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Abstract The Kuroshio intrusion from the West Philippine Sea (WPS) and mesoscale eddies are important
hydrological features in the northern South China Sea (SCS). In this study, absorption and fluorescence of
dissolved organic matter (CDOM and FDOM) were determined to assess the impact of these hydrological
features on DOM dynamics in the SCS. DOM in the upper 100 m of the northern SCS had higher absorption,
fluorescence, and degree of humification than in the Kuroshio Current of the WPS. The results of an isopycnal
mixing model showed that CDOM and humic-like FDOM inventories in the upper 100 m of the SCS were
modulated by the Kuroshio intrusion. However, protein-like FDOM was influenced by in situ processes. This
basic trend was modified by mesoscale eddies, three of which were encountered during the fieldwork
(one warm eddy and two cold eddies). DOM optical properties inside the warm eddy resembled those of
DOM in the WPS, indicating that warm eddies could derive from the Kuroshio Current through Luzon Strait.
DOM at the center of cold eddies was enriched in humic-like fluorescence and had lower spectral slopes
than in eddy-free waters, suggesting inputs of humic-rich DOM from upwelling and enhanced productivity
inside the eddy. Excess CDOM and FDOM in northern SCS intermediate water led to export to the Pacific
Ocean interior, potentially delivering refractory carbon to the deep ocean. This study demonstrated that
DOM optical properties are promising tools to study active marginal sea-open ocean interactions.

1. Introduction

Chromophoric dissolved organic matter (CDOM), the fraction of dissolved organic matter (DOM) that
interacts with solar radiation, is ubiquitous in natural waters, including marginal seas and the open ocean
(Guo et al., 2014; Jørgensen et al., 2011; Nelson et al., 2010). CDOM is important owing to its involvement
in photochemistry and photobiology, its utility as a tracer of ocean circulation, its role in the biogeochemistry
of carbon, trace elements and gases, and its pertinence to ocean optics and remote sensing (Siegel et al.,
2002; Swan et al., 2009). CDOM in marginal seas and open oceans is mainly produced in situ by biological
production and removed by photochemical degradation and microbial consumption (Mopper, Kieber, &
Stubbins, 2015; Nelson & Siegel, 2013; Yamashita & Tanoue, 2008). The contribution of terrestrial CDOM is
limited owing to rapid removal processes (flocculation and photolysis) (Coble, 2007). The distribution
patterns of CDOM are also regulated by various physical processes in marine environments (e.g., water mass
mixing, upwelling, and mesoscale eddies) (Kowalczuk et al., 2013; Nelson et al., 2007; Zhang et al., 2009).

The optical properties of DOM have been widely applied to describe the dynamics of its biogeochemistry in
the global ocean (Nelson & Siegel, 2013, and references therein). Absorption coefficients at certain wave-
lengths have been used to quantify the abundance of CDOM, while the spectral slopes between ranges of
wavelengths provide further insights into the chemistry (e.g., molecular weight), source, and processing of
DOM (Helms et al., 2008). A small fraction of CDOM is able to emit fluorescence after absorbing light and is
termed fluorescent DOM (FDOM). Like absorption, fluorescence intensities at or across certain excitation:
emission wavelength pairs are used to quantify FDOM, whereas ratios of intensities between wavelength
pairs are used to describe DOM composition or quality. FDOM provide further information about the
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quality, source, and processing of DOM. Complex excitation-emission fluorescence spectra can be decom-
posed into independent fluorescence components by parallel factor analysis (EEM-PARAFAC) (Guo et al.,
2014; Stedmon & Bro, 2008; Stedmon, Markager, & Bro, 2003). Variations in the resultant fluorescent compo-
nents can then be applied to describe changes of FDOM resulting from mixing, biological degradation,
biological productivity, and photochemistry (Helms et al., 2013; Tanaka et al., 2014). For instance, two
humic-like fluorescent components (peak A-C and peak M) are commonly identified in ocean waters
(Jørgensen et al., 2011). The ratio of M:C can be a good indicator of photochemical andmicrobial degradation
(Hansen et al., 2016; Helms et al., 2013; Moran, Sheldon, & Zepp, 2000). Although the optical properties of
DOM have been reported for much of the world’s oceans, little is known about the dynamics of CDOM
and FDOM in tropical oligotrophic marginal seas (Coble, Del Castillo, & Avril, 1998; Fichot & Benner, 2011;
Lorenzoni et al., 2011; Nelson, Siegel, & Michaels, 1998).

