21 research outputs found
“互联网+”时代大学教学变革研究
互联网+时代,一方面对大学教学提出了新要求,另一方面又为大学教学变革提供了新手段。在"互联网+"时代,大学教学理念包括开放化理念、个性化理念、公平化理念以及终身化理念。基于以上教学理念,在大学教学实践中应该坚持以生为本的教学原则,采用多方交互式的教学方法,构建开放、共生的教学内容,培养学生的高阶能力,以适应"互联网+"时代的发展潮流
研究生对生成性课堂的参与(笔谈)——厦门大学教育研究院“高等教育研究方法”第十三次课反思
\"高等教育研究方法\"这门课具有研究型课堂的特征。其第十三次课的主题是对反思日志做一次元研究。反思日志是学习\"高等教育研究方法\"课的重要工具,它不仅是课堂教学的缩影,而且是课堂时效的呈现,更是学生自我成长的印证。反思日志勾勒着整个课堂进程的图景,反映着学生的收获、困惑、不足以及对自己未来改进方向的认识等。第十三次课以生成式教学引导学生主动参与课堂,通过对反思日志重新审视,让学生成为思考的主体、学习的主体、研究的主体,实现自我成长、自我发现、自我唤醒的课堂教学改革目标
氯氰菊酯对大型溞的毒性研究
研究了农药氯氰菊酯对大型氵蚤的毒性效应 ,结果显示 :氯氰菊酯对大型氵蚤有明显的毒性作用 ,其 2 4h-LC50 为 4.81 mg/L,实验毒性为中级 .同时也研究了国际标准毒物重铬酸钾对大型氵蚤的毒性为 2 4h-LC50 为 0 .3 8mg/L,表明该大型氵蚤对毒物较为敏感 .最后讨论了实验条件对大型氵蚤2 4h-LC50 的影
镍钛合金支架在预防和治疗全喉切除气管造口狭窄中的应用
【目的】探索一种预防和治疗全喉切除后气管造口狭窄的方法。【方法】在全喉切除气管造口成型或术后造口
狭窄者再成型时安放环形网状气管造口支架。【结果】喉癌术时安放支架气管造口成型(Ⅰ 期)5 例;喉癌术后发生造口狭窄,
再行气管造口成型(Ⅱ 期)1 例, 全部治愈, 造口呈椭圆形, 满足呼吸需要。随访6 个月, 造口形态稳定, 无狭窄发生。【结论】
环形网状气管造口支架对气管造口有明显支撑作用, 可以预防或治疗全喉切除气管造口狭窄
Investigation on the Coherence Collapse Characteristics of Single-Longitudinal-Mode DFB Fiber Laser
Releasing H2 from LiBH4-NH3 system
Releasing ca. 17.8 wt % of hydrogen was observed from the Co-catalyzed lithium borohydride ammoniate, Li(NH3)4/3BH4 (with equivalent protic and hydridic hydrogen atoms), in the temperature range of 135 to 250 °C in a closed vessel. The low NH3 equilibrium vapor pressure of the ammoniate in the vessel results in the retention of the majority of NH3 in the vicinity of LiBH4, and thus, creates an environment favorable for the direct dehydrogenation rather than deammoniation. The dehydrogenation is a two-step process forming the intermediates Li4BN3H10 and LiBH4. The final solid residue is a mixture of BN and Li3BN2. The presence of Co catalyst effectively reduces the kinetic barrier from 118.9 to 60.0 kJ mol-1.Releasing ca. 17.8 wt % of hydrogen was observed from the Co-catalyzed lithium borohydride ammoniate, Li(NH3)4/3BH4 (with equivalent protic and hydridic hydrogen atoms), in the temperature range of 135 to 250 °C in a closed vessel. The low NH3 equilibrium vapor pressure of the ammoniate in the vessel results in the retention of the majority of NH3 in the vicinity of LiBH4, and thus, creates an environment favorable for the direct dehydrogenation rather than deammoniation. The dehydrogenation is a two-step process forming the intermediates Li4BN3H10 and LiBH4. The final solid residue is a mixture of BN and Li3BN2. The presence of Co catalyst effectively reduces the kinetic barrier from 118.9 to 60.0 kJ mol-1
