10 research outputs found

    Optical Properties and Microstructure of ZrO2-x Thin Films Prepared by RF Magnetron Sputtering

    No full text
    平面顯示器在追求輕薄短小、低電壓消耗、高亮度、高畫素等特性外,影像的清晰度將會直接影響使用者的舒適感,利用表面做抗反射來降低光線在顯示器之玻璃或塑膠基材之反射而形成許多炫光、鬼影,提升影像品質是未來高品質顯示器畫質不可或缺的組件。 本研究採用RF反應磁控濺鍍沉積氧化鋯,應用於多層抗反射膜層中之拓寬層,以改變氧氬流量比、射頻功率與工作壓力,來探討薄膜的光學性質與微結構,再藉由研究結果提供給膜層設計者得到最佳抗反射率。在改變參數下,薄膜均以單斜晶( 11)優選方向之等軸晶結構所構成,近紫外光230 nm有明顯吸收曲線;在改變氧氬流量比研究發現,氧氬流量比0.8於可見光區有最高光穿透率95%,且比一般抗反射所要求光損失還低兩個數量級(k值為10-7),同時由AES與EDS結果得知氧氬流量比0.8是最接近化學計量比;在射頻功率方面,發現氧化鋯的生成熱是促進晶粒聚結成長而有良好的結晶性的主要驅動力,隨著功率增加,光穿透率也隨之提升;在工作壓力方面,發現在高工作壓力下,薄膜以較纖細之波浪狀結構來提升薄膜緻密度,使得折射率增加至2.02,也降低表面粗糙度。In recent years Flat Panel Display(FPD)has been improved to have the characteristics of light weight, small volume, low power consumption, high brightness and high pixel. With improving FPD's resolution it becomes more attractive to the customer. It is an indispensable component that anti-reflection films coating on the surface of glass or plastic substrates improve the quality of the high-definition FPD. Zirconium oxide is by far the most common material used in anti-reflection films. In this study, ZrO2-x thin films have been prepared by radio frequency magnetron sputtering with changing processing parameters, including O2/Ar ratios, applied power and working pressure. Optical system engineers utilize the results to gain optimum anti-reflection conditions. In the aspect of O2/Ar ratios, scanning electron microscopy reveals that the films have smooth surface and dense microstructure, instead of columnar structure. Maximum roughness (Ra=2.89 nm) is present in the films deposited at O2/Ar ratio 0.8, measured by atomic force microscopy. Grazing angle incidence X-ray diffraction indicates that all the ZrO2-x films have monoclinic structure and exhibit ( 11) preferred orientations. Transmission electron microscopy reveals that the ZrO2-x films have equiaxed microstructure and the grain decreases with increasing the O2/Ar ratio. At the same time, the stoichiometry measured by energy-dispersive spectroscopy and auger electron spectroscopy approaches Zr/O ratio 2 at O2/Ar ratio 0.8. From the UV/Vis spectrophotometry and ellipsometry, it is obtained that optimum optical properties with high transmittance about 95% and low extinction coefficient 10-7 in the visible regime appear in the film deposited at O2/Ar ratio 0.8. By increasing the O2/Ar ratios from 0.2 to 3, the refractive index of the films decreases from 2.02 to 1.85. In the aspect of RF powers, we find that the heat of formation in itself contributes to make the grain coalescence and have the excellent crystallinity. The increase in transmittance from 90% to 95% may be caused by increasing the powers from 75 W to 200 W. Finally, the results show that ZrO2-x films are transformed with the tiny wave-like microstructure by increasing working pressure. By increasing working pressure from 2.5 mtorr to 10 mtorr, the density and the refractive index increases from 0.86 to 0.92 and from 1.9 to 2.02, respectively.中文摘要----------------------------------------------------------------------------------------Ⅰ 英文摘要----------------------------------------------------------------------------------------Ⅱ 總目錄-------------------------------------------------------------------------------------------Ⅳ 圖目錄-------------------------------------------------------------------------------------------Ⅶ 表目錄-------------------------------------------------------------------------------------------XI 第一章 緒論 1-1 前言------------------------------------------------------------------------------------1 1-2 研究目的------------------------------------------------------------------------------2 第二章 理論基礎與文獻回顧 2-1 反應射頻磁控濺鍍原理 2-1-1 電漿理論---------------------------------------------------------------------7 2-1-2 射頻濺鍍---------------------------------------------------------------------9 2-2 薄膜沉積機制--------------------------------------------------------------------11 2-3 濺鍍薄膜微結構分佈模型-------------------------------------------------------14 2-4 光學理論 2-4-1 單介面與單層膜之反射與穿透-----------------------------------------16 2-4-2 透明薄膜之光干涉現象--------------------------------------------------18 2-4-3 透明薄膜光學性質--------------------------------------------------------18 2-4-4 抗反射薄膜設計-----------------------------------------------------------19 2-5 氧化鋯基本性質 2-5-1 氧化鋯的性質與結構-----------------------------------------------------21 2-5-2 氧化鋯薄膜目前研究及應用--------------------------------------------21 第三章 實驗方法與步驟 3-1 實驗規劃與實驗流程-------------------------------------------------------------30 3-2 實驗材料與基材前處理----------------------------------------------------------32 3-3 濺鍍系統與薄膜製備 3-3-1 薄膜濺鍍系統簡介--------------------------------------------------------33 3-3-2 氧化鋯薄膜製備-----------------------------------------------------------34 3-4 薄膜性質分析與量測 3-4-1 薄膜穿透率量測-----------------------------------------------------------35 3-4-2 折射率量測-----------------------------------------------------------------35 3-4-3 薄膜表面形貌與膜厚量測-----------------------------------------------35 3-4-4 薄膜結晶結構分析--------------------------------------------------------36 3-4-5 表面粗糙度量測-----------------------------------------------------------36 3-4-6 薄膜微結構分析-----------------------------------------------------------36 3-4-7 定性與定量化學成分分析-----------------------------------------------37 第四章 結果與討論 4-1 氧流量對薄膜性質之影響 4-1-1 薄膜表面形貌、沉積速率及粗糙度探討------------------------------41 4-1-2 薄膜結晶結構及顯微結構探討-----------------------------------------44 4-1-3 薄膜成分與化學計量分析探討-----------------------------------------47 4-1-4 薄膜光學性質探討--------------------------------------------------------48 4-1-5 改變氧流量之結果-------------------------------------------------------50 4-2 射頻功率對薄膜性質之影響 4-2-1 薄膜表面形貌、沉積速率及粗糙度探討------------------------------52 4-2-2 薄膜結晶結構及顯微結構探討-----------------------------------------53 4-2-3 薄膜光學性質探討--------------------------------------------------------54 4-2-4 改變射頻功率之結果-----------------------------------------------------55 4-3 工作壓力對薄膜性質之影響 4-3-1 薄膜表面形貌、沉積速率及粗糙度探討------------------------------57 4-3-2 薄膜結晶結構及顯微結構探討-----------------------------------------58 4-3-3 薄膜光學性質探討--------------------------------------------------------60 4-3-4 改變工作壓力之結果-----------------------------------------------------60 第五章 結論-----------------------------------------------------------------------------------92 參考文獻----------------------------------------------------------------------------------------9

