ ๊ณ ๋ คํ•ด ์€ํ‡ด์ž์˜ ์—ญํ• ์ƒ์‹ค ๋ฐ ์—ญํ• ์ „์ด๊ฐ€ ๊ฐœ์ธ ์‹ฌ๋ฆฌ์— ์˜ํ–ฅ์„ ์ฃผ๋Š” ๊ณผ์ •์„ ๋ณด๋‹ค ๋ฉด๋ฐ€ํžˆ ๊ณ ์ฐฐํ•˜์˜€๋‹ค. ์…‹์งธ, ์ข…๋‹จ์ ์œผ๋กœ ๊ตฌ์„ฑ๋œ ์ž๋ฃŒ๋ฅผ ํ†ตํ•ด ๊ธฐ์กด ํšก๋‹จ์—ฐ๊ตฌ๊ฐ€ ๋ฐฉ๋ฒ•๋ก ์ ์œผ๋กœ ๊ฐ€์กŒ๋˜ ํ•œ๊ณ„๋ฅผ ์ผ๋ถ€ ๋ณด์™„ํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ค‘ยท๊ณ ๋ น์ž๋“ค์—๊ฒŒ ์€ํ‡ด๋Š” ์ŠคํŠธ๋ ˆ์Šค์›์œผ๋กœ ์ž‘์šฉํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ์‚ฌํšŒ๋ณต์ง€ ์‹ค์ฒœ์  ์ธก๋ฉด์—์„œ ์€ํ‡ด์ž์˜ ์‹ฌ๋ฆฌ์  ๊ฑด๊ฐ•์„ ๋ณดํ˜ธํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ž์•„์กด์ค‘๊ฐ์— ๊ฐœ์ž…ํ•˜๋Š” ๊ฒƒ์ด ํ•„์š”ํ•˜๋‹ค๋Š” ์ ๊ณผ ์€ํ‡ด์ž๋“ค์ด ๊ธฐ์กด์— ๊ฐ€์น˜๋ฅผ ๋‘์—ˆ๋˜ ์ง์—…์—ญํ•  ์ƒ์‹ค์„ ๋Œ€์ฒดํ•  ์ˆ˜ ์žˆ๋Š” ์—ญํ• ์„ ์ œ๊ณตํ•  ํ•„์š”๊ฐ€ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค.As retirement is regarded as one of the major life transitions, its impact on individuals needs to be examined. Pearlins stress process model was applied upon a premise that retirement could work as stressor in terms of role loss and role transition. This study aims to figure whether retirement as stressor leads to increase in depression level which represents outcome of the stress. In accordance with the stress process model, the role of internal resource was also discussed in order to figure its mediating effect. Specifically, self-esteem was included as internal resource as withdrawal from a career job in which an individual strongly engaged would impact on ones self negatively. Furthermore, retirement is not defined as sudden event in this study by regarding present labor market reality, instead, its different types were considered. Recently a number of mid and old aged people tend to enter into bridge job or part time work even after retiring from career job. This people do not abruptly turn into retirement, but gradually exit the labor market. This study took this Gradual Retirement into account along with the Complete Retirement. These two types of retirees might adapt to their post-retirement life in different way. In accordance with the role theory, people who completely leave the work role after career job retirement could undergo anxiety and confusion. On the other hand, based on logic of the continuity theory, gradual retirees who sustain their work role even after career job loss could experience more adaptive role transition than complete retirees. Upon the assumption so far, this study