The South China Sea (SCS) is the largest tropical marginal sea in the Pacific Ocean (Chen et al., 2001; Wong
et al., 2007) and plays an important role in the global carbon cycle as a recognized source of atmospheric
CO2 (Chen et al., 2001; Dai et al., 2009, 2013; Wyrtki, 1961). Although many rivers (e.g., Pearl, Mekong, and
Red Rivers) carry an abundance of terrestrial materials into the SCS, surface water in the SCS basin is overall
oligotrophic due to the effective isolation of surface circulation gyres (Wong et al., 2007). At the basin scale,
surface circulation reverses seasonally under the persistent influence of monsoonal winds, resulting in a
basin-wide cyclonic circulation gyre during the northeast winter monsoon season and an anticyclonic circu-
lation gyre around the southern half of the SCS during the southwest summer monsoon season (Wong et al.,
2007). In the upper layer (<500 m), the northern SCS is influenced by the intrusion of the extremely oligo-
trophic Kuroshio Current, especially in winter and spring (Qu, Mitsudera, & Yamagata, 2000). Dissolved
organic carbon (DOC) in the upper layer of the West Philippine Sea (WPS) is higher than in the northern
SCS (Wu et al., 2015). At depths greater than 1,500 m, entrainment of various water masses from the adjacent
Pacific Ocean facilitates deep ocean exchange (Tian et al., 2006). Eastward outflow at intermediate depths
(500–1,500 m) to the WPS is the largest outflow of SCS water (Wong et al., 2007). The net outflow of DOC-
enriched SCS intermediate water through Luzon Strait exports 54.7 ± 15.0 Tg C yr�1 to the WPS (Dai et al.,
2009; Wu et al., 2015). This DOC export has implications for the production, degradation, and sequestration
of organic carbon in the SCS and WPS, as well in the Pacific Ocean at large. However, the characteristics of
CDOM and FDOM in the SCS and WPS remain unclear, limiting our understanding of the impact of the
Kuroshio intrusion on DOM dynamics in the upper northern SCS, and the importance of CDOM and FDOM
export from the SCS to the Pacific Ocean, and its role in the global ocean carbon reservoir.

Mesoscale eddies are ubiquitous features throughout the SCS and WPS and play an important role in regulat-
ing regional biogeochemical processes (Li, Nowlin, & Jilan, 1998; McGillicuddy Jr. et al., 1998, 2016; Xiu et al.,
2010). Mesoscale eddies influence nutrient supply to the euphotic layer, which changes phytoplankton pro-
ductivity and particle export to the deep sea (Chen et al., 2007; Lin et al., 2010). There are some studies in the
SCS concerning the biogeochemical impacts due to mesoscale eddies (Chen et al., 2015; Huang et al., 2010;
Xiu & Chai, 2011; Zhou et al., 2013). However, only one study concentrates on the response of CDOM and
FDOM dynamics to cold eddy (Zhang et al., 2009).

We present the quantitative (i.e., absorption coefficients and fluorescence intensities) and qualitative (i.e.,
spectral slope and fluorescence indices) parameters of CDOM and FDOM in the northern SCS and WPS.
Our aims are to determine (1) the distribution patterns of CDOM and FDOM in the northern SCS and WPS,
(2) the impact of the Kuroshio intrusion on the CDOM and FDOM dynamics in the upper water column of
the northern SCS, (3) how mesoscale eddies influence CDOM and FDOM in the northern SCS, and (4) the in
situ production of CDOM and FDOM in the intermediate water and their contributions to the export of
DOC from the intermediate water masses of the SCS to the WPS.

2. Materials and Methods
2.1. Sample Collection, Pretreatment, and Measurement of Auxiliary Parameters

Water samples were collected at 26 stations from the surface down to 1,500 m in the northern SCS and the
adjacent Kuroshio region of the WPS during April–May 2014 (Figure 1). Twelve casts with a
conductivity-temperature-depth (CTD)/carousel sampling system equipped with 5 L Niskin bottles were used
to obtain vertical profiles. Vertical profiles of temperature and salinity were recorded with a calibrated SeaBird
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CTD system (SeaBird 911 plus, USA). Dissolved oxygen was measured on board using the Winkler titration
method (Carpenter, 1965). Apparent oxygen utilization (AOU) was computed from temperature, salinity,
and oxygen using algorithms in Ocean Data View (v 4.5.4). For total Chlorophyll a (Chl a) analysis, 3 to 4 L
samples were collected from the upper 200 m and filtered onto GF/F filters (nominal pore size ~ 0.7 μm)
under a gentle vacuum of <150 mm Hg. The filters were stored in liquid nitrogen until analysis. Chl a
concentration was measured using high-performance liquid chromatography following the protocol of
Huang et al. (2010). Samples for CDOM and FDOM analysis were filtered immediately through
precombusted (500°C, 5 h) GF/F filters (Whatman, UK) and stored in precombusted (500°C, 5 h) amber
glass bottles, which were kept frozen on board. Freezing filtered water samples at �20°C is a commonly
used method for DOM analysis, and a number of marine DOM studies show the minimal effect of
freeze/thaw on DOM optical properties (Coble et al., 1998; Conmy et al., 2009; Spencer & Coble, 2014;
Yamashita et al., 2010). CDOM and FDOM analyses were finished within 1 month after cruise.

2.2. Absorption Spectroscopy Analysis

CDOM absorption spectra were determined using a liquid wavelength capillary cell system (WPI Inc., U.S.A)
using published methods (D’Sa et al., 1999; Miller et al., 2002). Water samples were uniformly injected into
the capillary cell through a teflon tube (precleaned with 1 M HCl) using a peristaltic pump (Baoding
Longer Inc., China) at a pump speed of 1.5 mL min�1. Incident light was provided by a balanced deuterium
halogen source (DH-2000-BAL, Ocean Optics Inc., U.S.A) and introduced into the capillary cell via an optical
fiber (QP-400-2-UV/Vis, Ocean Optics Inc., U.S.A; Stubbins et al., 2006). The light at the export of the capillary
cell was collected by another optical fiber connected to a diode array spectrophotometer (USB-4000-UV–Vis,
Ocean Optics Inc., U.S.A). Absorption spectra were recorded between 250 and 800 nm at 0.2 nm using the
SpectraSuite software.

