60 research outputs found

    ์—ญ์—ฐ์‚ฐ์— ๊ธฐ๋ฐ˜ํ•œ ํ•ฉ์„ฑ๊ณฑ์‹ ๊ฒฝ๋ง์˜ ์„ค๋ช… ๋ฐ ์‹œ๊ฐํ™”

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021.8. ๊ถŒํ˜์ง„.Interpretability and explainability of machine learning systems have received ever-increasing attention, especially for convolutional neural networks (CNN). Although there are various interpretation techniques for learning algorithms, post-hoc local explanation methods (e.g., the attribution method that visualizes pixel-level contribution of input to its corresponding result) are under great interest because they can deal with the high dimensional parameters and nonlinear operations of CNNs. Therefore, this dissertation presents three new post-hoc local explanation methods to visualize and understand the working mechanisms of CNNs. At first, this dissertation presents a new method called guided nonlinearity (GNL) that improves the performance of attribution by backpropagating only positive gradients through nonlinear operations. GNL is inspired by the mechanism of action potential (AP) generation in the postsynaptic neuron that depends on the sum of excitatory (EPSP) and inhibitory postsynaptic potentials (IPSP). This dissertation assumes that paths consisting of excitatory synapses faithfully reflect the contributions of inputs to the output. Then this assumption is applied to CNNs by allowing only positive gradients backpropagate through nonlinear operations. Experimental results have shown that GNL outperforms existing methods for computing attributions in terms of the deletion metrics and yields fine-grained and human-interpretable attributions. However, the attributions from existing methods, including GNL, lack a common theoretical background and sometimes give contradicting results. To address this problem, this dissertation develops the operation-wise inverse method that computes the inverse of prediction in an operation-wise manner by considering that CNNs can be decomposed with four fundamental operations (convolution, max-pooling, ReLU, and fully-connected). The operation-wise inverse process assumes that the forward-pass of CNN is a sequential propagation of physical quantities that indicate the magnitude of specific image features. The inverses of fundamental operations are formulated as constrained optimization problems that inverse results should generate output features consistent with the forward-pass. Then, the inverse of prediction is computed by sequentially applying inverses of fundamental operations of CNN. Experimental results show that the proposed operation-wise approach can be a reference tool for computing attributions because it can provide equivalent visualization results to several conventional methods, and the attributions from the operation-wise method achieve state-of-the-art performances in terms of deletion score. Although the operation-wise method can provide a reference framework to compute attributions, applying the attribution concept to CNNs with multiple-valued predictions has not yet been addressed because the computation of attribution requires a single scalar value represents the prediction. To address this problem, this dissertation proposes the layer-wise inverse-based approach by decomposing CNNs into a set of layers that process only positive values that can be interpreted as neural activations. Then, the inverses of layers are formulated as constrained optimization problems that identify activations-of-interest in lower-layers. Then, the inverse of prediction is computed by sequentially applying inverses of layers of CNN as in the operation-wise method. Experimental results show that the proposed layer-wise inverse-based method can analyze CNNs for classification and regression in the same framework. Especially for the case of regression, the layer-wise approach showed that conventional CNNs for single image super-resolution overlook a portion of frequency bands that may result in performance degradation.