55 research outputs found

    Aerosol measurement around the redge of East Antarctica using Rogallo type UAV

    Get PDF
    第8回極域科学シンポジウム/特別セッション:[S] 先端的技術で切り開く極域科学 -極域観測における計測、分析、解析の最前線-12月7日(木)国立極地研究所 2階大会議室The Eighth Symposium on Polar Science/Special session: [S] Polar science developed by leading-edge technology - on the frontiers of measurement and analysis in polar science -Thu. 7 Dec./2F Auditorium, National Institute of Polar Researc

    ガッコウカチ ト コドモタチ

    Full text link
    学校は子どもたちに、自らが「価値あるもの」と位置づけるものを伝えようとする。日々の教育活動のなかで、顕在・潜在両面のカリキュラムによって彼らに伝えられる、この「価値あるもの」を、ここでは〈学校価値〉と呼ぶことにする。〈学校価値〉を受容しやすい子どもは、学校に適合的な子どもであり、このく学校価値〉の受容度によって、小学校・中学校段階から子どもたちは日常的な選別を受けるのである。その選別により、同程度に〈学校価値〉を受容し、成績・学力や意識・行動も似かよった子どもどうしがふりわけられ、早い時期から「隠されたトラック」ともいうべき構造が形成されると考えられるが、それは中学校での成績に集約され、高校入試を経ることにより高校間格差という形で顕在化してくる。〈学校価値〉による選別という概念によって、小学校・中学校・高校を一連の選別システムとして把握することが可能となり、またこの選別機能を通じて学校は自己再生産を果たしているのである。論

    『着衣泳』の指導について 第II報

    Get PDF
    外国では数年前から『着衣泳』の指導が行われていたが,我が国ではその事例は非常に少なく,指導法はまだ確立されていない。しかし,文部省もその必要性や意義・注意点などを唱える状況に至り,今後各方面での研究・具体的な指導法の確立が急がれるべき情勢となってきた。大切な人命を水難事故から救うために,学校教育の場で我々は何をすべきかということを念頭に置きながら,当校では昨年度より『着衣泳』の授業実践を試みた。今年度は,その反省と課題を踏まえ,着衣して泳ぐことが,各泳法のスピードや動作にどのような影響を与えているのかを明らかにするとともに,複数の学年で着衣泳の指導をモデル的に実施し,中高一貫教育の中でその指導をどのように系統だててすべきなのかを探ってみた

    Bone Grafting Performed to Two Cleft Lip and Palate Patients

    Get PDF
    Bone graftings were performed to two patients of cleft lip and palate. The first case was a 18-year-old female with nasal deformities, and was reconstructed using alveolar bone of the Г region. The second was a 14-year-old male with the floating premaxilla, and was reconstructed by Obwegeser\u27s osteotomy of the premaxilla and fixation with grafted iliac bone. Satisfactory results were obtained for facial deformities and functional disorders of them, and usefulness of bone grafts to cleft lip and palate patients was confirmed

    サイレージ用トウモロコシの根釧地域向け高雌穂重割合品種「ぱぴりか」の育成

    Get PDF
    A new silage maize cultivar, "Papirika", was developed and registered as "Maize Norin Kou 61" by the Japanese Ministry of Agriculture, Forestry and Fisheries in 2005. Papirika is a single cross hybrid between two flint inbred lines, Ho87 as seed parent and To85 as pollen parent, and was selected through an evaluation test at Konsen Agric. Exp. Stn.. Papirika is classified into the early maturity group and is adapted to Konsen area in Hokkaido, Japan. Silking date of Papirika is two days earlier than that of Ema. Whole-plant dry matter content of Papirika is higher than that of Ema. The average yield for whole plant dry matter of Papirika is 6% higher than that of Ema, and the ear content of Papirika is 9% higher than that of Ema. Lodging resistance of Papirika is the same as that of Ema, but it decreases outside of Konsen area. Papirika is moderately resistant to northern corn leaf blight (Setosphaeria turcica) and susceptible to southern corn leaf blight (Cochliobolus heterostrophus). Its level of resistance to northern corn leaf blight is higher than that of Ema and Daiheigen. Its resistance to southern corn leaf blight is the same as that of Ema and a little higher than that of Daiheigen. Papirika shows the same level of resistance as that of Ema to common smut (Ustilago maydis). Cold tolerance of Papirika is higher than that of Ema and the same as that of Daiheigen. The adaptability of Papirika to higher planting density is as high as that of Ema. Suitable planting density of Papirika is 800 - 850 plants per are when it is grown at ordinary row width without mulching