Figure 1. Sampling stations in the northern South China Sea (SCS) and the adjacent Kuroshio Current of the West Philippine Sea (WPS) superimposed with the AVISO
sea surface height (SSH) and the derived surface geostrophic currents during a March–April 2014 ship survey. The Kuroshio Current and its intrusion pathways
into the northern SCS are shown (in pink vectors). Cold eddies 1 and 2 and warm eddy were highlighted by dark blue ellipses. SEATS: SouthEast Asian Time-series
Study (Wong et al., 2007).
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Milli-Q water was used as the reference spectrum, and the dark current spectrum was deducted. Each sample
was measured three times to ensure repeatability, and Milli-Q water was measured every five samples to pro-
vide blanks to correct any baseline drift. To correct the difference of refractive index between seawater and
pure water, an artificial seawater medium with approximately the same refractive index was prepared with
NaCl (precombusted at 450°C for 10 h to remove possible organic moieties). Baseline drift was further cor-
rected by subtracting the absorption at 700 nm from the entire spectrum. Fastidious elimination of micro-
bubbles in the capillary cells was employed as it can greatly reduce baseline offsets and improve CDOM
spectral slope precision (Floge et al., 2009).

CDOM Naperian absorption coefficients (aCDOM(λ)) were calculated using the following equation:

aCDOM λð Þ ¼ A λð Þ=L (1)

where A(λ) is the absorbance (unitless) measured by the spectrophotometer at wavelength λ (nm) and L (m) is
the effective optical path length of the liquid wavelength capillary cell (0.9948 m in this study). The spectral
slope over the range 275 to 295 nm (S275–295) was calculated by linear regression of the natural log-
transformed absorption spectra (Helms et al., 2008).

2.3. Fluorescence Measurements and PARAFAC Modeling Analysis

Fluorescence measurements were performed using a 1 cm quartz cuvette and a Varian Cary Eclipse spectro-
fluorometer. Emission spectra were scanned every 2 nm at wavelengths from 280 to 600 nm, with excitation
wavelengths ranging from 240 to 450 nm at 5 nm intervals. Slit widths were 10 nm for both excitation (ex)
and emission (em). The EEM spectra (EEMs) were Raman normalized and blank corrected using Raman nor-
malized Milli-Q water EEMs scanned on the same day (Guo et al., 2011, 2014). Inner filter corrections were not
applied to these samples because of the low absorbance of our open ocean samples (Nelson et al., 2007).
EEMs were decomposed into components using parallel factor analysis (PARAFAC), with MATLAB 2012 and
the DOMFluor toolbox (Stedmon et al., 2003; Stedmon & Bro, 2008). The maximum fluorescence (Fmax) inten-
sity of PARAFAC components are reported in Raman Units (RU) (Lawaetz & Stedmon, 2009). Three fluores-
cence parameters were used to account for the DOM composition and characteristics (humification index
(HIX), biological index (BIX), and M:C). The humification index (HIX) is calculated as the integrated emission
spectra at 435–480 nm divided by this emission area plus at 300–345 nm when excited at 254 nm (Ohno,
2002). Higher values indicate an increasing degree of humification. The BIX is the ratio of fluorescence inten-
sity emitted at em 380 nm divided by the intensity at 430 nm, obtained at ex 310 nm, which varies with the
contribution of recently produced DOM in aquatic ecosystems (Coble et al., 2014; Huguet et al., 2009). M:C is
defined as the ratio of peak M and peak C intensity, which is an indication of the amount of blue-shifted fluor-
escence in a sample (Hansen et al., 2016; Helms et al., 2013).

3. Results
3.1. Hydrologic Background and Eddy Characterization

The distributions of hydrologic parameters in the northern SCS and the adjacent Kuroshio region of the WPS
during our cruise were similar to previous results (Du et al., 2013; Wu et al., 2015, Figure 2). Kuroshio water had
higher potential temperature (θ) and salinity (S) than the SCS water along the isopycnal layer in the upper
water column at a potential density of<1025.7 kg m�3. However, in deeper waters (>200 m) Kuroshio water
had lower potential temperature and salinity than the SCS. AOU showed no significant trends in the mixed
layer (~25 m).

Below the mixed layer, AOU decreased along the isopycnal layer from the northern SCS to the WPS.
Almost all θ-S points fell between the θ-S lines of the SCS and WPS end-members, indicating water
exchange between the northern SCS and WPS. The vertical profiles of θ, S, Chl a, and DO for a typical
station in both the SCS and WPS are shown in Figure S1 in the supporting information. The maximum
Chl a occurred at a greater depth and lower concentration (0.1 μg L�1) in the WPS (~100 m) than in
the SCS (depth = 50 m; concentration = 0.25 μg L�1).

One warm eddy (ACE) and two cold eddies (CE1 and CE2) were identified from sea surface height anomaly
data and surface geostrophic currents confirmed their anticyclonic and cyclonic characteristics, respectively
(Figure 1). The centers of CE1 and CE2 were located at ~18.0°N:113.5°E (close to station 38) and
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~21.3°N:119.5°E (close to station 63), respectively (Figure 1). The core of
the warm eddy was located at ~21.2°N:117.8°E (close to station 49). The
warm eddy was stronger than the cold eddies during our cruise, with
the maximum sea level anomaly for the warm eddy of +18 cm, compared
to �12 cm for cold eddies 1 and 2.

