1,327 research outputs found
Fundamental issues, technology development and challenges of boiling heat transfer, critical heat flux and two-phase flow phenomena with nanofluids
This paper presents a comprehensive and critical review of studies on nucleate pool boiling heat transfer, flow boiling heat transfer, critical heat flux (CHF) and two-phase flow phenomena with nanofluids. First, general analysis of the available studies on the relevant topics is presented. Then, studies of physical properties of nanofluids are discussed. Next, boiling heat transfer, CHF phenomena and the relevant physical mechanisms are explored. Finally, future research needs have been identified according to the review and analysis. As the first priority, the physical properties of nanofluids have a significant effect on the boiling and CHF characteristics but the lack of the accurate knowledge of the physical properties has greatly limited the studies. Fundamentals of boiling heat transfer and CHF phenomena with Nanofluids have not yet been well understood. Flow regimes are important in understanding the boiling and CHF phenomena and should be focused on. Two phase pressure drops of nanofluids should also be studies. Furthermore, economic evaluation of the enhancement technology with nanofluid should be considered for the new heat transfer enhancement technology with nanofluids. Finally, applied research should be targeted to achieve an enabling practical heat transfer and CHF enhancement technology for engineering application with nanofluids
Experimental study and modelling of average void fraction of gas-liquid two-phase flow in a helically coiled rectangular channel
Void fraction is an important parameter in designing and simulating the relevant gas-liquid two-phase flow equipment and systems. Although numerous experimental research and modelling of void fraction in straight circular channels have been conducted over the past decades, the experimental data and prediction methods for the average void fraction in helically coiled channels are limited and needed. Especially, there is no such information in helically coiled channels with rectangular cross section. Therefore, it is essential to advance the relevant knowledge through experiments and to develop the corresponding prediction methods in helically coiled rectangular channels. This paper presents experimental results of the average void fraction and new models for the void fraction in a horizontal helically coiled rectangular channel. First, experiments were conducted with air-water two-phase flow in the horizontal helically coiled rectangular channel at a wide range of test conditions: the liquid superficial velocity ranges from 0.11 to 2 m/s and the gas superficial velocity ranges from 0.18 to 16 m/s. The average void fractions were measured with a quick-closing valve (QCV) method. The measured void fraction ranges from 0.012 to 0.927 which cover four flow regimes including unsteady pulsating, bubbly, intermittent and annular flow observed with a high speed camera. Second, comparisons of the entire measured average void fraction data to 32 void fraction models and correlations were made. It shows a low accuracy of these models and correlations in predicting the experimental data for the void fraction smaller than 0.5 while the drift flux model of Dix (Woldesemayat and Ghajar, 2007) predicts 98.3% of the entire experimental data within ±10% for the void fraction larger than 0.5. Therefore, the Dix model is recommended for the void fraction larger than 0.5. Furthermore, the observed flow regimes in the coiled channels were compared to two mechanistic flow regime maps developed for horizontal straight circular tubes. The flow regime maps do not capture all flow regimes in the present study. Finally, the effects of the limiting affecting parameters on the void fraction models are analyzed according to the physical phenomena and mechanisms. Incorporating the main affecting parameters, new void fraction models have been proposed for the void fractions in the ranges of 0 < α ≤ 0.2 and 0.2 < α ≤ 0.5 respectively according to the slip flow model. Both models predict the experimental data reasonably well. Overall, the new proposed models and the recommended model predict 92.8% of the entire void fraction data within ±30%
Tunable charge-trap memory based on few-layer MoS2
Charge-trap memory with high-\k dielectric materials is considered to be a
promising candidate for next-generation memory devices. Ultrathin layered
two-dimensional (2D) materials like graphene and MoS2 have been receiving much
attention because of their novel physical properties and potential applications
in electronic devices. Here, we report on a dual-gate charge-trap memory device
composed of a few-layer MoS2 channel and a three-dimensional (3D)
Al2O3/HfO2/Al2O3 charge-trap gate stack. Owing to the extraordinary trapping
ability of both electrons and holes in HfO2, the MoS2 memory device exhibits an
unprecedented memory window exceeding 20 V. More importantly, with a back gate
the window size can be effectively tuned from 15.6 to 21 V; the program/erase
current ratio can reach up to 104, far beyond Si-based flash memory, which
allows for multi-bit information storage. Furthermore, the device shows a high
mobility of 170 cm2V-1s-1, a good endurance of hundreds of cycles and a stable
retention of ~28% charge loss after 10 years which is drastically lower than
ever reported MoS2 flash memory. The combination of 2D materials with
traditional high-\k charge-trap gate stacks opens up an exciting field of novel
nonvolatile memory devices.Comment: 18 pages, 5 figure
The effects of short-term rainfall variability on leaf isotopic traits of desert plants in sand-binding ecosystems