    Preparation, Characteristic and Application of TiVCrZrHf Multi-element Thin Films

    No full text
    本論文主要利用射頻磁控濺鍍法以單一等莫耳多元合金靶材在不同製程參數下製備TiVCrZrHf多元合金氮化物薄膜於Si晶片上。研究結果與討論主要分為下列幾個部份,第一部份探討氮氣流量對於(TiVCrZrHf)N薄膜結構與機械性質之影響,研究結果發現,當氮氣流量低於2 sccm下,(TiVCrZrHf)N薄膜具有非晶相,隨氮氣流量增加到4與6 sccm,則FCC固溶相生成,結構優選方向會由(111)轉變成(220);其中4 sccm條件下會得到較佳的機械性質,其硬度與彈性係數分別為23.8和267 GPa。第二部份探討基板溫度(RT至450 ℃)對於(TiVCrZrHf)N多元合金氮化物薄膜的結構與機械性質的影響,當溫度上升時,薄膜氮含量會隨之減少,這是因為位於非熱平衡位置之氮原子熱脫附造成。在這個研究裡,(TiVCrZrHf)N多元合金氮化物薄膜在不同溫度製程均呈現FCC結構,其微結構隨溫度上升越來越緻密,因此薄膜機械性質也隨之獲得改善,於基板溫度450 ℃時,可獲得最佳硬度與彈性係數48 GPa 和316 GPa。第三部份主要在基板偏壓(0至200 V)的條件下製備(TiVCrZrHf)N多元合金氮化物薄膜,隨偏壓增加,其FCC結構優選方向由(111)轉變成(200),且晶粒尺寸與表面粗度隨之變小。偏壓增加的效應,可助於硬度與彈性係數等機械性質增加至33 GPa和276 GPa。第四部份則將第一部分製備之(TiVCrZrHf)N多元合金氮化物薄膜應用至擴散阻障之研究;所製備之(TiVCrZrHf)N0.4與(TiVCrZrHf)N擴散阻障層厚度為10 nm。經擴散阻障性質分析發現,(TiVCrZrHf)N0.4與(TiVCrZrHf)N薄膜在600 ℃與800 ℃退火候仍能有效阻止銅矽之交互擴散,非常適合作為應用於IC元件製程之擴散阻障層。The aim of this study is to prepare, characterize, and apply the TiVCrZrHf multi-element nitride coatings onto Si substrates in Ar and/or N2 atmosphere by magnetron sputtering using a single equimolar TiVCrZrHf alloy target. The deposition parameters such as nitrogen flow rate, substrate temperature and bias were varied to investigate the change of structural and properties of the coatings. The content of the thesis is mainly divided into four sections. In the first section, the (TiVCrZrHf)N coatings were deposited onto Si substrates to understand the influence of N2 flow (0 to 6 sccm) on structure and properties of the coatings. In this study, the (TiVCrZrHf)N coatings deposited at N2 flow rates of 0, 1, and 2 sccm showed an amorphous structure, whereas those deposited at N2 flow rates of 4 and 6 sccm exhibited a simple face-centered cubic solid solution structure. By increasing N2 flow to 4 sccm, the hardness and modulus reached a maximum value of 23.8 and 267.3 GPa, respectively. In the second section, influence of the substrate temperature (RT to 450 ℃) on the structure and properties of the coatings were investigated. By the increasing the substrate temperature, the N content decreased. The decrease in N content obtained at an elevated substrate temperature may be due to its higher desorption rate from the film surface at a higher substrate temperature. Nevertheless, the coating microstructure become denser and denser as the substrate temperature increases. The coatings reach the hardness and modulus of 48 and 316GPa, respectively, by increasing substrate temperature to 450 ℃. In the third section, (TiVCrZrHf)N coatings were deposited under various substrate bias (0 to -200 V). As the substrate bias increased, the preferred orientation of the (TiVCrZrHf)N coatings changed from (111) to (200). Reduced grain size and surface roughness were also observed. As the substrate bias increased, the hardness and the elastic modulus were enhanced to about 33 and 276 GPa, respectively. In the final section, 10 nm-thick sputter-deposited (TiVCrZrHf)N0.4 and (TiVCrZrHf)N thin films were developed as diffusion barrier layers for Cu interconnects. The results show that the (TiVCrZrHf)N0.4 and (TiVCrZrHf)N films can prevent the interdiffusion between Cu and Si up to 600 ℃ and 800 ℃, respectively. The (TiVCrZrHf)N thin film has a high potential of barrier property for the future IC application.Table of Content 摘要 i Abstract ii