is to compare depression level and self-esteem following different retirement types. The major hypotheses include: (1) Compared with career job employees, complete retirees will show higher depression level that is mediated by decrease in self-esteem, and (2) Compared with career job employees, gradual retirees will show higher depression level that is mediated by decrease in self-esteem. The wave 8(2013), wave 9(2014), and wave 10(2015) from Korea Welfare Panel Study(KoWePS) were longitudinally analyzed. People(aged 50+) working for their career job in 2013 were initially selected, then they were categorized according to occupational change over 2014 and 2015. Here, the career job was defined as a full time job that has been lasting for more than 10 years. 1,030 individuals took part in the analysis in total, and they were divided into three groups. The first group Career Job Employees consists of people continuing the career job until 2015, and the second group Gradual Retirement includes people whom either entering into bridge job or turning into part time job during 2014 to 2015. The last group Complete Retirement is composed of people who fully exit the labor market after the career job. The reference group for the analysis was Career Job Employees. The Baron & Kennys approach were employed in order to investigate whether change in self-esteem mediates the association between each retirement type and depression level. Basic demographic, socioeconomic, and health related variables were controlled in the final model, besides the self-esteem and depression level in 2013 were also adjusted for better explanation in causality. The major results are as follows: (1) Compared to career job employees, complete retirees showed higher depression level, and this association was partially mediated by decrease in self-esteem, and (2) Compared to career job employees, gradual retirees showed no significantly different level neither in self nor mental health, even if they also underwent career role loss as complete retirees. Despite several limitations due to secondary data analysis, this study has significance in academic and social work practical sense. The results indicated that complete retirement works as stressor, which in turn aggravates depression level via decrease in self-esteem. This association supports the logic of stress process