ํ•ด์„ ๊ฐ€๋Šฅํ•œ ๊ธฐ๊ณ„ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์€ ์ตœ๊ทผ ๋งŽ์€ ๊ด€์‹ฌ์„ ๋ฐ›๊ณ  ์žˆ์œผ๋ฉฐ, ์ด ์ค‘ ํ•ฉ์„ฑ๊ณฑ์‹ ๊ฒฝ๋ง (CNN)์˜ ์„ค๋ช… ๋ฐ ์‹œ๊ฐํ™”๋Š” ์ฃผ์š”ํ•œ ์—ฐ๊ตฌ์ฃผ์ œ๋กœ์„œ ์ทจ๊ธ‰๋˜๊ณ  ์žˆ๋‹ค. ๊ธฐ๊ณ„ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ• ์ค‘ ํŠนํžˆ ์ฃผ์–ด์ง„ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์˜ˆ์ธก ๊ฒฐ๊ณผ์— ๋Œ€ํ•œ ์ž…๋ ฅ์˜ ๊ธฐ์—ฌ๋„๋ฅผ ์‹œ๊ฐํ™”ํ•˜๋Š” ๊ท€์ธ (attribution)๊ณผ ๊ฐ™์€ ์‚ฌํ›„๊ฒ€์ • (post-hoc) ๊ตญ์†Œ์„ค๋ช… (local explanation) ๋ฐฉ๋ฒ•์€ ๊ณ ์ฐจ์› ๋งค๊ฐœ ๋ณ€์ˆ˜๋ฅผ ๊ฐ€์ง„ ๋น„์„ ํ˜• ํ•จ์ˆ˜์— ์ ์šฉํ•  ์ˆ˜ ์žˆ์–ด์„œ CNN์˜ ์„ค๋ช… ๋ฐ ์‹œ๊ฐํ™”์˜ ์ฃผ์š”ํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์ด์— ๋”ฐ๋ผ ๋ณธ ๋…ผ๋ฌธ์€ CNN์˜ ์ž‘๋™ ์›๋ฆฌ๋ฅผ ์‹œ๊ฐํ™”ํ•˜๊ณ  ์ดํ•ดํ•˜๋Š”๋ฐ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ์„ธ ๊ฐ€์ง€ ์‚ฌํ›„๊ฒ€์ • ๊ตญ์†Œ์„ค๋ช… ๋ฐฉ๋ฒ•๋“ค์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ๋ณธ ๋…ผ๋ฌธ์€ ๋น„์„ ํ˜• ์—ฐ์‚ฐ์˜ ์–‘์˜ ๊ธฐ์šธ๊ธฐ (positive valued gradient)๋งŒ ์—ญ์ „ํŒŒ (backpropagation)ํ•˜์—ฌ ๊ท€์ธ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ์œ ๋„๋œ๋น„์„ ํ˜•๋ฒ• (guided nonlinearity method)์„ ์ œ์‹œํ•œ๋‹ค. ์œ ๋„๋œ๋น„์„ ํ˜•๋ฒ•์˜ ์„ค๊ณ„๋Š” ํฅ๋ถ„์„ฑ ๋ฐ ์–ต์ œ์„ฑ ์‹œ๋ƒ…์Šค ํ›„ ์ „์œ„์˜ ํ•ฉ์— ์˜์กดํ•˜๋Š” ์‹œ๋ƒ…์Šค ํ›„ ๋‰ด๋Ÿฐ์˜ ํ™œ๋™ ์ „์œ„ ์ƒ์„ฑ ๋ฉ”์ปค๋‹ˆ์ฆ˜์œผ๋กœ๋ถ€ํ„ฐ ๋น„๋กฏ๋˜์—ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ํฅ๋ถ„์„ฑ ์‹œ๋ƒ…์Šค๋กœ ๊ตฌ์„ฑ๋œ ๊ฒฝ๋กœ๊ฐ€ ์ถœ๋ ฅ์— ๋Œ€ํ•œ ์ž…๋ ฅ์˜ ๊ธฐ์—ฌ๋„๋ฅผ ์ถฉ์‹คํ•˜๊ฒŒ ๋ฐ˜์˜ํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜์˜€๋‹ค. ๊ทธ ํ›„, ๋ณธ ๋…ผ๋ฌธ์€ ๋น„์„ ํ˜• ์—ฐ์‚ฐ์˜ ์–‘์˜ ๊ธฐ์šธ๊ธฐ๋งŒ ์—ญ์ „ํŒŒ ๋˜๋„๋ก ํ—ˆ์šฉํ•จ์œผ๋กœ์จ ์ด ๊ฐ€์ •์„ CNN์˜ ์„ค๋ช… ๋ฐ ์‹œ๊ฐํ™”์— ์ ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์‹คํ—˜์„ ํ†ตํ•ด, ์ œ์•ˆ๋œ ์œ ๋„๋œ๋น„์„ ํ˜•๋ฒ•์ด ์‚ญ์ œ์ฒ™๋„ (deletion metric) ์ธก๋ฉด์—์„œ ๊ธฐ์กด์˜ ๋ฐฉ๋ฒ•๋“ค๋ณด๋‹ค ํ–ฅ์ƒ๋œ ์„ฑ๋Šฅ์„ ๋ณด์ด๋ฉฐ ํ•ด์„ ๊ฐ€๋Šฅํ•˜๊ณ  ์„ธ๋ฐ€ํ•œ (fine-grained) ๊ท€์ธ์„ ์‚ฐ์ถœํ•จ์„ ๋ณด์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์œ ๋„๋œ๋น„์„ ํ˜•๋ฒ•์„ ํฌํ•จํ•œ ๊ธฐ์กด์˜ ๊ท€์ธ ๋ฐฉ๋ฒ•๋“ค์€ ์„œ๋กœ ๋‹ค๋ฅธ ์ด๋ก ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์„ค๊ณ„๋˜์—ˆ์œผ๋ฉฐ, ์ด๋กœ ์ธํ•˜์—ฌ ์„œ๋กœ ๋ชจ์ˆœ๋˜๋Š” ๊ท€์ธ๋“ค์„ ๊ณ„์‚ฐํ•˜๋Š” ๋•Œ๋„ ์žˆ๋‹ค. ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” CNN์ด ํ•ฉ์„ฑ๊ณฑ (convolution), ์ตœ๋Œ€ํ’€๋ง (max-pooling), ReLU, ์ „์—ฐ๊ฒฐ (full-connected)์˜ 4๊ฐ€์ง€ ๊ธฐ๋ณธ ์—ฐ์‚ฐ๋“ค์˜ ํ•ฉ์„ฑํ•จ์ˆ˜๋กœ ํ‘œํ˜„๋  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ, CNN์„ ํ†ตํ•œ ์˜ˆ์ธก์˜ ์—ญ์ƒ (inverse image)์„ ๊ธฐ๋ณธ ์—ฐ์‚ฐ๋“ค์˜ ์—ญ์—ฐ์‚ฐ์„ ํ†ตํ•ด ๊ณ„์‚ฐํ•˜๋Š” ์—ฐ์‚ฐ๋ณ„์—ญ์—ฐ์‚ฐ๋ฒ• (operation-wise inverse-based method)์„ ์ œ์•ˆํ•œ๋‹ค. ์—ฐ์‚ฐ๋ณ„์—ญ์—ฐ์‚ฐ๋ฒ•์€ CNN์˜ ์ •๋ฐฉํ–ฅ์ง„ํ–‰ (forward-pass)์„ ํŠน์ • ์ด๋ฏธ์ง€ํŠน์ง• (image feature)์˜ ํฌ๊ธฐ๋ฅผ ์˜๋ฏธํ•˜๋Š” ๋ฌผ๋ฆฌ๋Ÿ‰์˜ ์ˆœ์ฐจ์  ์ „ํŒŒ๋กœ ๊ฐ€์ •ํ•œ๋‹ค. ์ด ๊ฐ€์ •ํ•˜์— ์—ฐ์‚ฐ๋ณ„์—ญ์—ฐ์‚ฐ๋ฒ•์€ ๊ณ„์‚ฐ๋œ ์—ญ์ƒ์ด ๊ธฐ์กด์˜ ์ •๋ฐฉํ–ฅ์ง„ํ–‰ ๊ฒฐ๊ณผ์™€ ๋ชจ์ˆœ๋˜์ง€ ์•Š๋„๋ก ์„ค๊ณ„๋œ ์ œํ•œ๋œ ์ตœ์ ํ™” ๋ฌธ์ œ (constrained optimization problem)๋ฅผ ํ†ตํ•ด ๊ธฐ๋ณธ ์—ฐ์‚ฐ์˜ ์—ญ์—ฐ์‚ฐ์„ ๊ณ„์‚ฐํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์‹คํ—˜์„ ํ†ตํ•ด ์—ฐ์‚ฐ๋ณ„์—ญ์—ฐ์‚ฐ๋ฒ•์ด ๊ธฐ์กด์˜ ์—ฌ๋Ÿฌ ๊ท€์ธ ๋ฐฉ๋ฒ•๋“ค๋ณด๋‹ค ์‚ญ์ œ์ฒ™๋„ ์ธก๋ฉด์—์„œ ํ–ฅ์ƒ๋˜์—ˆ์œผ๋ฉด์„œ๋„ ์งˆ์  ์ธก๋ฉด์—์„œ ์œ ์‚ฌํ•œ ์‹œ๊ฐํ™” ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์„ ๋ณด์ž„์œผ๋กœ์จ ์—ฐ์‚ฐ๋ณ„์—ญ์—ฐ์‚ฐ๋ฒ•์ด ๊ท€์ธ๊ณ„์‚ฐ์˜ ๊ณตํ†ต ํ”„๋ ˆ์ž„ ์›Œํฌ (reference framework)๋กœ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค. ํ•œํŽธ, ์˜์ƒ ๋ถ„๋ฅ˜ ๋ฌธ์ œ์™€ ๊ฐ™์ด ๋‹จ์ผ ์˜ˆ์ธก์„ ๋Œ€์ƒ์œผ๋กœ ํ•œ CNN๊ณผ๋Š” ๋‹ฌ๋ฆฌ ๋ณต์ˆ˜์˜ ์˜ˆ์ธก๊ฐ’์„ ๊ฐ€์ง€๋Š” CNN์— ๋Œ€ํ•˜์—ฌ ๊ท€์ธ๊ณ„์‚ฐ์„ ์‹œ๋„ํ•œ ์—ฐ๊ตฌ๋Š” ํ˜„์žฌ๊นŒ์ง€ ๋ณด๊ณ ๋˜์ง€ ์•Š์•˜๋‹ค. ์ด๋Š” ๊ธฐ์กด์˜ ๊ท€์ธ ๊ณ„์‚ฐ๋ฐฉ๋ฒ•๋“ค์€ CNN์— ๋Œ€ํ•˜์—ฌ ๋‹จ์ผ ์Šค์นผ๋ผ (scalar) ๊ฐ’์„ ์ถœ๋ ฅํ•˜๋„๋ก ์š”๊ตฌํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ณ„์ธต๋ณ„์—ญ์—ฐ์‚ฐ๋ฒ• (layer-wise inverse-based method)์„ ์ œ์•ˆํ•œ๋‹ค. ๊ณ„์ธต๋ณ„์—ญ์—ฐ์‚ฐ๋ฒ•์€ CNN์„ ์ธ๊ณต ๋‰ด๋Ÿฐ์˜ ํ™œ์„ฑ๊ฐ’ (neural activation)์œผ๋กœ ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋Š” ์–‘์˜ ์‹ค์ˆ˜๋“ค์„ ์ž…์ถœ๋ ฅ์œผ๋กœ ํ•˜๋Š” ๊ณ„์ธต (layer)์œผ๋กœ ๋ถ„ํ•ดํ•˜๊ณ , ์ œํ•œ๋œ ์ตœ์ ํ™” ๋ฌธ์ œ๋กœ ์ •์˜๋˜๋Š” ๊ฐ ๊ณ„์ธต์˜ ์—ญ์—ฐ์‚ฐ์„ ์ •๋ฐฉํ–ฅ์ง„ํ–‰ ๊ฒฐ๊ณผ์— ์ˆœ์ฐจ์ ์œผ๋กœ ์ ์šฉํ•จ์œผ๋กœ์จ CNN์„ ํ†ตํ•œ ์˜ˆ์ธก์˜ ์—ญ์ƒ์„ ๊ณ„์‚ฐํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์‹คํ—˜์„ ํ†ตํ•ด, ์ œ์•ˆ๋œ ๊ณ„์ธต๋ณ„์—ญ์—ฐ์‚ฐ๋ฒ•์ด ์˜์ƒ ๋ถ„๋ฅ˜ ๋ฐ ํšŒ๊ธฐ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ•œ CNN๋“ค์˜ ์„ค๋ช… ๋ฐ ์‹œ๊ฐํ™”๋ฅผ ๋™์ผํ•œ ํ”„๋ ˆ์ž„ ์›Œํฌ (common framework)์—์„œ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๋ณธ ๋…ผ๋ฌธ์€ ๊ณ„์ธต๋ณ„์—ญ์—ฐ์‚ฐ๋ฒ•์„ ํ†ตํ•ด ๋‹จ์ผ ์˜์ƒ ๊ณ ํ•ด์ƒํ™” (single image super-resolution)๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ•œ CNN์ธ VDSR์ด ์ž…๋ ฅ ์˜์ƒ์˜ ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ์˜ ์ผ๋ถ€๋ฅผ ๊ฐ„๊ณผํ•˜๊ณ  ์žˆ๊ณ  ์ด๋Š” VDSR์„ ํ†ตํ•œ ๊ณ ํ•ด์ƒํ™”์‹œ ํŠน์ • ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ์—์„œ ์˜์ƒ ํ’ˆ์งˆ์˜ ํ•˜๋ฝ์„ ์œ ๋ฐœํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค.Contents 1 List of Tables 4 List of Figures 5 1 Introduction 7 1.1 Guided Nonlinearity 8 1.2 Inverse-based approach 9 1.2.1 Operation-wise method 10 1.2.2 Layer-wise method 11 1.3 Outline 14 2 RelatedWork 15 2.1 Activation-based approach 15 2.2 Perturbation-based approach 16 2.3 Backpropagation-based approach 17 2.4 Inverse-based approach 18 3 Guided Nonlinearity 19 3.1 Motivation and Overview 19 3.2 Proposed Guided Non-linearity 23 3.2.1 Integrated Gradients 23 3.2.2 Postulations 23 3.2.3 Proposed method 24 3.3 Experimental Results 27 3.3.1 Evaluation Metrics 29 3.3.2 Experiment details 29 3.3.3 Results and Discussions 30 3.4 Summary 30 4 Operation-wise Approach 32 4.1 Motivation and Overview 32 4.2 Proposed Method 35 4.2.1 Problem statement 36 4.2.2 Proposed constraints 36 4.2.3 Mathematical formulation 37 4.3 Implementation details 38 4.3.1 Inverse of ReLU and Max Pooling 38 4.3.2 Inverse of Fully Connected and Convolution Layers 39 4.4 Experimental Settings 40 4.4.1 Qualitative results 40 4.4.2 Quantitative Results 46 4.5 Summary 50 5 Layer-wise Approach 51 5.1 Motivation and Overview 51 5.2 Formulation of the Proposed Inverse Approach 55 5.2.1 Activation range 56 5.2.2 Minimal activation 56 5.2.3 Linear approximation 57 5.2.4 Layer-wise inverse 57 5.3 Details of inverse computation 59 5.3.1 Convolution block (linear part) + ReLU 59 5.3.2 Max-pooling layer 60 5.3.3 Fully connected block (linear part) + ReLU 61 5.3.4 Fully connected block (linear part) + Softmax 61 5.4 Application to the ImageNet classification task 62 5.4.1 Evaluation of output-reconstruction in terms of input-simplicity 62 5.4.2 Deletion and insertion scores 63 5.4.3 Selection of the regularization term weight 64 5.4.4 Comparison to Existing Methods 67 5.4.5 Output-reconstruction versus input-simplicity plot 68 5.4.6 Ablation study of the activation regularization 72 5.5 The inverse of single image super-resolution network 72 5.5.1 Experimental setting 72 5.5.2 Selection of the regularization term weight 74 5.5.3 Evaluation of the proposed inverse process 77 5.5.4 Frequency domain analysis of attribution 77 5.6 Summary 81 6 Conclusions 82 Bibliography 84 Abstract (In Korean) 95๋ฐ•