Table of Content iv Table of Figures vii Table of Tables x Chapter 1 Background 1 1-1 Physical Sputtering and Sputter Deposition 1 1-1-1 Introduction 1 1-1-2 Direct Current (dc) Magnetron Sputtering 3 1-1-3 Radio Frequency (rf) Sputtering 7 1-1-4 Reactive Sputter Deposition 9 1-2 Thin film Formation 10 1-2-1 Growth Modes 10 1-2-2 Thin film structure 12 1-3 Overview of Hard Coatings 16 1-4 Review of High Entropy Alloy coatings 27 1-5 Review of Diffusion Barrier Layer 30 1-6 Purpose of This Study 35 References 36 Chapter 2 Structural and mechanical properties of multi-element (TiVCrZrHf)N coatings by reactive magnetron sputtering 42 Abstract 42 2-1 Introduction 43 2-2 Experimental 45 2-3 Results and discussion 47 2-3-1 Deposition rate and chemical composition 47 2-3-2 Structure analysis 47 2-3-3 Mechanical properties…………………………………………………………………50 2-4 Summary 52 References 53 Chapter 3 Effects of substrate temperature on the structure and mechanical properties of (TiVCrZrHf)N coatings 62 Abstract 62 3-1 Introduction 63 3-2 Experimental 65 3-3 Results and discussion 67 3-3-1 Crystal Structure 67 3-3-2 Microstructure 68 3-3-3 Hardness 70 3-4 Summary 72 References 73 Chapter 4 Effects of substrate bias on structure and mechanical properties of (TiVCrZrHf)N coatings 82 Abstract 82 4-1 Introduction 83 4-2 Experimental 85 4-3 Results and discussion 87 4-4 Summary 92 References 93 Chapter 5 Thermally Stable TiVCrZrHf Nitride Films as Diffusion Barriers in Copper Metallization 105 Abstract 105 5-1 Introduction 106 5-2 Experimental 108 5-3 Results and discussion 110 5-4 Summary 113 References 114 Chapter 6 Conclusion 120 Vita and Publications List 123 List of Figures Fig. 1-1-2-1. Sputtering target configurations 6 Fig. 1-2-1-1. Schematic growth modes of thin films: Morphology of a growing for (a) frank-van der Merwe (layer by layer), (b) Stranski-Krastanov (island plus layer) and (c) Volmer-Weber (island) growth upon increased coverage with monolayers (thickness) 11 Fig. 1-2-2-1. Schematic growth modes of thin films: Morphology of a growing for (a) frank-van der Merwe (layer by layer), (b) Stranski-Krastanov (island plus layer) and (c) Volmer-Weber (island) growth upon increased coverage with monolayers (thickness) 14 Fig. 1-2-2-2. Schematic representation of general structure of a thin film prepared under low mobility conditions 15 Fig. 1-3-1. Different types of multilayer coatings: (a) small number of single layers, (b) high number of nonisostructural single layers, (c,d) high number of isostructural single layers-superlattice 20 Fig. 1-3-2. Hardness of TiN-CrN/AlNsuperlattice structure as a function of the superlattice period 21 Fig. 1-3-3. Hardness of TiN/VN(100) superlattice structure as a function of the superlattice period 22 Fig. 1-3-4. With grain size decreased no dislocations can propagate, deformation mainly by grain boundary sliding, substantial increase in hardness………………………….………………………23 Fig. 1-3-5. Tensile strength and elastic limit of strong materials in comparison with the superhard nanocomposites……………………..