59 research outputs found

    Y型聚乙二醇干扰素琢-2b注射液治疗HCV基因2/3型慢性丙型肝炎患者疗效和安全性的多中心随机对照试验研究

    Get PDF
    目的以标准剂量的聚乙二醇干扰素(Peg IFN)α-2a联合利巴韦林作为阳性对照,评价新型试验药物Y型Peg IFNα-2b注射液联合利巴韦林治疗2型/3型慢性丙型肝炎(CHC)患者的疗效和安全性。方法采用多中心、随机开放、阳性药对照的Ⅲ期临床试验,筛选符合要求的2型/3型CHC患者,按照2:1的比例随机分配到Y型Peg IFNα-2b组和Peg IFNα-2a组,同时口服利巴韦林,疗程24 w,停药随访24 w。采用Abbott Real Time HCV Genotype II检测HCV基因型,采用Cobas Taq Man实时定量PCR法检测血清HCV RNA水平。详细记录不良事件。主要疗效指标为持续病毒学应答(SVR),并进行非劣效检验。结果本试验实际入组2型/3型CHC患者255例,实际治疗241例。全分析集(FAS)数据显示,158例试验组和83例对照组患者SVR分别为85.4%(95%CI 79.94%~90.94%)和79.5%(95%CI 70.84%~88.20%,P=0.2402);对符合方案分析集(PPS)人群分析显示,试验组和对照组患者SVR分别为87.9%(95%CI 82.45%~93.27%)和85.9%(95%CI 77.82%~94.01%,P=0.7060),率差的95%可置信区间均符合非劣效标准;对PPS人群分析显示,85.8%受试者获得了早期病毒学应答(RVR),RVR的阳性预测值为90.1%;试验组和对照组不良事件发生率相似,分别为95.6%和95.2%,严重不良事件发生率分别为3.8%和3.6%。结论应用Peg IFNα联合利巴韦林治疗2型/3型CHC患者,新型试验药物Y型Peg IFNα-2b具有与对照药物Peg IFNα-2a相似的疗效和安全性。国家科技部“十二五”重大专项(编号:2012ZX10002-003);“重大新药创制”十二五科技重大专项(编号:2012ZX09303019)

    Investigation of improving policy on mountain area inundated problem-Toushe Living Basin in Yuchih Township Nantou County as an example