    ๊ฑด์„ค์‚ฐ์—… ์ •๋ณดํ™”๋ฅผ ํ†ตํ•œ ์ƒ์‚ฐ์„ฑ ์ œ๊ณ ๋ฐฉ์•ˆ ์—ฐ๊ตฌ(Strategies on enhancing productivity by adopting information technology for construction industry)

    Get PDF
    ๋…ธํŠธ : ์ด ์—ฐ๊ตฌ๋ณด๊ณ ์„œ์˜ ๋‚ด์šฉ์€ ๊ตญํ† ์—ฐ๊ตฌ์›์˜ ์ž์ฒด ์—ฐ๊ตฌ๋ฌผ๋กœ์„œ ์ •๋ถ€์˜ ์ •์ฑ…์ด๋‚˜ ๊ฒฌํ•ด์™€๋Š” ์ƒ๊ด€์—†์Šต๋‹ˆ๋‹ค

    ๊ฑด์„ค์‚ฐ์—… ์ง€์‹๊ธฐ๋ฐ˜ ๊ตฌ์ถ•๋ฐฉ์•ˆ ์—ฐ๊ตฌ(A study on strategies for establishment of knowledge-based construction industry)

    Get PDF
    ๋…ธํŠธ : ์ด ์—ฐ๊ตฌ๋ณด๊ณ ์„œ์˜ ๋‚ด์šฉ์€ ๊ตญํ† ์—ฐ๊ตฌ์›์˜ ์ž์ฒด ์—ฐ๊ตฌ๋ฌผ๋กœ์„œ ์ •๋ถ€์˜ ์ •์ฑ…์ด๋‚˜ ๊ฒฌํ•ด์™€๋Š” ์ƒ๊ด€์—†์Šต๋‹ˆ๋‹ค

    ์ง€์—ญ๋ณ„ ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ(SOC) ์Šคํ†ก ์ถ”๊ณ„ ์—ฐ๊ตฌ(II)(Estimation of regional social overhead capital stock)