3.2. PARAFAC Components

Five fluorescent components were identified using EEMs-PARAFAC,
including two humic-like (C1 and C2) and three protein-like (C3, C4, and
C5) components (Figure S2). C1 displayed two excitation maxima at 250
and 365 nm and one emission maxima at 456 nm. Similar fluorescence
signatures are initially categorized as representing a mixture of terrestrial
humic-like fluorescence peaks A and C (Coble, 1996) but have also been
widely observed in oceanic waters (Catalá et al., 2015; Guéguen et al.,
2014; Jørgensen et al., 2011; Kowalczuk et al., 2013; Loginova, Thomsen,
& Engel, 2016; Yamashita et al., 2010). C2 had excitation/emission maxima
at 250, 330/388 nm, consistent with marine humic-like fluorescence (peak
M; Coble, 1996), which has been characterized as representing microbially
altered DOM (Stedmon & Markager, 2005; Yamashita et al., 2007). C3, C4,
and C5 are characterized as amino acid-like DOM, displaying narrower
emission spectra with maxima below 350 nm (Jørgensen et al., 2011). C3
had an excitation/emission maximum at 270/296 nm, similar to tyrosine-
like peak B (Coble, 1996). C4 had an excitation/emission maximum at
275/344 nm, representing tryptophan-like peak T (Coble, 1996, 2007). C5
had an excitation/emission maximum at 250/320 nm, similar to
phenylalanine-like fluorescence (Jørgensen et al., 2011). Although
tyrosine-like C3 and phenylalanine-like C5 are often present in marine

DOM, their fluorescences are difficult to quantify precisely because of energy transfer to tryptophan and tyr-
osine and quenching by neighboring chemical groups in the same protein (Lakowicz, 2006). Therefore,
tryptophan-like C4 was selected to represent the labile protein-like component. Similar PARAFAC results
are reported in previous FDOM studies in marginal seas and the open ocean (Catalá et al., 2015; Jørgensen
et al., 2011; Kowalczuk et al., 2013; Loginova et al., 2016; Yamashita et al., 2010).

3.3. Chromophoric and Fluorescent Dissolved Organic Matter Distribution in the Northern South
China Sea and Adjacent Kuroshio Region of the West Philippine Sea

Humic-like C1 and C2 fluorescence intensities and aCDOM (350) were lowest in surface waters, increasing with
depth to approximately constant levels in intermediate and deep waters of the northern SCS and Kuroshio
region of the WPS (Figure 3). By contrast, protein-like C4 fluorescence intensity was highest in surface waters,
decreasing to approximately constant low levels below ~500 m. Similar CDOM and FDOM profiles have been
observed in marginal seas, including the Arabian Sea (Coble et al., 1998), Okhotsk Sea (Yamashita et al., 2010),
and Japan Sea (Tanaka et al., 2014), as well as in the open ocean (Jørgensen et al., 2011). Vertical gradients in
C1 and C2 had significant differences in the northern SCS (t test, p< 0.01). C2 had a steeper vertical gradient
(~1.8 × 10�5 RUm�1) than C1 (~8.8 × 10�6 RU m�1) in the upper 200 m of the water column. The levels of C1,
C2, C4, and aCDOM (350) from the surface to 1,500m in the Kuroshio Current of theWPS ranged from 0.0009 to
0.013, 0.0004 to 0.009, 0.0011 to 0.0078 RU, and 0.07 to 0.20 m�1, respectively. They were significantly lower
than the values in the northern SCS (t test, p < 0.01).

HIX showed a positive linear correlation with the fluorescence intensities of humic-like components (Ihumic-

like, sum of C1 and C2) (R2 = 0.72, p < 0.001, n = 295; Figure S3a). BIX represents the contribution of recently
produced DOM and showed a negative linear correlation with Ihumic-like and HIX (R2 = 0.67, p< 0.001, n = 295;
Figure S3b). S275–295 showed significant negative correlation with aCDOM (350) in the northern SCS and WPS
(R2 = 0.43, p < 0.001, n = 286; Figure S3c). Surface water had the lowest HIX values (~0.3), the highest BIX
values (~1.6), and an S275–295 value of 0.05 nm�1 (Figure 3). HIX gradually increased with depth, while BIX
and S275–295 decreased with depth and they were all approximately constant below ~400 m (Figure 3). The

Figure 2. Potential temperature (θ) versus salinity (S) plot for the sampling
stations superimposed with AOU (color gradation). Data of the Kuroshio
(red line) and SCS (black line) were obtained from the CTD profile data of
stations 51+ and 72.
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highest HIX (~0.8) and the lowest BIX (~0.8) and S275–295 (~0.02 nm�1) were observed in the deep layer
(1,500 m; Figure 3). The ratio of humic-like C2 and C1 (C2:C1, i.e., M:C) was lowest in the surface waters,
increased rapidly with depth in the euphotic layer, and then reached a maximum at the bottom of the
euphotic layer (~100 m; Figure 3g). Subsequently, M:C decreased slightly with depth and showed
approximately constant values in water below 1,000 m (~0.77; Figure 3g).

Vertical variation trend of spectral indices with depth in the Kuroshio Current of theWPS were similar to those
in the northern SCS. However, the euphotic layer of the WPS had lower HIX, higher BIX, and higher S275–295
values than the SCS, suggesting lower relative levels of humic-like substances in the WPS. In addition, higher
HIX values were found at greater depth in the WPS (>400 m), while there were no obvious differences of BIX
and S275–295 between the northern SCS and the WPS in the deep water. M:C had lower values in the euphotic
layer and a greater depth of the maximum (~150 m) in the WPS than the northern SCS.