………………………………………………………………24 Fig. 1-3-6. Thermal stability (isochronal annealing in pure N2 or forming gas for 30 min at each temperature) of nc-TiN/a-Si3N4 deposited by magnetron sputtering close to the optimum deposition conditions…………………………………………………………………………………………25 Fig. 1-5-1. Plot of barrier thicknesses and stable temperatures in Si/barrier/Cu structures………...33 Fig. 2-1. Deposition rate of (TiVCrZrHf)N coatings deposited at various N2 flow.. 56 Fig. 2-2. EPMA element contents in (TiVCrZrHf)N coatings deposited at various N2 flow.. 57 Fig. 2-3. X-ray diffraction pattern of the (TiVCrZrHf)N coatings deposited at various N2 flow. 58 Fig. 2-4. SEM micrographs of the (TiVCrZrHf)N coatings deposited at various N2 flow: (a) 0, (b) 1, (c) 2, (d) 4, and (e) 6 SCCM. 59 Fig. 2-5. TEM micrographs of the (TiVCrZrHf)N coatings deposited at N2 flow is 6 SCCM. 60 Fig. 2-6. Hardness and elastic modulus of the (TiVCrZrHf)N coatings deposited at various N2 flow 61 Fig. 3-1.EPMA element contents in (TiVCrZrHf)N coatings deposited at various substrate temperature... 75 Fig. 3-2. X-ray diffraction pattern of the (TiVCrZrHf)N coatings deposited at substrate temperature... 76 Fig. 3-3. Grain size of the (TiVCrZrHf)N coatings deposited at various substrate temperature.. 77 Fig. 3-4. SEM micrographs of the (TiVCrZrHf)N coatings deposited at various substrate temperature: (a) RT; (b) 250 ˚C; (c) 350 ˚C, and (d) 450 ˚C... 78 Fig. 3-5. TEM micrographs with SAD patterns of the (TiVCrZrHf)N coatings deposited at substrate temperature is 450 ˚C.. 79 Fig. 3-6. Hardness and elastic modulus of the (TiVCrZrHf)N coatings deposited at various substrate temperature.. 80 Fig. 4-1. EPMA element contents in (TiVCrZrHf)N coatings deposited at various substrate biases... 96 Fig. 4-2. X-ray diffraction pattern of the (TiVCrZrHf)N coatings deposited at various substrate biases... 97 Fig. 4-3. Grain size and lattice constant of (TiVCrZrHf)N coatings as a function of substrate biases... 98 Fig. 4-4. SEM micrographs of the (TiVCrZrHf)N coatings deposited at various substrate biases: (a) 0, (b) 50, (c) 100, (d) 150, and (e) 200 V... 100 Fig. 4-5. AEM images of the (TiVCrZrHf)N coatings deposited at various substrate biases: (a) 0, (b) 50, (c) 100, (d) 150, and (e) 200 V... 101 Fig. 4-6. TEM micrographs of the (TiVCrZrHf)N coatings deposited at substrate bias of 200 V. Two SAD patterns for areas A (lower) and B (top) of the coating... 102 Fig. 4-7. Hardness and elastic modulus of the (TiVCrZrHf)N coatings deposited at various substrate biases .. 103 Fig. 5-1. Influence of annealing temperature on the XRD pattern of the (a) Si/HEAN0.4/Cu and (b) Si/HEAN/Cu contact systems 116 Figure 5-2. Sheet resistance for the Si/HEAN0.4/Cu and Si/HEAN/Cu contact systems as a function of annealing temperature .. 117 Figure 5-3. TEM images of the (a) as-deposited, (b) 800 ˚C- annealed (the insert: NBD pattern), and (c) 900 ˚C- annealed Si/HEAN/Cu film stacks. The beam diameter for NBD is 0.5 nm .. 118 List of Tables Table 1-3-1 Comparison of hard bulk materials, hard single layer films and selected hard and superhard nanocomposite coatings 26 Table 1-4-1 Comparison of the mechanical properties of high entropy alloy coatings research published recently 29 Table 1-5-1 Comparison of the maximum working temperature of barrier research published recently 34 Table 3-1 The maximum hardness of other HEA coatings research reported. 81 Table 4-1 Coefficient of thermal expansion, α, and bulk hardness of all binary nitrides based on the target element 119 Table 5-1 The maximum endurance temperature of other barrier researches reported recently 11