    No full text
    南投縣魚池鄉頭社盆地之土質為遠古湖泊淤積而成之泥炭土,因其土層鬆軟而以活盆地著稱,盆地出口之頭社橋,其上游集水區面積約495公頃,進入本試區可自台21甲線由集水區之西北方進入頭社村後即連接單車道之投62線,繞一近似橢圓形後即可由頭社橋南邊銜接台21線而出,投62線之上邊坡多為1∼2層樓之聚落分佈,坡度較陡。集水區之主流為水里溪之支流水尾溪排水幹渠,其餘各支流則匯集各農地之5條排水入於幹渠。因集水區之圓比值高達0.61,且其土層均由泥炭層及大量有機質的黏土組成,排水能力甚差,每逢颱風豪雨時由集水區流出之洪流在排入集流點頭社橋下之複式斷面渠道時,因通水斷面縮減而形成排水瓶頸所產生之迴水常造成多達約60公頃之淹水災情。因早期盆地種植水稻影響較少,近10年因稻作收益降低改種絲瓜、敏豆、茄子、蕃茄等旱作為主,甚不耐淹浸,常造成盆地內農作物重大損失。本研究旨在以水文模式分析探討其排水系統並做整體規劃,以提出有效改善淹水問題之方法。 本研究透過地質鑽探和測量調查並運用美國陸軍工兵團水文工程中心所發展之HEC-RAS(一維模式)演算現況排水路各重現期距之通水能力,再以FLO-2D(二維數值淹水模式)進行淹水模擬,利用2004年敏督利颱風豪雨所造成嚴重之七二水災與2008年辛樂克颱風豪大雨的資料進行驗證後,結果提出可有效改善淹水問題之四種對策:(一)排水出口改善:以加強即時排水為目標,可將原來0.90%之縱向渠道坡度改為1.51%,並將原寬2 m圳渠之橫斷面拓寬為15m。(二)坡地排水改善:分別將水尾溪排水幹線之1由原為4m之渠道挖寬為15m、水尾溪排水幹線之4和之5由原為1m之渠道挖深為2.5m以截排西南方和東北方之坡地逕流,讓逕流安全地排至水尾溪排水幹線。 (三)排水路改善:針對未達10年重現期距之洪峰流量且25年不溢堤保護標準之渠道斷面,由原來之8m拓寬至15m。(四)上述三項改善方案完成後,淹水情形可減少76.25%(45.75ha),但仍有25.75%(14.25ha)之面積會淹到水,故建議將該區域朝多目標利用之濕地發展,除了可利用活盆地泥炭土之特殊地質,以營造特殊生態保育景觀、確保水資源之永續利用及提昇當地之觀光收入之外,更可展現另一種全新的鄉村風貌。Toushe Living Basin at Yuchih Township in Nantou County is famous for its peat soil basin (soil is soft and loose). The area of the watershed at the upstream of Toushe Bridge covers approximately 495 hectares. We can enters the Toushe Village from the northwest by driving on the 21st Provincial expressway . The expressway is then connected to a one-way road 62st Provincial expressway. It goes along a seemingly ellipse road and exit to 21st Provincial expressway from the south of Toushe Bridge. Alongside the road there are one and two-story houses and the slope of the ground on the upper side of the way is rather steep. The Shueiwei Creek, one branche,of the Shueili Creek is the mainstream in the watershed and its drainage channels flows through it. The rest of branches congregate the drainage of every farm and flow into drainage channels. The circularity ratio of the watershed is high as 0.61. Moreover, the area is silted by ancient lakes,the layers contain peat beds and lots of organic clay, so its drainage capability is quite poor. Because the compound cross-sectional channel used for temporary drainage at the exit of the watershed is short, and the effectiveness of channel bottleneck will form back water. Therefore, the flood always occurs when typhoons bring heavy rainfall. The flood area covers over 60 hectares. The objective of this research is to probe into the overall plans of drainage system by hydrologic model analysis in order to put forward ways to effectively ameliorate the problems of inundation. Through boring survey and the utilization of the one-dimensional model of HEC-RAS developed by Hydrologic Engineering Center, U.S. Army Corps of Engineers, the flux capability of current drainage channels were calculated. The two-dimensional values of FLO-2D was then employed to simulate the inundation mode and cross-referenced the data of inundation brought by Typhoon Mindulle on July the 2nd in 2004 and heavy rain caused by Typhoon Sinlaku in 2007. The results showed that there are four effective methods to solve the problems of inundation. Firstly, Shueiwei drainage widen the 2m complicated cross-sectional channel to 15m. Secondly, Shueiwei drainage-1 widen the 2m complicated of cross-section channel to 15m. Shueiwei drainage -4 and Shueiwei drainage -5 deepen the 1m in depth of cross-section channel to 2.5m. Thirdly, drainage widen the 8m of cross-section channel to 15m. Fourthly, flooding area will reduce 76.25%(45.75 hectares) after drainage improvement. The research suggest the lowest area in the basin as a detention pond and drive wooden piles around it. At the same time, use the special quality of the peat soil basin to widely plant the special indigenous plants such as dawn redwood in order to cultivate a special ecology and coservation area, to ensure the sustainable use of water resources, to enhance local sightseeing value, and, in turn, to give a brand-new appearance of the countryside of this area.目 錄 摘 要 IV Abstract VI 目錄 VIIII 圖目錄 VIIIX 表目錄 X 一、前言 1-1 1-1 研究緣起 1-1 1-2 研究目的 1-1 1-3 本文組織 1-2 二、文獻回顧 2-1 2-1淹水模式應用之相關研究 2-1 2-2 綜合治水對策 2-3 三、研究材料與方法 3-1 3-1 研究流程 3-1 3-2 研究材料 3-2 3-3 研究方法 3-3 3-4 研究試區基本資料 3-7 四、結果與討論 4-1 4-1 水文分析 4-1 4-2 水理分析成果 4-21 4-3 淹水模擬驗證 4-25 4-4 淹水特性分析 4-33 4-5 綜合治水對策探討 4-37 4-6 改善效益分析 4-44 五、結論與建議 5-1 參考文獻 5-