model and role theory. It highlights the importance of improving retirees self-esteem when intervening to protect their mental health following retirement. On the other hand, gradual retirement is not likely to work as stressor. Although gradual retirees too experienced retirement process as complete retiree group, the alternative work role maintained their self and mental health level as before, which supports the continuity theory. Based on these results, providing role that replaces former career job could work as a strategy for retirees better adjustment.์ œ 1์žฅ. ์„œ๋ก  1 ์ œ 1์ ˆ. ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ 1 ์ œ 2์ ˆ. ์—ฐ๊ตฌ๋ชฉ์  ๋ฐ ์—ฐ๊ตฌ๋ฌธ์ œ 10 ์ œ 2์žฅ. ์ด๋ก ์  ๋ฐฐ๊ฒฝ ๋ฐ ์„ ํ–‰์—ฐ๊ตฌ ๊ฒ€ํ†  11 ์ œ 1์ ˆ. ์—ฐ๊ตฌ ๋ชจ๋ธ: ์ŠคํŠธ๋ ˆ์Šค ๊ณผ์ • ๋ชจ๋ธ 11 ์ œ 2์ ˆ. ์ค‘๊ณ ๋ น์ž์˜ ์€ํ‡ด์œ ํ˜• 15 1. ์€ํ‡ด์œ ํ˜•์˜ ์ •์˜ 15 2. ์€ํ‡ด์˜ ์œ ํ˜•ํ™” 17 ์ œ 3์ ˆ. ์ŠคํŠธ๋ ˆ์Šค ๋ฐ˜์‘์œผ๋กœ์˜ ์šฐ์šธ 24 ์ œ 4์ ˆ. ์ŠคํŠธ๋ ˆ์Šค์›์œผ๋กœ์„œ์˜ ์€ํ‡ด 26 ์ œ 5์ ˆ. ์ž์•„์กด์ค‘๊ฐ์˜ ๋งค๊ฐœ์—ญํ•  35 ์ œ 6์ ˆ. ์ค‘๊ณ ๋ น์ž ์šฐ์šธ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ธฐํƒ€ ๋ณ€์ˆ˜ 44 ์ œ 3์žฅ. ์—ฐ๊ตฌ๊ฐ€์„ค ๋ฐ ์—ฐ๊ตฌ๋ชจํ˜• 46 ์ œ 1์ ˆ. ์—ฐ๊ตฌ๋ฌธ์ œ ๋ฐ ์—ฐ๊ตฌ๊ฐ€์„ค 46 ์ œ 2์ ˆ. ์—ฐ๊ตฌ๋ชจํ˜• 47 ์ œ 4์žฅ. ์—ฐ๊ตฌ๋ฐฉ๋ฒ• 48 ์ œ 1์ ˆ. ๋ถ„์„์ž๋ฃŒ ๋ฐ ๋ณ€์ˆ˜์˜ ์ธก์ • 48 1. ๋ถ„์„์ž๋ฃŒ 48 2. ๋ณ€์ˆ˜์˜ ์ธก์ • 49 ์ œ 2์ ˆ. ๋ถ„์„๋ฐฉ๋ฒ• 56 ์ œ 5์žฅ. ์—ฐ๊ตฌ๊ฒฐ๊ณผ 58 ์ œ 1์ ˆ. ๊ธฐ์ดˆํ†ต๊ณ„ 58 1. ๋Œ€์ƒ์ž์˜ ์ธ๊ตฌ์‚ฌํšŒํ•™์  ํŠน์„ฑ 58 2. ์ฃผ์š”๋ณ€์ˆ˜์˜ ๊ธฐ์ˆ ํ†ต๊ณ„ ๋ฐ ์ •๊ทœ์„ฑ ๊ฒ€ํ†  61 3. ๋ณ€์ˆ˜ ๊ฐ„ ์ƒ๊ด€๊ด€๊ณ„ ๋ฐ ๋‹ค์ค‘๊ณต์„ ์„ฑ ๊ฒ€์ฆ 64 4. ์€ํ‡ด์œ ํ˜•๋ณ„ ํ‰๊ท ๋น„๊ต 69 ์ œ 2์ ˆ. ๊ฐ€์„ค๊ฒ€์ฆ 72 1. ์€ํ‡ด์œ ํ˜•๊ณผ ์šฐ์šธ์˜ ๊ด€๊ณ„ 72 2. ์€ํ‡ด์™€ ์€ํ‡ด ํ›„ ์ž์•„์กด์ค‘๊ฐ ๋ณ€ํ™”์˜ ๊ด€๊ณ„ 73 3. ์ž์•„์กด์ค‘๊ฐ ๋ณ€ํ™”์˜ ๋งค๊ฐœํšจ๊ณผ 74 ์ œ 6์žฅ. ๊ฒฐ๋ก  79 ์ œ 1์ ˆ. ์—ฐ๊ตฌ๊ฒฐ๊ณผ ์š”์•ฝ 79 ์ œ 2์ ˆ. ์—ฐ๊ตฌ๊ฒฐ๊ณผ ๋…ผ์˜ 82 ์ œ 3์ ˆ. ์—ฐ๊ตฌ์˜ ํ•จ์˜ 88 1. ์ด๋ก ์  ํ•จ์˜ 88 2. ์‹ค์ฒœ์  ํ•จ์˜ 91 ์ œ 4์ ˆ. ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„ ๋ฐ ํ›„์†์—ฐ๊ตฌ ์ œ์–ธ 93 ์ฐธ๊ณ  ๋ฌธํ—Œ 97 ๋ถ€๋ก: ์ฃผ์š” ๋ณ€์ˆ˜์— ๋Œ€ํ•œ ์ธก์ •๋„๊ตฌ ์„ค๋ฌธ๋ฌธํ•ญ 111 Abstract 116Maste

    The Analysis on an Institutionalization Process of NEA Regional Cooperation through Institutional Work Theory โ€” A Case Study of Tumen Delta Sub-regional Cooperation

    No full text