    Get PDF
    ๋…ธํŠธ : ์ด ์—ฐ๊ตฌ๋ณด๊ณ ์„œ์˜ ๋‚ด์šฉ์€ ๊ตญํ† ์—ฐ๊ตฌ์›์˜ ์ž์ฒด ์—ฐ๊ตฌ๋ฌผ๋กœ์„œ ์ •๋ถ€์˜ ์ •์ฑ…์ด๋‚˜ ๊ฒฌํ•ด์™€๋Š” ์ƒ๊ด€์—†์Šต๋‹ˆ๋‹ค

    ์‚ฌํšŒ๊ฐ„์ ‘์ž๋ณธ(SOC) ์Šคํ†ก ์ถ”๊ณ„ ์—ฐ๊ตฌ(Estimation of social overhead capital stock)

    Get PDF
    ๋…ธํŠธ : ์ด ์—ฐ๊ตฌ๋ณด๊ณ ์„œ์˜ ๋‚ด์šฉ์€ ๊ตญํ† ์—ฐ๊ตฌ์›์˜ ์ž์ฒด ์—ฐ๊ตฌ๋ฌผ๋กœ์„œ ์ •๋ถ€์˜ ์ •์ฑ…์ด๋‚˜ ๊ฒฌํ•ด์™€๋Š” ์ƒ๊ด€์—†์Šต๋‹ˆ๋‹ค

    ์ง€์—ญ๊ฐœ๋ฐœ์‚ฌ์—…์˜ ํšจ์œจ์  ์ถ”์ง„์„ ์œ„ํ•œ SOCํˆฌ์ž ์—ฐ๊ณ„์ง‘ํ–‰ ๋ฐฉ์•ˆ

    Get PDF
    ๋…ธํŠธ : ์ด ์—ฐ๊ตฌ๋ณด๊ณ ์„œ์˜ ๋‚ด์šฉ์€ ๊ตญํ† ์—ฐ๊ตฌ์›์˜ ์ž์ฒด ์—ฐ๊ตฌ๋ฌผ๋กœ์„œ ์ •๋ถ€์˜ ์ •์ฑ…์ด๋‚˜ ๊ฒฌํ•ด์™€๋Š” ์ƒ๊ด€์—†์Šต๋‹ˆ๋‹ค

    ๊ฑด์„ค์‚ฐ์—… ๋ฐœ์ „์„ ์œ„ํ•œ ๊ฑด์„ค๋ณด์ฆ ์—ญํ• ๊ฐ•ํ™” ๋ฐฉ์•ˆ(Strategies to strengthen the role of the construction surety to develop the construction economy)

    Get PDF
    ๋…ธํŠธ : ์ด ์—ฐ๊ตฌ๋ณด๊ณ ์„œ์˜ ๋‚ด์šฉ์€ ๊ตญํ† ์—ฐ๊ตฌ์›์˜ ์ž์ฒด ์—ฐ๊ตฌ๋ฌผ๋กœ์„œ ์ •๋ถ€์˜ ์ •์ฑ…์ด๋‚˜ ๊ฒฌํ•ด์™€๋Š” ์ƒ๊ด€์—†์Šต๋‹ˆ๋‹ค

    ์•Œ์ธ ํ•˜์ด๋จธ์™€ ํŒŒํ‚จ์Šจ ์งˆ๋ณ‘์— ์น˜๋ฃŒ ํšจ๊ณผ๋ฅผ ๋ณด์ด๋Š” ์„ธ๋ฆฌ์•„ ๋‚˜๋…ธ ์ž…์ž

