131 research outputs found

    Evaluating the Influence of Spatial Resampling for Motion Correction in Resting-State Functional MRI

    Get PDF
    Head motion is one of major concerns in current resting-state functional MRI studies. Image realignment including motion estimation and spatial resampling is often applied to achieve rigid-body motion correction. While the accurate estimation of motion parameters has been addressed in most studies, spatial resampling could also produce spurious variance, and lead to unexpected errors on the amplitude of BOLD signal. In this study, two simulation experiments were designed to characterize these variance related with spatial resampling. The fluctuation amplitude of spurious variance was first investigated using a set of simulated images with estimated motion parameters from a real dataset, and regions more likely to be affected by spatial resampling were found around the peripheral regions of the cortex. The other simulation was designed with three typical types of motion parameters to represent different extents of motion. It was found that areas with significant correlation between spurious variance and head motion scattered all over the brain and varied greatly from one motion type to another. In the last part of this study, four popular motion regression approaches were applied respectively and their performance in reducing spurious variance was compared. Among them, Friston 24 and Voxel-specific 12 model (Friston et al., 1996), were found to have the best outcomes. By separating related effects during fMRI analysis, this study provides a better understanding of the characteristics of spatial resampling and the interpretation of motion-BOLD relationship

    Associations of pre-hospital statin treatment with in-hospital outcomes and severity of coronary artery disease in patients with first acute coronary syndrome-findings from the CCC-ACS project

    Get PDF
    BackgroundThe current burden of dyslipidemia, the pre-hospital application of statins and the association of pre-hospital statins with the severity of coronary artery disease (CAD) and in-hospital outcomes in Chinese patients with first acute coronary syndrome (ACS) are very significant and remain unclear.MethodsA total of 41,183 patients who underwent coronary angiography and were diagnosed with ACS for the first time from a nationwide registry study (CCC-ACS) were enrolled. The severity of CAD was assessed using the CAD prognostic index (CADPI). The patients were classified into statin and non-statin groups according to their pre-hospital statin treatment status. Clinical characteristics, CADPI and in-hospital outcomes were compared, and a logistic regression analysis was performed to determine whether pre-hospital statin therapy is associated with in-hospital outcomes and CADPI. A sensitivity analysis was used to further explore the issues above.ResultsThe non-statin group had more in-hospital all-cause deaths (1.2 vs. 0.8%, P = 0.010). However, no association exists between statin pretreatment and in-hospital major adverse cardiovascular events (MACEs) or all-cause deaths in the entire population and subgroups (all P > 0.05). Surprisingly, statin pretreatment was associated with an 8.9% higher risk of severely obstructive CAD (CADPI ≥ 37) (OR, 1.089; 95% CI, 1.010–1.175, P = 0.028), and similar results were observed in subgroups of females, those aged 50 to 75 years, and patients with hypertension.ConclusionStatin pretreatment was not related to MACEs or all-cause death during hospital stay, but it was associated with a higher risk of increased angiographic severity in patients with first ACS

    Peptide-fluorescent bacteria complex as luminescent reagents for cancer diagnosis

    Get PDF
    Currently in clinic, people use hematoxylin and eosin stain (H&E stain) and immunohistochemistry methods to identify the generation and genre of cancers for human pathological samples. Since these methods are inaccurate and time consuming, developing a rapid and accurate method to detect cancer is urgently demanded. In our study, binding peptides for lung cancer cell line A549 were identified using bacteria surface display method. With those binding peptides for A549 cells on the surface, the fluorescent bacteria (Escherichia coli with stably expressed green fluorescent protein) were served as specific detecting reagents for the diagnosis of cancers. The binding activity of peptide-fluorescent bacteria complex was confirmed by detached cancer cells, attached cancer cells and mice tumor xenograft samples. A unique fixation method was developed for peptide-bacteria complex in order to make this complex more feasible for the clinic use. This peptide-fluorescent bacteria complex has great potential to become a new diagnostic tool for clinical application