4. Discussion
4.1. Impact of the Kuroshio Intrusion on the Chromophoric Dissolved Organic Matter Dynamics in the
Euphotic Layer of the Northern South China Sea

As compared to the WPS, the euphotic layer of the northern SCS had higher CDOM and FDOM levels
(Figures 3a–4d), but lower dissolved organic carbon (DOC) concentration (Wu et al., 2015). It was assumed
that the lower availability of nutrients limited the growth of bacteria and resulted in the accumulation of
DOC in the upper layer of the WPS (Wu et al., 2015). Kuroshio water was depleted in humic-like optical signa-
tures (Figures 3a and 3b) and exhibited steeper spectral slopes (Figure 3c) than samples from the SCS. A
depletion in humic-like fluorescence and steep spectral slopes have been observed in the sunlit surface gyres
of the open ocean (Jørgensen et al., 2011; Kitidis et al., 2006) and are consistent with highly photobleached
DOM (Helms et al., 2013, 2008).

Figure 3. Vertical profiles of C1, C2, C4, aCDOM (350), HIX, BIX, M:C, and S275–295 in the northern SCS (gray circles) and the adjacent Kuroshio Current of the WPS
(orange circles). The black and dark orange lines display the average values calculated from eight depths or depth intervals (0–50; 50–100; 100; 100–200; 200–
500; 500–1,000; 1,000; and 1,450–1,550 m) in the northern SCS and adjacent Kuroshio region. The error bars represent standard deviations.
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Kuroshio water had lower levels of tryptophan-like (C4) fluorescence but higher C4 as a % of the total fluor-
escence compared with the upper water column (0–100 m) in the northern SCS. Tryptophan-like fluores-
cence is associated with primary production in the open ocean (Jørgensen et al., 2011). Therefore, the low
levels of tryptophan-like fluorescence in the Kuroshio water are likely a result of the low primary productivity
and bacterial abundance in these waters (Du et al., 2013). The CDOM, FDOM, and nitrate plus nitrite
(NO3

� + NO2
�) inventories in the upper 100 m of the SCS end-member were higher than in the Kuroshio

end-member, while the DOC inventory was higher in the Kuroshio end-member than in the SCS end-member
(Table 1). Therefore, the intrusion of Kuroshio water into the SCS would likely result in a dilution of CDOM,
FDOM, and nitrate plus nitrite, while enriching SCS waters with DOC.

An isopycnal mixing model was adopted to quantify the impact of the Kuroshio intrusion on CDOM and
FDOM in the upper water column (~100 m) of the northern SCS (Du et al., 2013). The isopycnal mixing rate
of DOC in the SCS was estimated to be 6.0 × 10�3 mmol m�2 s�1, which was 3 orders of magnitude larger
than the diapycnal mixing rate of ~1.0 × 10�6 mmol m�2 s�1 in the upper 100 m (Wu et al., 2015). This
suggests that diapycnal mixing was negligible and that isopycnal mixing controlled the diffusive transport
of CDOM and FDOM in the upper northern SCS. For any in situ observed water parcel represented by a point
in the θ-S plot (Figure 2), the fractional contributions of Kuroshio and SCS water can be derived by adopting
the conservative along-isopycnal mixing law of potential temperature or salinity (equations (2) and (3)).

RS þ RK ¼ 1 (2)

RS θS þ RK θK ¼ θ or RS SS þ RK SK ¼ S (3)

Table 1
Integrated Fluorophore, Chromophore, DOC, and Nutrient Inventories in the Upper 100 m of the SCS and Kuroshio End-Members

End-Member

Fluorophore Chromophore DOCa NO3
� + NO2

�b

C1 m·RU C2 m·RU C4 m·RU aCDOM (350) mol m�2 mmol m�2

SCS 0.498 0.453 0.447 18.7 ~6.5 ~250
Kuroshio 0.134 0.090 0.281 9.2 ~7.5 ~5
Δ �73% �80% �37% �51% 15% �98%

Note. Water mass end-members were identified from θ-S plot (Figure 2). DOC: dissolved organic matter; NO3
� + NO2

�: nitrate plus nitrite.
aData from Wu et al. (2015). bData from Du et al. (2013).

Figure 4. θ-S diagram in the upper 100 m of the water column for the sampling stations in the northern SCS and adjacent Kuroshio region of the WPS superimposed
with the (a) isopycnal mixing model-derived Kuroshio water fraction (RK) and (b) station-integrated Kuroshio water fraction (RIKW) (the black line represents SCS end-
member collected at station 51+; the red line represents Kuroshio end-member collected at station 72; the gray lines represent isopycnic lines).
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Here the Kuroshio water fraction is denoted as RK, and RS stands for the SCS water fraction. The θS, θK and SS,
SK are the end-member values of potential temperature and salinity for the SCS and Kuroshio water proper,
respectively. Salinity was adopted for RK and RS calculation in the upper 60 m of the water column due to the
fact that temperature in the upper ocean is significantly affected by diurnal and seasonal variation in solar
radiation (Tseng et al., 2007). The θ was used for model prediction in deeper water as it provides higher
sensitivity than salinity (Figure 2). The Kuroshio water fraction (RK) for a given station was integrated over
the upper 100 m to represent the station-integrated Kuroshio water fraction (RIKW).

The model-derived results showed Kuroshio intrusion in spring, with high RIKW values reaching (~0.4) south-
west of Taiwan Island, and lower RIKW values (<0.2) at lower latitudes (≤18°N; Figure 4), in conformity with the
cyclonic circulation of the gyre around the SCS in early spring (Chao, Shaw, & Wang, 1995; Wong et al., 2007;
Xue et al., 2004). The model-derived Kuroshio water fraction was even lower (RIKW < 0.1) in the central Luzon
Strait, which was observed as a cold eddy during the cruise period.