    ๋‘๋งŒ๊ฐ•๊ฐœ๋ฐœ๊ณ„ํš(Greater Tumen Initiative: GTI)์€ ๋™๋ถ์•„ ์œ ์ผ์˜ ๋‹ค์žํ˜‘๋ ฅ ๊ธฐ์ œ๋กœ์„œ 1990๋…„๋Œ€์— ์ถœ๋ฒ”ํ•˜์—ฌ 2016๋…„ ํ˜„์žฌ์— ์ด๋ฅด๊ธฐ๊นŒ์ง€ ๋‹ค์–‘ํ•œ ์ œ๋„์  ๋ณ€ํ™”๋ฅผ ํ†ตํ•˜์—ฌ ์ง€์†์ ์ธ ๋ฐœ์ „์„ ์ถ”๊ตฌํ•ด ์™”๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋‘๋งŒ๊ฐ•๊ฐœ๋ฐœ๊ณ„ํš์˜ ์ œ๋„ํ™” ๊ณผ์ •์— ๋Œ€ํ•˜์—ฌ ๋‘ ๊ฐ€์ง€ ์งˆ๋ฌธ์„ ์ œ๊ธฐํ•œ๋‹ค. ์ฒซ์งธ, ์–‘์ž์ฃผ์˜์  ๊ด€๊ณ„๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋Š” ๋™๋ถ์•„ ์ง€์—ญ์—์„œ ์™œ ์ด๋Ÿฌํ•œ ๋‹ค์žํ˜‘๋ ฅ๊ธฐ์ œ๊ฐ€ ํ˜•์„ฑ๋  ์ˆ˜ ์žˆ์—ˆ๋Š”๊ฐ€, ๊ทธ๋ฆฌ๊ณ  ๋‘˜์งธ, ๋‘๋งŒ๊ฐ•๊ฐœ๋ฐœ๊ณ„ํš์ด ์˜ค๋žœ ๊ธฐ๊ฐ„ ๋™์•ˆ ๋‘๋“œ๋Ÿฌ์ง€๋Š” ๊ฒฝ์ œ์  ์„ฑ๊ณผ๋ฅผ ๋ณด์ด์ง€ ๋ชปํ–ˆ์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์™œ ๋™๋ถ์•„ ๊ตญ๊ฐ€๋“ค์ด ์ด๋Ÿฌํ•œ ํ‹€์„ ์ง€์†์ ์œผ๋กœ ์œ ์ง€ํ•˜๋ฉฐ ๊ฒฐ๊ตญ ๋‹ค์‹œ ์ œ๋„์ ์œผ๋กœ ํ™œ์„ฑํ™”์‹œํ‚ค๊ฒŒ ๋˜์—ˆ๋Š”๊ฐ€์— ๋Œ€ํ•œ ์˜๋ฌธ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์งˆ๋ฌธ์— ๋‹ตํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ตญ๊ฐ€์ „๋žต์˜ ๋ณ€ํ™”๋ฅผ ์ œ๋„์  ๋ณ€ํ™”์˜ ํ•ต์‹ฌ์›์ธ์œผ๋กœ ๊ฐ„์ฃผํ•˜๋Š” ๊ธฐ์กด์—ฐ๊ตฌ๋“ค์˜ ๊ตญ๊ฐ€์ฃผ์˜์  ์ ‘๊ทผ๋ฒ•์—์„œ ๋ฒ—์–ด๋‚˜, ๋ณด๋‹ค ๋‹ค์–‘ํ•œ ํ–‰์œ„์ž๋“ค์˜ ์ œ๋„์  ํ–‰์œ„๊ฐ€ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š” ๊ณผ์ •์—์„œ ๋‘๋งŒ๊ฐ•๊ฐœ๋ฐœ๊ณ„ํš์˜ ๋‹ค์ž์  ์ œ๋„์˜ ํ‹€์ด ๊ณ ์ฐฉํ™”๋˜์–ด ์˜จ ๊ณผ์ •์„ ์ œ๋„์  ํ–‰์œ„์ด๋ก ์˜ ์ ‘๊ทผ๋ฒ•์„ ํ†ตํ•ด ์„ค๋ช…ํ•˜๊ณ ์ž ํ•œ๋‹ค. ๊ฒฐ๊ตญ ๋‘๋งŒ๊ฐ•๊ฐœ๋ฐœ๊ณ„ํš์ด ๋‹ค์ž์  ํ‹€๋กœ์„œ ๋™๋ถ์•„์ง€์—ญ์— ํ˜•์„ฑ๋˜๊ณ  ์ง€์†๋  ์ˆ˜ ์žˆ์—ˆ๋˜ ๊ฒƒ์€ ์–‘์ž๊ด€๊ณ„๋กœ ๊ตฌ์„ฑ๋œ ๋™๋ถ์•„ ๊ตญ์ œ๊ด€๊ณ„์˜ ๊ตฌ์กฐ์  ์••๋ ฅ์ด ์ž‘์šฉํ•˜๊ณ  ์žˆ๋Š” ์ƒํ™ฉ์—์„œ, ์ฃผ๋ณ€์  ํ–‰์œ„์ž๊ฐ€ ๋‹ค์ž์ ์ธ ํ‹€์„ ๋งŒ๋“ค๊ณ  ๊ทธ ์•ˆ์— ์ค‘์‹ฌ ํ–‰์œ„์ž๋ฅผ ๊ณ ์ฐฉ์‹œํ‚ด์œผ๋กœ์จ ๊ตฌ์กฐ์  ์ œ์•ฝ์„ ์ผ๋ถ€ ์™„ํ™”์‹œํ‚ค๊ณ  ์ œ๋„์  ๋ณ€ํ™”๋ฅผ ์ด‰์ง„ํ•˜๋Š” ๊ณผ์ •์—์„œ ๊ฐ€๋Šฅํ•˜๊ฒŒ ๋˜์—ˆ๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ GTI์˜ ์ œ๋„ํ™” ๊ณผ์ •์€ ์ „๋ฐ˜์ ์œผ๋กœ ์ฃผ๋ณ€์  ํ–‰์œ„์ž๊ฐ€ ์ค‘์‹ฌํ–‰์œ„์ž๋ฅผ ๊ฒฌ์ธํ•˜์—ฌ ์ œ๋„์  ๊ฒฝ๋กœ์˜์กด์„ฑ์„ ํ˜•์„ฑํ•˜๋Š” ์ƒํ–ฅ์‹ ์ œ๋„ํ™”์˜ ๊ณผ์ •์ด์—ˆ๋‹ค๊ณ  ๋ถ„์„ํ•  ์ˆ˜ ์žˆ๊ฒ ๋‹ค.The Greater Tumen Initiative is the only existing institutional format of multilateral cooperation in Northeast Asia since the 1990s. Regarding the institutionalization process of Tumen Project, this study would like to raise two questions. First, how it was possible for this multilateral mechanism to be formed in Northeast Asia where international relations are either lacking or mostly bilateral. Second, why did the member countries decided to maintain and eventually revitalize the organization even