Author's manuscript made available in accordance with the publisher's policy.Sand-binding vegetation is effective in stabilizing sand dunes and reducing soil erosion, thus helps minimize the detrimental effects of desertification. The aim of this study is to better understand the relationships between water and nutrient usage of sand-binding species, and the effects of succession and rainfall variability on plants’ water–nutrient interactions. We examined the effects of long-term succession (50 years), inter-annual rainfall variability (from 65% of the mean annual precipitation in 2004 to 42% in 2005) and seasonality on water–nutrient interactions of three major sand-binding species (Artemisia ordosica, Hedysarum scoparium and Caragana korshinskii) by measuring foliar δ13C, δ15N and [N]. Long-term succession in general did not significantly alter δ13C, δ15N and [N] of the three species. Short-term rainfall variability, however, significantly increased foliar δ13C levels of all three species by 1.0–1.8‰ during the severely dry year. No significant seasonal patterns were found in foliar δ13C and δ15N values of the three species, whereas foliar [N] varied by season. For the two leguminous shrubs, the correlations between δ13C and δ15N were positive in both sampling years, and the positive correlation between [N] and δ13C was only found in the severely dry year. The results indicate that these sand-binding plants have developed into a relatively stable stage and they are able to regulate their nitrogen and water use in responding to environmental conditions, which reinforces the effectiveness of plantation of native shrubs without irrigation in degraded areas. However, the results also indicate that short-term climate variability could have severe impact on the vegetation functions
Hydrological and biogeochemical controls on absorption and fluorescence of dissolved organic matter in the northern South China Sea
Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 122 (2017): 3405–3418, doi:10.1002/2017JG004100.The Kuroshio intrusion from the West Philippine Sea (WPS) and mesoscale eddies are important hydrological features in the northern South China Sea (SCS). In this study, absorption and fluorescence of dissolved organic matter (CDOM and FDOM) were determined to assess the impact of these hydrological features on DOM dynamics in the SCS. DOM in the upper 100 m of the northern SCS had higher absorption, fluorescence, and degree of humification than in the Kuroshio Current of the WPS. The results of an isopycnal mixing model showed that CDOM and humic-like FDOM inventories in the upper 100 m of the SCS were modulated by the Kuroshio intrusion. However, protein-like FDOM was influenced by in situ processes. This basic trend was modified by mesoscale eddies, three of which were encountered during the fieldwork (one warm eddy and two cold eddies). DOM optical properties inside the warm eddy resembled those of DOM in the WPS, indicating that warm eddies could derive from the Kuroshio Current through Luzon Strait. DOM at the center of cold eddies was enriched in humic-like fluorescence and had lower spectral slopes than in eddy-free waters, suggesting inputs of humic-rich DOM from upwelling and enhanced productivity inside the eddy. Excess CDOM and FDOM in northern SCS intermediate water led to export to the Pacific Ocean interior, potentially delivering refractory carbon to the deep ocean. This study demonstrated that DOM optical properties are promising tools to study active marginal sea-open ocean interactions.National Natural Science Foundation of China Grant Numbers: U1305231, 412760642018-06-2
Electronic structure of heavy fermion system CePt2In7 from angle-resolved photoemission spectroscopy
We have carried out high-resolution angle-resolved photoemission measurements
on the Cebased heavy fermion compound CePt2In7 that exhibits stronger
two-dimensional character than the prototypical heavy fermion system CeCoIn5.
Multiple Fermi surface sheets and a complex band structure are clearly
resolved. We have also performed detailed band structure calculations on
CePt2In7. The good agreement found between our measurements and the
calculations suggests that the band renormalization effect is rather weak in
CePt2In7. A comparison of the common features of the electronic structure of
CePt2In7 and CeCoIn5 indicates that CeCoIn5 shows a much stronger band
renormalization effect than CePt2In7. These results provide new information for
understanding the heavy fermion behaviors and unconventional superconductivity
in Ce-based heavy fermion systems.Comment: 24 pages, 10 figure
Recommended from our members
Using the Chinese version of Memorial Delirium Assessment Scale to describe postoperative delirium after hip surgery
Objective:: Memorial Delirium Assessment Scale (MDAS) assesses severity of delirium. However, whether the MDAS can be used in a Chinese population is unknown. Moreover, the optimal postoperative MDAS cutoff point for describing postoperative delirium in Chinese remains largely to be determined. We therefore performed a pilot study to validate MDAS in the Chinese language and to determine the optimal postoperative MDAS cutoff point for delirium. Methods:: Eighty-two patients (80 ± 6 years, 21.9% male), who had hip surgery under general anesthesia, were enrolled. The Confusion Assessment Method (CAM) and Mini-Mental State Examination (MMSE) were administered to the patients before surgery. The CAM and MDAS were performed on the patients on the first, second and fourth postoperative days. The reliability and validity of the MDAS were determined. A receiver operating characteristic (ROC) curve was used to determine the optimal Chinese version MDAS cutoff point for the identification of delirium. Results:: The Chinese version of the MDAS had satisfactory internal consistency (α = 0.910). ROC analysis obtained an average optimal MDAS cutoff point of 7.5 in describing the CAM-defined postoperative delirium, with an area under the ROC of 0.990 (95% CI 0.977–1.000, P < 0.001). Conclusions:: The Chinese version of the MDAS had good reliability and validity. The patients whose postoperative Chinese version MDAS cutoff point score was 7.5 would likely have postoperative delirium. These results have established a system for a larger scale study in the future
MiR–20a-5p promotes radio-resistance by targeting Rab27B in nasopharyngeal cancer cells
Additional file 3: Figure S2. The protein level of PARP and caspase3 detected by western in NCM, 5PM, NCA, 5PA, si-NC and si-Rab27B transfected CNE-2 and CNE-1 cells respectively
- …