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2018. 8. ํ˜„ํƒํ™˜.Ceria ๋‚˜๋…ธ ์ž…์ž๋Š” Ce3+ (ํ™˜์›) ๋ฐ Ce4+ (์‚ฐํ™”) ์ƒํƒœ์˜ ์‚ฐํ™” ํ™˜์› ์ˆœํ™˜์— ์˜ํ•ด ํ™œ์„ฑ ์‚ฐ์†Œ ์ข… (ROS) ๋ฐ ํ™œ์„ฑ ์งˆ์†Œ ์ข… (RNS)์„ ์ œ๊ฑฐ ํ•  ์ˆ˜ ์žˆ๋Š” ํšจ๊ณผ์ ์ธ ํ•ญ์‚ฐํ™”์ œ์ด๋‹ค. ๋˜ํ•œ, 5nm ๋ฏธ๋งŒ์˜ ํฌ๊ธฐ๋ฅผ ๊ฐ–๋Š” ์„ธ๋ฆฌ์•„ ๋‚˜๋…ธ ์ž…์ž์˜ ์ด‰๋งค ํ™œ์„ฑ์€ ์žฌํ™œ์šฉ๋˜๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ด์œ ๋กœ ํ™œ์„ฑ ์‚ฐ์†Œ๊ฐ€ ์œ ๋ฐœํ•˜๋Š” ์‚ฐํ™” ์ŠคํŠธ๋ ˆ์Šค์— ์˜ํ•ด ์œ ๋ฐœ๋˜๋Š” ๋‹ค์–‘ํ•œ ์งˆ๋ณ‘์— ๋Œ€ํ•œ ์ž ์žฌ์  ์ธ ์น˜๋ฃŒ์ œ ๊ฐœ๋ฐœ์— ๋งค์šฐ ์ ํ•ฉํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฐ๊ฒฝ์œผ๋กœ ์ œ 1 ์žฅ์—์„œ๋Š” ์˜๋ฃŒ์šฉ ์„ธ๋ฆฌ์•„ ๋‚˜๋…ธ ์ž…์ž๋ฅผ ํ™œ์šฉํ•œ ์˜ํ•™์  ์ ์šฉ์„ ๊ธฐ์ˆ ํ•˜์˜€๋‹ค. ์ œ 2 ์žฅ์€ ์•Œ์ธ ํ•˜์ด๋จธ ์งˆํ™˜์— ๋Œ€ํ•œ ํ•ญ์‚ฐํ™”์ œ๋กœ์„œ ๋ฏธํ† ์ฝ˜๋“œ ๋ฆฌ์•„ ํ‘œ์  ์„ธ๋ฆฌ์•„ ๋‚˜๋…ธ ์ž…์ž๋ฅผ ํ•ฉ์„ฑํ•˜๊ณ  ๊ทธ ์น˜๋ฃŒ์— ๋Œ€ํ•œ ํšจ๊ณผ๋ฅผ ๊ธฐ์ˆ ํ•˜์˜€๋‹ค. ๋ฏธํ† ์ฝ˜๋“œ๋ฆฌ์•„ ์‚ฐํ™” ์ŠคํŠธ๋ ˆ์Šค๋Š” ์•Œ์ธ ํ•˜์ด๋จธ ๋ณ‘์„ ๋น„๋กฏํ•œ ์‹ ๊ฒฝ ํ‡ดํ–‰์„ฑ ์งˆํ™˜์˜ ์ฃผ์š” ๋ณ‘๋ฆฌํ•™ ์  ์š”์†Œ์ด๋‹ค. ๋ฏธํ† ์ฝ˜๋“œ๋ฆฌ์•„ ๊ธฐ๋Šฅ ์žฅ์• ๋กœ ์ธํ•ด ํ™œ์„ฑ์‚ฐ์†Œ๊ฐ€ ๋น„์ •์ƒ์ ์œผ๋กœ ์ƒ์„ฑ๋˜๋ฉด ์‹ ๊ฒฝ ์„ธํฌ์˜ ํ‡ดํ–‰๊ณผ ์‚ฌ๋ฉธ์„ ์•ผ๊ธฐํ•œ๋‹ค. ์„ธ๋ฆฌ์•„ ๋‚˜๋…ธ ์ž…์ž๋Š” Ce3+์™€ Ce4+ ์‚ฐํ™” ์ƒํƒœ ์‚ฌ์ด๋ฅผ ์™•๋ณตํ•˜๋ฉด์„œ ๊ฐ•ํ•˜๊ณ  ์žฌํ™œ์šฉ ๊ฐ€๋Šฅํ•œ ํ•ญ์‚ฐํ™”์ œ์ด๋‹ค. ๊ทธ๋ž˜์„œ, ์„ธ๋ฆฌ์•„ ๋‚˜๋…ธ ์ž…์ž๋ฅผ ์„ ํƒ์ ์œผ๋กœ ๋ฏธํ† ์ฝ˜๋“œ๋ฆฌ์•„๋กœ ํ‘œ์ ํ™” ํ•˜๋Š” ๊ฒƒ์€ ์‹ ๊ฒฝ ํ‡ดํ–‰์„ฑ ์งˆํ™˜์— ๋Œ€ํ•œ ์œ ๋งํ•œ ์น˜๋ฃŒ๋ฒ• ์ผ ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋ž˜์„œ ์„ธ๋ฆฌ์•„ ๋‚˜๋…ธ์ž…์ž ํ‘œ๋ฉด์— ๋ฏธํ† ์ฝ˜๋“œ๋ฆฌ์•„ ํ‘œ์  ๋ฌผ์งˆ์ธ Triphenylphosphonium (TPP) ๋ฅผ ๊ฒฐํ•ฉ์‹œ์ผœ TPP-์„ธ๋ฆฌ์•„๋ฅผ ์„ค๊ณ„ํ•˜๊ณ  ํ•ฉ์„ฑํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  5XFAD ์œ ์ „์ž ๋ณ€ํ˜• ์•Œ์ธ ํ•˜์ด๋จธ ๋ณ‘ ์ฅ ๋ชจ๋ธ์— ์น˜๋ฃŒ์ œ๋กœ ์‚ฌ์šฉํ•ด ๋ณด์•˜๋‹ค. ๊ทธ ๊ฒฐ๊ณผ TPP๊ฐ€ ๊ฒฐํ•ฉ ๋œ ์„ธ๋ฆฌ์•„ ๋‚˜๋…ธ ์ž…์ž๋Š” ์ฅ์˜ ๋‡Œ์—์„œ ๋ฏธํ† ์ฝ˜๋“œ๋ฆฌ์•„ ์†์ƒ์„ ์™„ํ™”, ์‚ฐํ™”์  ์ŠคํŠธ๋ ˆ์Šค ์™„ํ™”, ๋‡Œ์—ผ์ฆ ๊ฐ์†Œ์™€ ์‹ ๊ฒฝ์„ธํฌ ์‚ฌ๋ฉธ ๊ฐ์†Œ์˜ ์น˜๋ฃŒ ํšจ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋“ค์€ TPP๊ฐ€ ์ ‘ํ•ฉ ๋œ ์„ธ๋ฆฌ์•„ ๋‚˜๋…ธ ์ž…์ž๊ฐ€ ์•Œ์ธ ํ•˜์ด๋จธ ๋ณ‘์—์„œ ๋ฏธํ† ์ฝ˜๋“œ๋ฆฌ์•„ ์‚ฐํ™” ์ŠคํŠธ๋ ˆ์Šค์˜ ์ž ์žฌ์ ์ธ ์น˜๋ฃŒ ํ›„๋ณด ๋ฌผ์งˆ์ด๋ผ๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์ œ 3 ์žฅ์—์„œ๋Š” ํŒŒํ‚จ์Šจ ์งˆ๋ณ‘์—์„œ ๋ฏธํ† ์ฝ˜๋“œ๋ฆฌ์•„, ์„ธํฌ ๋‚ด ๋ฐ ์„ธํฌ ์™ธ ํ™œ์„ฑ ์‚ฐ์†Œ๋ฅผ ์„ ํƒ์ ์œผ๋กœ ์ œ๊ฑฐํ•˜๋Š” ์„ธ๋ฆฌ์•„ ๋‚˜๋…ธ ์ž…์ž ์‹œ์Šคํ…œ์— ๋Œ€ํ•ด ๊ธฐ์ˆ ํ•˜์˜€๋‹ค. ํ™œ์„ฑ ์‚ฐ์†Œ์— ์˜ํ•ด ์œ ๋ฐœ ๋œ ์‚ฐํ™” ์ŠคํŠธ๋ ˆ์Šค๋Š” ๋งŽ์€ ์งˆ๋ณ‘์˜ ๋ณ‘์ธ ๋ฐ ์ง„ํ–‰์— ์ค‘์š”ํ•œ ์š”์ธ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์„ธํฌ๋‚ด์˜ ์œ„์น˜์— ๋”ฐ๋ผ ํ™œ์„ฑ์‚ฐ์†Œ๋ฅผ ์ œ๊ฑฐํ•˜๋Š” ์ ์ ˆํ•œ ๊ธฐ์ˆ ์ด ๋ถ€์กฑํ•ด ํ•„์ˆ˜์ ์ธ ๊ทธ ๋ณ‘๋ฆฌํ•™์  ํšจ๊ณผ์— ๋Œ€ํ•œ ์ดํ•ด์™€ ์—ฐ๊ตฌ๊ฐ€ ๊ฐ€๋Šฅํ•˜์ง€ ์•Š๋‹ค. ๊ทธ๋ž˜์„œ ์ง€๊ธˆ๊นŒ์ง€ ๊ฐœ๋ฐœ๋œ ๊ธฐ์ˆ ์„ ํ™œ์šฉํ•˜์—ฌ ์„ธ๋ฆฌ์•„ ๋‚˜๋…ธ์ž…์ž์˜ ํฌ๊ธฐ์™€ ํ‘œ๋ฉด ์„ฑ์งˆ์„ ๋‹ค๋ฅด๊ฒŒ ํ•ด์„œ ๋ฏธํ† ์ฝ˜๋“œ๋ฆฌ์•„, ์„ธํฌ ๋‚ด ๋ฐ ์„ธํฌ ์™ธ ํ™œ์„ฑ ์‚ฐ์†Œ์˜ ์„ ํƒ์  ์ œ๊ฑฐ๊ฐ€ ๊ฐ€๋Šฅํ•œ ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœ ํ•˜์˜€๋‹ค. ์ด ์‹œ์Šคํ…œ์€ ์•ž์„œ ๊ฐœ๋ฐœ๋œ ์„ธํฌ ๋‚ด ํ‘œ์  ์„ธ๋ฆฌ์•„, ๋ฏธํ† ์ฝ˜๋“œ๋ฆฌ์•„ ํ‘œ์  ์„ธ๋ฆฌ์•„ ๋‚˜๋…ธ ์ž…์ž์™€ ์„ธํฌ ์™ธ ํ‘œ์  ์„ธ๋ฆฌ์•„ ๋‚˜๋…ธ ์ž…์ž ๋ฉ์–ด๋ฆฌ๋กœ ๊ตฌ์„ฑ๋˜์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋‚˜๋Š” ์ด ์‹œ์Šคํ…œ์„ ํŒŒํ‚จ์Šจ ์งˆ๋ณ‘ ๋ชจ๋ธ ์ฅ ์ ์šฉํ•ด ์น˜๋ฃŒ ์—ฐ๊ตฌ๋ฅผ ํ•ด๋ณด์•˜๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์„ธํฌ ๋‚ด ๋˜๋Š” ๋ฏธํ† ์ฝ˜๋“œ๋ฆฌ์•„ ํ™œ์„ฑ ์‚ฐ์†Œ๋ฅผ ์ œ๊ฑฐํ•˜๋Š” ๊ฒƒ์ด ํŒŒํ‚จ์Šจ ๋ชจ๋ธ ์ฅ์˜ ์„ ์กฐ์ฒด์—์„œ ํƒ€์ด๋กœ์‹  ํ•˜์ด๋“œ๋ก์‹ค๋ ˆ์ด์ฆˆ๋ฅผ ๋ณดํ˜ธํ•˜๋ฉด์„œ ์‹ ๊ฒฝ์„ธํฌ์˜ ํ‡ดํ–‰์„ฑ๊ณผ ์‚ฌ๋ฉธ์„ ๋ฐฉ์ง€ํ•˜๊ณ , ๋ณ„ ์•„๊ต ์„ธํฌ์˜ ํ™œ์„ฑํ™” ๋ฐ ์ง€์งˆ์˜ ๊ณผ์‚ฐํ™”์— ์˜ํ•œ ์‚ฐํ™” ์ŠคํŠธ๋ ˆ์Šค๋ฅผ ์–ต์ œํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์ด ๊ฒฐ๊ณผ๋Š” ํŒŒํ‚จ์Šจ ์งˆ๋ณ‘์˜ ์ง„ํ–‰์—์„œ ์„ธํฌ ๋‚ด ๋ฐ ๋ฏธํ† ์ฝ˜๋“œ๋ฆฌ์•„ ํ™œ์„ฑ์‚ฐ์†Œ์˜ ํ•„์ˆ˜ ์—ญํ• ์„ ๊ทœ๋ช…ํ•ด์ฃผ์—ˆ๋‹ค. ๋‚˜๋Š” ์„ธ๋ฆฌ์•„ ๋‚˜๋…ธ์ž…์ž ์‹œ์Šคํ…œ์ด ๋‹ค๋ฅธ ์งˆ๋ณ‘์—์„œ๋„ ๋‹ค์–‘ํ•œ ROS์˜ ๊ธฐ๋Šฅ์„ ๋ฐํžˆ๋Š”๋ฐ ์œ ์šฉํ•œ ๋„๊ตฌ๋กœ ์‚ฌ์šฉ๋  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•œ๋‹ค. ์ฃผ์š”์–ด: ๋‚˜๋…ธ ์ž…์ž, ์„ธ๋ฆฌ์•„ ๋‚˜๋…ธ ์ž…์ž, ๋ฏธํ† ์ฝ˜๋“œ๋ฆฌ์•„, ์•Œ์ธ ํ•˜์ด๋จธ ์งˆ๋ณ‘, ํŒŒํ‚จ์Šจ ์งˆ๋ณ‘, ํ™œ์„ฑ ์‚ฐ์†Œ, ํ•ญ์‚ฐํ™”์ œ, ๋ฏธํ† ์ฝ˜๋“œ๋ฆฌ์•„ ํ™œ์„ฑ ์‚ฐ์†Œ, ์„ธํฌ ๋ฐ– ํ™œ์„ฑ ์‚ฐ์†Œ, ์„ธํฌ๋‚ด ํ™œ์„ฑ ์‚ฐ์†Œ, ์น˜๋งค ์น˜๋ฃŒ์ œ, ์‹ ๊ฒฝ ํ‡ดํ–‰์„ฑ ์งˆํ™˜, Chapter 1. Introduction: Ceria Nanoparticles in Medical Applications 1 1.1 Introduction 1 1.2 Ceria nanoparticles for neurodegenerative disease therapy 2 1.3 Ceria nanoparticles for Ischemic stroke therapy 3 1.4 Ceria nanoparticles for retinal degenerative disease therapy. 4 1.5 Ceria nanoparticles for cancer therapy 5 1.6 References 9 Chapter 2. Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimers disease 11 2.1 Introduction 11 2.2 Experimental section 14 2.3 Result and discussion 25 2.4 Conclusion 61 2.5 References 63 Chapter 3. Ceria nanoparticle systems for selective scavenging of mitochondrial, intracellular, and extracellular reactive oxygen species in Parkinsons disease 70 3.1 Introduction 70 3.2 Experimental section 75 3.3 Result and discussion 86 3.4 Conclusion 107 3.5 References 109 Bibliography 115 ๊ตญ๋ฌธ ์ดˆ๋ก (Abstract in Korean) 118Docto