though it failed to present any remarkable progress for a long time. Unlike the former studies which emphasized the role of nation states, this study came into a conclusion that the efforts of non-governmental actors - such as academic circle, international organization, local government, business, etc. - were far more crucial than the state actors in forming and revitalizing GTI(TRADP). The non-governmental actors propelled the institutional process of GTI(TRADP) by inducing and locking the state actors in the multilateral framework they initiated. And by doing so, they partially mitigated the structural pressure of the Northeast Asia and successfully facilitated the new form of multilateral institution in the region. Therefore, it can be concluded that GTI generally went through a bottom-up institutionalization process, in which the peripheral actors produce institutional path dependency by attracting central actors into the framework they designed to serve their best interest

    Study on Low Power Rectenna at 9MHz

    No full text
    Wireless power transmission, which can convert RF energy to DC power, has been studied several decades and become an interesting topic for energy transmission. The rectenna is one of the most important components for a microwave power transmission. This paper focuses on developing new rectenna for 900MHz at low incident power. The rectenna is designed by voltage doubler structure and slot antenna. The rectenna uses schottky diode HSMS-2852, super capacitor and boost converter TPS61200 to get regularly output voltage. The new rectenna has been developed to rectify RF energy to dc power with about 40% efficiency at 900MHz when the incident RF power density is 0dBm. The proposed slot antenna has 18dB return loss at 900MHz. The results of this paper show that the rectenna is possible to apply for wireless power transmission.์ œ 1์žฅ ์„œ๋ก  2 ์ œ 2์žฅ ์ด๋ก ์  ๋ฐฐ๊ฒฝ 5 2.1 ๋ฌด์„  ์ „๋ ฅ ์ „์†ก ๋ฐฉ๋ฒ• 5 2.2 ์†ก&#8228์ˆ˜์‹  ์‹œ์Šคํ…œ๊ณผ ์ธ์ฒด ๋ณดํ˜ธ๊ธฐ์ค€ 8 ์ œ 3์žฅ ๋ ‰ํ…Œ๋‚˜ ์„ค๊ณ„ ๋ฐ ์ œ์ž‘ 14 3.1 ์Šฌ๋กฏ ์•ˆํ…Œ๋‚˜ ์„ค๊ณ„ ๋ฐ ์ œ์ž‘ 14 3.2 ์ •๋ฅ˜ํšŒ๋กœ ์„ค๊ณ„ ๋ฐ ์ œ์ž‘ 19 3.3 ์Šˆํผ ์ปคํŒจ์‹œํ„ฐ์™€ ๋ถ€์ŠคํŠธ ์ปจ๋ฒ„ํ„ฐ 27 ์ œ 4์žฅ ์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ 32 4.1 ์•ˆํ…Œ๋‚˜ ์ธก์ • 32 4.2 ์ •๋ฅ˜ํšŒ๋กœ ์ธก์ • 35 4.3 ๋ ‰ํ…Œ๋‚˜ ์ธก์ • 40 ์ œ 5์žฅ ๊ฒฐ๋ก  44 ์ฐธ๊ณ ๋ฌธํ—Œ 4
    corecore