    山區盆地淹水問題改善對策之探討- 以南投縣魚池鄉頭社活盆地為例

    No full text
    Toushe Living Basin at Yuchih Township in Nantou County is famous for its peat soil basin (soil is soft and loose). The area of the watershed at the upstream of Toushe Bridge covers approximately 495 hectares. We can enters the Toushe Village from the northwest by driving on the 21st Provincial expressway . The expressway is then connected to a one-way road 62st Provincial expressway. It goes along a seemingly ellipse road and exit to 21st Provincial expressway from the south of Toushe Bridge. Alongside the road there are one and two-story houses and the slope of the ground on the upper side of the way is rather steep. The Shueiwei Creek, one branche,of the Shueili Creek is the mainstream in the watershed and its drainage channels flows through it. The rest of branches congregate the drainage of every farm and flow into drainage channels. The circularity ratio of the watershed is high as 0.61. Moreover, the area is silted by ancient lakes,the layers contain peat beds and lots of organic clay, so its drainage capability is quite poor. Because the compound cross-sectional channel used for temporary drainage at the exit of the watershed is short, and the effectiveness of channel bottleneck will form back water. Therefore, the flood always occurs when typhoons bring heavy rainfall. The flood area covers over 60 hectares. The objective of this research is to probe into the overall plans of drainage system by hydrologic model analysis in order to put forward ways to effectively ameliorate the problems of inundation. Through boring survey and the utilization of the one-dimensional model of HEC-RAS developed by Hydrologic Engineering Center, U.S. Army Corps of Engineers, the flux capability of current drainage channels were calculated. The two-dimensional values of FLO-2D was then employed to simulate the inundation mode and cross-referenced the data of inundation brought by Typhoon Mindulle on July the 2nd in 2004 and heavy rain caused by Typhoon Sinlaku in 2007. The results showed that there are four effective methods to solve the problems of inundation. Firstly, Shueiwei drainage widen the 2m complicated cross-sectional channel to 15m. Secondly, Shueiwei drainage-1 widen the 2m complicated of cross-section channel to 15m. Shueiwei drainage -4 and Shueiwei drainage -5 deepen the 1m in depth of cross-section channel to 2.5m. Thirdly, drainage widen the 8m of cross-section channel to 15m. Fourthly, flooding area will reduce 76.25%(45.75 hectares) after drainage improvement. The research suggest the lowest area in the basin as a detention pond and drive wooden piles around it. At the same time, use the special quality of the peat soil basin to widely plant the special indigenous plants such as dawn redwood in order to cultivate a special ecology and coservation area, to ensure the sustainable use of water resources, to enhance local sightseeing value, and, in turn, to give a brand-new appearance of the countryside of this area.南投縣魚池鄉頭社盆地之土質為遠古湖泊淤積而成之泥炭土,因其土層鬆軟而以活盆地著稱,盆地出口之頭社橋,其上游集水區面積約495公頃,進入本試區可自台21甲線由集水區之西北方進入頭社村後即連接單車道之投62線,繞一近似橢圓形後即可由頭社橋南邊銜接台21線而出,投62線之上邊坡多為1~2層樓之聚落分佈,坡度較陡。集水區之主流為水里溪之支流水尾溪排水幹渠,其餘各支流則匯集各農地之5條排水入於幹渠。因集水區之圓比值高達0.61,且其土層均由泥炭層及大量有機質的黏土組成,排水能力甚差,每逢颱風豪雨時由集水區流出之洪流在排入集流點頭社橋下之複式斷面渠道時,因通水斷面縮減而形成排水瓶頸所產生之迴水常造成多達約60公頃之淹水災情。因早期盆地種植水稻影響較少,近10年因稻作收益降低改種絲瓜、敏豆、茄子、蕃茄等旱作為主,甚不耐淹浸,常造成盆地內農作物重大損失。本研究旨在以水文模式分析探討其排水系統並做整體規劃,以提出有效改善淹水問題之方法。 本研究透過地質鑽探和測量調查並運用美國陸軍工兵團水文工程中心所發展之HEC-RAS(一維模式)演算現況排水路各重現期距之通水能力,再以FLO-2D(二維數值淹水模式)進行淹水模擬,利用2004年敏督利颱風豪雨所造成嚴重之七二水災與2008年辛樂克颱風豪大雨的資料進行驗證後,結果提出可有效改善淹水問題之四種對策:(一)排水出口改善:以加強即時排水為目標,可將原來0.90%之縱向渠道坡度改為1.51%,並將原寬2 m圳渠之橫斷面拓寬為15m。(二)坡地排水改善:分別將水尾溪排水幹線之1由原為4m之渠道挖寬為15m、水尾溪排水幹線之4和之5由原為1m之渠道挖深為2.5m以截排西南方和東北方之坡地逕流,讓逕流安全地排至水尾溪排水幹線。 (三)排水路改善:針對未達10年重現期距之洪峰流量且25年不溢堤保護標準之渠道斷面,由原來之8m拓寬至15m。(四)上述三項改善方案完成後,淹水情形可減少76.25%(45.75ha),但仍有25.75%(14.25ha)之面積會淹到水,故建議將該區域朝多目標利用之濕地發展,除了可利用活盆地泥炭土之特殊地質,以營造特殊生態保育景觀、確保水資源之永續利用及提昇當地之觀光收入之外,更可展現另一種全新的鄉村風貌。目 錄 摘 要 IV Abstract VI 目錄 VIIII 圖目錄 VIIIX 表目錄 X 一、前言 1-1 1-1 研究緣起 1-1 1-2 研究目的 1-1 1-3 本文組織 1-2 二、文獻回顧 2-1 2-1淹水模式應用之相關研究 2-1 2-2 綜合治水對策 2-3 三、研究材料與方法 3-1 3-1 研究流程 3-1 3-2 研究材料 3-2 3-3 研究方法 3-3 3-4 研究試區基本資料 3-7 四、結果與討論 4-1 4-1 水文分析 4-1 4-2 水理分析成果 4-21 4-3 淹水模擬驗證 4-25 4-4 淹水特性分析 4-33 4-5 綜合治水對策探討 4-37 4-6 改善效益分析 4-44 五、結論與建議 5-1 參考文獻 5-