Abnormally low seawater temperature inside the cold eddy caused by upwelling could lead to negative
deviations of RK and RIKW according to the model formula (equations (2) and (3)). Thus, cold eddies were
excluded when using an isopycnal mixing model to quantify the Kuroshio water fraction. Model-predicted
FDOM (C1, C2, and C4) and CDOM (aCDOM (350)) levels and station-integrated inventories in the upper
100 m were calculated based on the fraction of Kuroshio and SCS water along the isopycnal layer and the
field observed CDOM and FDOM levels of the two end-members (Figure 5). The model-predicted humic-like
FDOM (C1 and C2) agreed well with the field measurements, indicating that isopycnal mixing explained 61%
of the variation in C1 and 79% in C2 within the upper 100 m of the northern SCS under a 95% confidence
interval (Figures 5a and 5b). However, isopycnal mixing could not explain the variation of the tryptophan-like
(C4) component in the upper 100 m of the northern SCS (R2 ≈ 0), indicating that other processes (such as in
situ biological production or utilization) controlled the distribution of C4 (Figure 5c). Predicted aCDOM (350)
showed weak but significant correlation with the field observed aCDOM (350), with a coefficient of determina-
tion of 0.25, which fell between the humic-like (C1 and C2) and protein-like (C4) fluorescence signatures
(Figure 5d). This suggests that CDOM absorbance is influenced by both mixing and other processes. These
additional processes likely include the microbial production, microbial utilization, and photochemical bleach-
ing of CDOM. The field observed humic-like C1, C2, and CDOM inventories in the upper 100 m water column
were overall negatively correlated with the station-integrated Kuroshio water proportion (RIKW),

Figure 5. (a–d) Field observed FDOM and CDOM levels versus the model prediction in the upper 100 m of the northern SCS and (e–h) the relationships between the
field observed FDOM and CDOM inventories and the station-integrated Kuroshio water proportion (RIKW) (the pink line is the 1:1 line; the black line is the zero
intercept linear regression). CE: cold eddy; ACE: warm eddy; CEP: the edges of cold eddy.
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demonstrating that the Kuroshio intrusion was the major process
controlling the humic-like FDOM and CDOM inventories in the upper
100m of SCS (Figures 5e–5h). However, C1, C2, and CDOM inventories
showed negative deviations at the center of cold eddies and positive
deviations at the center of warm eddy and the edges of cold eddies,
which suggested that mesoscale eddies could modulate regional
CDOM and FDOM inventories in the SCS (Figures 5e–5h).

4.2. Impact of Mesoscale Eddies on Chromophoric and
Fluorescent Dissolved Organic Matter Dynamics in the Northern
South China Sea

In the SCS, some studies focus on the complex biogeochemical
responses to mesoscale eddies, such as nutrient delivery, primary
production, phytoplankton community structure, and particle export
(Chen et al., 2015; Huang et al., 2010; Xiu & Chai, 2011). However,
the impact of mesoscale eddies on CDOM and FDOM dynamics in
the northern SCS remains unclear. Our results show different patterns
of CDOM and FDOM between the stations inside and outside
the eddies.

The centers of the two cold eddies exhibited significantly lower
potential temperature, higher density, higher maximum Chl a concentration, and shallower depth of Chl
a maximum layer than at the edges of the cold eddies (t test, p < 0.01; Table 2). Humic-like FDOM in
the upper 100 m was higher inside than outside the cold eddies, likely due to a combination of upwelling
of humic-rich deep water and elevated biological activity in response to nutrient supplementation inside
the cold eddy (Table 2). Integral average humic-like FDOM and CDOM levels in the upper 100 m inside the
cold eddies were 16% to 43% and 18% to 30% higher than outside the cold eddies, respectively. The
average tryptophan-like fluorescence (C4) inside the cold eddies were similar to or slightly higher than
outside the cold eddies in the upper 100 m, indicating that dilution due to inputs of deep water upwelling
was almost equal to any production from biological production inside the cold eddies. However, DOM
inside the cold eddies had higher HIX and M:C, and lower BIX and S275–295, than DOM outside the cold
eddies, consistent with elevated levels of humic-like FDOM and upwelled CDOM that has not been exten-
sively photodegraded inside the cold eddies.

The warm eddy southwest of Taiwan showed very similar hydrographic properties to the adjacent Kuroshio
water of the WPS, but significantly higher potential temperature, higher salinity, mixed layer, and DCML
depth than the edges of the warm eddy and other regions in the SCS without eddies (t test, p < 0.01;
Figures 6a–6c). The CDOM and FDOM profiles in the upper 100 m inside the warm eddy were similar to
the adjacent Kuroshio water, both showing significantly lower CDOM and humic-like FDOM abundances,
lower M:C, shallower spectral slopes, but a greater depth of the M:C maximum (Figures 6d–6i) than the
regions of the SCS without eddies (t test, p< 0.01). A small vertical gradient of CDOM and FDOM in the upper
100 m of the warm eddy suggested a greater mixed layer depth and lower biological productivity than the
SCS no eddy region, indicating that the warm eddy was formed by the intrusion of the Kuroshio Current.
Previous studies by physical oceanographers suggest that warm eddies near the Luzon Strait can be sepa-
rated from the adjacent Kuroshio Current (Jia & Liu, 2004; Zhao, Liang, & Gan, 2016). Our results provide opti-
cal data to support this assumption, suggesting that the optical properties of CDOM should be helpful in the
study of active marginal sea-open ocean interactions in the Luzon Strait.