    Case report: A case of ocular infection caused by Corynespora cassiicola

    Get PDF
    ObjectiveThe aim of this study is to identify the pathogen causing ocular infection in a Chinese patient and to describe its morphological characteristics.MethodsSamples from the patient’s intraoperative pus were collected for microscopic examination and culture. Morphology and drug sensitivities of the isolated fungus were analyzed. Ribosomal DNA (rDNA) sequencing was performed and blasted in GenBank.ResultsA strain of fungi was repeatedly isolated from pus samples in different types of medium. No conidia were shown when the isolate cultured on normal PDA medium, whereas pseudoseptate thick-walled conidia were shown when cultured on medium containing leaf leachate. The results of BLAST and phylogenetic trees based on internal transcribed spacer, beta-tubulin, translation elongation factor 1-alpha, and RNA polymerase II gene demonstrated that the isolated fungus was Corynespora cassiicola. Minimum inhibitory concentration results of this organism were as follows: anidulafungin, 0.06 μg/ml; amphotericin B, 0.12 μg/ml; micafungin, 0.06 μg/ml; caspofungin, 0.5 μg/ml; 5-fluorocytosine, >64 μg/ml; posaconazole, 2 μg/ml; voriconazole, 0.25 μg/ml; itraconazole, 0.5 μg/ml; fluconazole, 64 μg/ml.ConclusionThe case was infected with Corynespora cassiicola and led to eye suppurative endophthalmitis and blindness. Combined applications of morphological and molecular biology techniques facilitate accurate diagnosis of fungal infections

    Determining crystal structures through crowdsourcing and coursework

    Get PDF
    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality

    Fuzzy super twisting mode control of a rigid-flexible robotic arm based on approximate inertial manifold dimensionality reduction

    No full text
    IntroductionThe control of infinite-dimensional rigid-flexible robotic arms presents significant challenges, with direct truncation of first-order modal models resulting in poor control quality and second-order models leading to complex hardware implementations.MethodsTo address these issues, we propose a fuzzy super twisting mode control method based on approximate inertial manifold dimensionality reduction for the robotic arm. This innovative approach features an adjustable exponential non-singular sliding surface and a stable continuous super twisting algorithm. A novel fuzzy strategy dynamically optimizes the sliding surface coefficient in real-time, simplifying the control mechanism.ResultsOur findings, supported by various simulations and experiments, indicate that the proposed method outperforms directly truncated first-order and second-order modal models. It demonstrates effective tracking performance under bounded external disturbances and robustness to system variability.DiscussionThe method's finite-time convergence, facilitated by the modification of the nonlinear homogeneous sliding surface, along with the system's stability, confirmed via Lyapunov theory, marks a significant improvement in control quality and simplification of hardware implementation for rigid-flexible robotic arms

    Design and test of an improved active disturbance rejection control system for water sampling unmanned surface vehicle

    No full text
    Unmanned surface vehicles (USVs) have wide application prospects in military and civil fields. Motivated by the large demand for environmental protection equipment, a water-sampling USV (WS-USV) system is designed in this study. The software and hardware of the entire system are designed and developed independently. Two water sampling modes, a manual remote control mode and remote interface automatic control mode are designed for handling emergencies. The WS-USV is propelled by twin-propellers. These propellers have many input constraints owing to their inherent structure, making the design of the controller very difficult. In this study, an improved active disturbance rejection control (ADRC) method is proposed and a saturation function is introduced to design a path-following control system for the WS-USV. This enhances the anti-disturbance ability for addressing environmental disturbances by wind, waves and currents in the water sampling process. The stability of the system is improved. The feasibility, stability and performance superiority of the control system are proven by water sampling contrast experiments

    Examination of Viscosity Effect on Cavitating Flow inside Poppet Valves Based on a Numerical Study

    No full text
    The higher susceptibility to cavitation in poppet valves due to the lower viscosity of water than the traditionally used mineral oil poses a challenge in fluid transmission technology. To reveal the underlying mechanism of cavitating flow physics associated with the variation in viscosity effect, the current paper examines both the water and oil cavitating flow dynamics inside poppet valves with varied structures through a numerical study. The simulation results are validated with a comparison to previous experimental data in terms of cavitation morphology and pressure distribution. According to the predicted cavitation distribution, three kinds of cavitation occurred at separated positions in both water- and oil-flow cases. The vortex cavitation, which in the oil-flow case displays a remarkable paired structure with favorable coherence, is featured with a scattered dispersion in the water-flow case, while the profound attached cavitation at the poppet trailing edge in the water-flow case almost disappears in the oil-flow case. Furthermore, the attached cavitation within the chamfered groove has higher stability in the oil-flow case, compared to the thorough detachment behavior featured with profound 3-dimensionality in the water-flow case. According to the potential core and vortex evolution, the strong 3-dimensionality due to the violent laminar-turbulent transition in the water-flow case together with the produced puff pattern of the potential core, to a large extent, interrupts the periodic behavior of cavitation, which is essentially preserved in the oil-flow case featured with favorable coherence
    corecore