    大口径能量计定标和误差分析

    No full text
    本文描述了用小功率连续CO2激光器,定标短脉冲,大口径,大能量的激光能量计的方法,并且详细地讨论了误差的修正。一、引言阳极化的铝板作探测元件,能吸收96%以上的被测光,使转变为热,再通过热电堆变为电信号进行测量。我们用它制作了口径φ100mm的能量计,用以测量每个脉冲100~500J能量的自制电子束脉冲CO2激光器的能量。激光器的脉冲宽度是μs级的。但是,目前μs级的脉冲能量计定标,还是用连续光源。这使热电型能量计定标,特别是大口径短脉冲的能量计

    强脉冲CO_2激光与靶的相互作用

    No full text
    在真空背景下的实验表明,当微秒量级的强脉冲激光与靶材相互作用时,由于靶材的升华,激光维持爆震波依然存在。爆震波产生的压缩波传入靶内,该应力波的作用是材料破坏的重要因素。而强脉冲激光引起的汽化反冲压力、热应力和烧蚀破坏也是不可忽视的因素。实验还表明,在真空背景下维持爆震波足以将后续激光屏蔽

    强脉冲CO2激光对红外材料的破坏现象-摘要

    No full text
    指出了强脉冲激光对红外材料的破坏作用,用实验证明强激光对红外材料的破坏分为烧蚀破坏和冲击破坏。当光功率密度低于大气的光学击穿阈值时,是烧蚀破坏。当光功率密度超过光学击穿阈值时,主要是冲击破坏。在我们的实验条件下,激光对红外脆性材料的相互作用结果表明,红外光学材料极易产生微裂纹或粉碎性破坏。其破坏效果与激光的单脉冲能量、
    corecore