4.3. In Situ Production of Bio-refractory Dissolved Organic Matter in the Dark South China Sea and
West Philippine Sea

We observed positive and significant relationships between humic-like components (C1 and C2) and AOU in
the dark SCS and WPS (Table 3), indicating in situ production of the two humic-like components as organic
matter is oxidized in the water column. The C1 production rate per unit of consumed oxygen in the SCS
(3.1 × 10�5 RU/(μmol O2 kg

�1)) was larger than in the WPS (2.8 × 10�5 RU/(μmol O2 kg
�1)), but both were

of a similar magnitude to that observed in the open Pacific and Indian Ocean, and some marginal seas

Table 2
Integral Average Values of Physical, Chemical, and Biological Parameters Inside and
Outside the Cold Eddies in the Upper 100 m of Northern SCS

CE1
(Stn. 39)

CEP1
(Stn. 40)

CE2
(Stn. 63)

CEP2
(Stn. 54, 65)

θ (°C) 22.28 23.659 22.022 23.98
Salinity 34.08 33.977 34.129 34.59
σ0 (kg m�3) 23.21 22.951 23.526 23.31
C1 (RU) 0.0044 0.0038 0.0053 0.0037
C2 (RU) 0.0043 0.0031 0.0052 0.0037
C4 (RU) 0.0040 0.0039 0.0045 0.0038
BIX 1.05 1.15 1.07 1.16
HIX 0.46 0.43 0.54 0.49
M:C 0.79 0.72 0.91 0.87
aCDOM(350) (m

�1) 0.241 0.186 0.161 0.136
S275–295 (nm

�1) 0.0256 0.0258 0.0356 0.0412
DCML (m) 50 75 50 75
Chl amax (μg/L) 0.475 0.378 0.331 0.230–0.261

Note. θ: potential temperature; σ0: potential density anomaly; CE1 and CE2: cold
eddy 1 and cold eddy 2; CEP1 and CEP2: the edges of CE1 and CE2; DCML:
depth of chlorophyll maximum layer.
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(e.g., Japan Sea and Okhotsk Sea) (Catalá et al., 2015; Guéguen et al., 2014; Jørgensen et al., 2011; Tanaka et al.,
2014; Yamashita et al., 2010, 2007). The C2 production occurred at a much slower rate than C1, with
0.96 × 10�5 RU/(μmol O2 kg

�1) in the SCS and 1.14 × 10�5 RU/(μmol O2 kg
�1) in the WPS. Such a phenom-

enon was also observed in the dark global ocean, with the production rates of 2.3 × 10�5 RU yr�1 for C1 and
1.2 × 10�5 RU yr�1 for C2, respectively (Catalá et al., 2015). This might be linked to different complex mechan-
isms, like hydrological (e.g., age and aging of water mass) and biological factors (e.g., phylogenetic nature of
bacteria, archaea, or eukarya) (Catalá et al., 2015; Jørgensen et al., 2011; Tanaka et al., 2014).

M:C vertical profiles in both the tropical SCS and WPS were similar to those in the temperate Okhotsk Sea and
the adjacent northwestern Pacific Ocean (Yamashita et al., 2010). However, the maxima in M:C at the bottom
of the euphotic layer observed in the northern SCS (~100 m) and the WPS (~200 m) were not reported in the
Okhotsk Sea. M:C values at middepths (200–500 m) in the SCS were lower than in the water with the same
density in the WPS (Figure 3g). This variation is possibly due to different flux rates and lability of sinking
particles between the two regions. Compared to the WPS, SCS has greater primary production, downward
and lateral fluxes of particle organic matter (POM) facilitated by the shift of monsoon strength, and frequent
occurrence of strong internal waves in the SCS (Alford et al., 2015; Hung et al., 2007; Ma et al., 2017).
Therefore, the higher concentration and larger contribution of recently produced POM to the middle water

Figure 6. Hydrological and CDOM profiles in the upper 300 m of the warm eddy (ACE, red line and symbol), no eddy region in the northern SCS (the black dotted
line means average, and the gray area means standard deviation) and the Kuroshio Current of the WPS (the orange-yellow dotted line means average, and the
orange area means standard deviation) in spring 2014.
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of SCS may have led to greater remineralization and concomitant production of humic-like FDOM, reducing
the M:C value compared to the WPS (Figure 3).

Notably, M:C values showed significant negative linear relationships with AOU in the northern SCS and adja-
cent WPS (R2 = 0.89 and 0.92, p< 0.001; Table 3). The intercept of this linear relationship in the SCS (1.38) was
lower than in the WPS (1.7), which may be related to the deeper euphotic layer andmore photoreactive of C1
compared to C2 in the WPS than in the northern SCS (Yamashita et al., 2010). The slope in the SCS
(�2.86 × 10�3/(μmol O2 kg

�1)) was also lower than in the WPS (�4.28 × 10�3/(μmol O2 kg
�1)). Such differ-

ences suggest that different mechanisms may occur for carbon storage and accumulation in the deep, apho-
tic waters of marginal seas versus in the open ocean (Catalá et al., 2015). Future studies of DOMmolecular and
isotopic character combined with physical and biological studies will be helpful to resolve this issue. The
decrease of M:C ratio was accompanied by the increase of HIX value with depth, suggesting that both the
M:C and HIX indices are useful indicators of the degree of degradation and the structure of DOM in the dark
ocean. This is contrary to the situation in the euphotic layer, where the M:C ratio also reflects the influence of
biological production and photodegradation (Coble, 1996; Helms et al., 2013).