    ์„ ๋ฐ• ๊ธฐ์ ์Œ์˜ ์œ„์ƒ์ฐจ๋ฅผ ์ด์šฉํ•œ ๋ฐฉํ–ฅํƒ์ง€ ์‹œ์Šคํ…œ

    Get PDF
    In this paper, a sound reception system using a phase difference of whistle signals is proposed and analyzed through a spectral analysis. The proposed system receives whistle signals from four microphones which are installed toward four directions with 90 degree interval at the position. The proposed algorithm detects the phase of each received signal through the spectral analysis and estimates the direction of the whistle signal by obtaining the phase differences of the received signals from two adjacent microphones. Also, we theoretically analyze the phase difference between two adjacent received signals according to the arrival angle of the received signal and implement the proposed system using DSP chip. In addition, we verify the operation of the proposed algorithm using the implemented system in a laboratory environment. Experimental results show that the proposed scheme can well estimate the direction of the whistle signal.๋ชฉ ์ฐจ List of Tables iii List of Figures iv Abstract vi 1. ์„œ ๋ก  1 2. ์Œํ–ฅ ์ˆ˜์‹  ์žฅ์น˜ 2.1 ์Œํ–ฅ ์ˆ˜์‹  ์žฅ์น˜์˜ ๊ฐœ์š” 4 2.2 ์Œํ–ฅ ์ˆ˜์‹  ์žฅ์น˜์˜ ๊ตฌ์„ฑ 4 3. ๋ฐฉํ–ฅํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜ 3.1 ์ˆ˜์‹ ๊ฐ๋„์— ๋”ฐ๋ฅธ ๊ธฐ์ ์†Œ๋ฆฌ์‹ ํ˜ธ์˜ ์œ„์ƒ์ฐจ์ด 8 3.2 ์œ„์ƒ ์ฐจ์ด๋ฅผ ์ด์šฉํ•œ ๋ฐฉํ–ฅํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜ 14 4. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ 16 5. ๋ฐฉํ–ฅํƒ์ง€ ์‹œ์Šคํ…œ ํ•˜๋“œ์›จ์–ด ๊ตฌํ˜„ 21 6. ์‹คํ—˜ 6.1 ์‹คํ—˜ ๊ณผ์ • 25 6.2 ์‹คํ—˜ ๊ฒฐ๊ณผ 27 7. ๊ฒฐ๋ก  47Maste
    • โ€ฆ
    corecore