    三倍体方正银鲫(■)同二倍体红鲫(■)杂交胚胎的非整倍体发育

    No full text
    根据囊胚细胞和原肠胚细胞染色体数的观察,三倍体雄性方正银鲫 Carassius auratusgihelio)和二倍体雌性红鲫(Carssius auratus red variety)杂交获得的胚胎,是杂合的非整倍体胚胎,因此胚胎发育畸形,中途死亡。胚胎染色体数从50至142,变异幅度很宽,86%以上胚胎细胞染色体数分布在56—105范围内,其中以染色体数为76—86的胚胎细胞最常见,占34%

    用於燃料電池之膜電極組

    No full text
    一種用於燃料電池之膜電極組,其主要包含設於一陽極與一陰極之間的質子交換層以及設於該質子交換層與陽極之間的儲氫合金層

    异源精子在银鲫雌核发育子代中的生物学效应

    No full text
    黑龙江省方正县双凤水库的两性型银鲫群体是三倍体雌核发育种群。异源精子不仅能刺激银鲫卵雌核发育,而且还能影响雌核发育子代的某些性状,如对于子代的生长、性比、体色和肝脏LDH同工酶等都产生了影响。为区别于原有术语“雌核发育gynogenesis”,我们把这种表现了异源精子生物学效应的雌核发育称之为“异精雌核发育allogynogenesis”,发育的子代称之为“异育银鲫”。异育银鲫已以其明显的生长优势在生产上显示了优良的经济性状

    Literaturverzeichnis und Anhang

    No full text

    Ziprasidone versus other atypical antipsychotics for schizophrenia

    No full text
    corecore