The higher production rates in the SCS result in the higher levels of CDOM and FDOM in the SCS intermediate
layer water as compared with the WPS. The average levels of C1, C2, C4, and aCDOM (350) between 500 and
1,500 m (corresponding to a potential density from 1026.4 to 1027.4 kg m�3) in the northern SCS was
0.0094 ± 0.0012 RU, 0.0074 ± 0.0010 RU, 0.0031 ± 0.0006 RU and 0.23 ± 0.03 m�1, while the average levels
of humic-like C1, C2, and aCDOM (350) in the intermediate water of the WPS, with the same range of potential
density, were 0.0076 ± 0.0022 RU, 0.0063 ± 0.0012 RU, 0.0024 ± 0.0006 RU, and 0.16 ± 0.02 m�1. As export
from the intermediate layer is the largest outflow of SCS water into the WPS (Tian et al., 2006), the difference
in CDOM and FDOM levels between the two water masses will result in the export of “excess” CDOM and
FDOM from the marginal seas to the open ocean. The export fluxes of “excess” CDOM and FDOM were esti-
mated based on the difference of average CDOM absorbance and FDOM fluorescence intensity between the
northern SCS and the WPS, and the net water flux from the SCS to the WPS through the Luzon Strait (i.e.,
5 sverdrup) (Tian et al., 2006). This calculation suggests that the intermediate outflow could export
2.89 ± 1.70 × 1011 RU m3 yr�1 of C1, 1.71 ± 0.33 × 1011 RU m3 yr�1 of C2, 1.12 ± 0.16 × 1011 RU m3 yr�1 of
C4, and 1.13 ± 0.28 × 1013 m2 yr�1 of CDOM from the SCS to the Pacific Ocean. Although these estimates have
considerable uncertainty, they provide a first estimate of the importance of CDOM and FDOM export from the
WPS and SCS to the Pacific Ocean. As these humic-like signatures are preserved in the deep ocean, this deliv-
ery may have important implication for carbon sequestration in the global ocean interior (Dai et al., 2009;
Catalá et al., 2015).

5. Conclusions

CDOM and FDOM levels in the northern SCS were higher than in the WPS, likely due to higher primary
productivity and weaker photodegradation in the euphotic layer and larger particle flux from the surface

Table 3
Relationships Between Humic-Like Components (C1 and C2), aCDOM (350) and M:C and AOU in the Dark Ocean of SCS and WPS (>100 m)

Region C1 (RU) C2 (RU) aCDOM (350) (m�1) M:C

SCS Slope (3.09 ± 0.14) * 10�5 (0.96 ± 0.14) * 10�5 (3.26 ± 0.30) * 10�4 (�2.86 ± 0.08) * 10�3

Intercept (3.4 ± 0.22) * 10�3 (5.86 ± 0.23) * 10�3 0.146 ± 0.005 1.38 ± 0.01
R2 0.71 0.19 0.39 0.89
n 191 190 183 189
p <0.01 <0.05 <0.01 <0.01
F 465.8 44.1 115.0 1454.5

WPS Slope (2.8 ± 0.31) * 10�5 (1.14 ± 0.29) * 10�5 (2.69 ± 0.39) * 10�4 (�4.28 ± 0.23) * 10�3

Intercept (2.2 ± 0.5) * 10�3 (4.34 ± 0.47) * 10�3 0.107 ± 0.006 1.70 ± 0.04
R2 0.72 0.31 0.65 0.92
n 33 34 27 31
p <0.01 <0.05 <0.01 <0.01
F 81.4 16.0 48.3 356.8
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into the deep water within the SCS. An isopycnal mixing model indicated that the distributions of humic-like
FDOM in the upper northern SCS were dominated by conservative mixing with intrusive Kuroshio water with
depleted humic-like components. However, in situ production determined the dynamics of labile protein-like
FDOM in the upper 100 m of the northern SCS. Based on the abundance of CDOM and FDOM and reported
cross Luzon Strait water fluxes in the intermediate layer (500–1,500m) from the SCS to theWPS, we estimated
that eastward export fluxes of CDOM and FDOM from SCS to the WPS were 2.89 ± 1.70 × 1011 RU m3 yr�1 of
C1, 1.71 ± 0.33 × 1011 RU m3 yr�1 of C2, 1.12 ± 0.16 × 1011 RU m3 yr�1 of C4, and 1.13 ± 0.28 × 1013 m2 yr�1 of
CDOM. These results highlight the considerable role of the SCS in the global ocean carbon reserve.

DOM inside a warm eddy in the northeastern SCS had similar optical properties to the Kuroshio water from
which it was apparently formed, providing optical evidence that warm eddies do indeed separate from the
Kuroshio Current through the Luzon Strait. DOM in two cold eddies exhibited higher CDOM and FDOM levels,
higher HIX and M:C, and shallower spectral slope than DOM at the edges of the cold eddies and other eddy-
free regions in the northern SCS. The elevated levels of CDOM and FDOM in the cold eddies is likely explained
by the upwelling of CDOM-rich and FDOM-rich deep water and enhanced primary productivity inside the
cold eddy. Further studies are needed to examine the seasonal variation of the Kuroshio intrusion and its
impact upon DOM dynamics and also to understand the complex mechanisms involved in the response of
DOM dynamics to mesoscale processes.
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