    メドウフェスク新品種「まきばさかえ」の育成とその特性

    Get PDF
    \u27Makibasakae\u27, a new cultivar of meadow fescue (Festuca pratensis Huds.), was jointly developed by NARO Hokkaido Agricultural Research Center and Hokkaido Prefectural Konsen Agricultural Experiment Station (present, Hokkaido Research Organization Konsen Agricultural Experiment Station). This cultivar was registered as a recommended cultivar by the Hokkaido Prefectural Government in 2009 and as Norin Synthetic No.3 of meadow fescue by the Ministry of Agriculture, Forestry and Fisheries in 2010. Source and method of breeding : \u27Makibasakae\u27 was developed as a synthetic cultivar using five clones, which were selected from 144 superior clones through evaluation of winter hardiness and a polycross progeny test under frequent cutting. The origins of parental clones were as follows : cl. 387 was derived from \u27Bundy\u27, cl. 452 and cl. 455 were derived from \u27Salten\u27 and cl. 468 and cl. 473 were derived from \u27Boris\u27. Characteristics : \u27Makibasakae\u27 shows remarkably higher winter hardiness with good plant vigor in early spring than \u27Harusakae\u27 and \u27Pradel\u27 on average in seven locations in the regional performance test, especially in four locations located in eastern Hokkaido with severe winter weather where the soil freezes. \u27Makibasakae\u27 is more resistant to snow molds caused by Myriosclerotinia borealis and Typhula ishikariensis than \u27Harusakae\u27 and \u27Pradel\u27. The freezing tolerance of \u27Makibasakae\u27 is the same level as that of \u27Harusakae\u27, though it is higher than that of \u27Pradel\u27. \u27Makibasakae\u27 has a 7% higher dry matter yield than that of \u27Harusakae\u27 under frequent cutting (about 7-10 cuttings per year) simulating intensive grazing. \u27Makibasakae\u27 shows an especially high stable yield in spring and autumn compared to \u27Harusakae\u27 and has shown good persistency in the years evaluated. The tolerance to net blotch caused by Drechslera dictyoides of \u27Makibasakae\u27 is the same as that of \u27Harusakae\u27 and \u27Pradel\u27, while the tolerance to halo blight caused by Pseudomonas syringae is slightly weaker than that of \u27Harusakae\u27. The grazing adaptability of \u27Makibasakae\u27 is nearly as good as that of \u27Harusakae\u27 and the competitive ability of \u27Makibasakae\u27 against white clover was slightly higher than that of \u27Harusakae\u27 in meadow fescue-white clover mixed sown sward. \u27Makibasakae\u27 is an early maturing cultivar as well as \u27Harusakae\u27. The date of ear emergence is one day earlier than that of \u27Harusakae\u27 in Sapporo. The forage quality and morphological characteristics of \u27Makibasakae\u27 are similar to those of \u27Harusakae\u27. Endophyte was detected in all parental clones of \u27Makibasakae\u27. \u27Makibasakae\u27 does not contain two major endophyte alkaloids, ergovaline and lolitrem B, which can be toxic to livestock, but it contains loline alkaloid, which can deter insects. These results indicate that \u27Makibasakae\u27 is best suited for use in the management-intensive grazing system in eastern Hokkaido, which has severe winter weather. Seed yield is slightly higher than that of \u27Harusakae\u27, and the average seed yield of \u27Makibasakae\u27 is 6.3kg/a over a period of three years in Sapporo

    [[alternative]]Inhibitory activities of chitosan and its enzymatic hydrolysates against bacteria and Drosophila larval

    No full text
    碩士[[abstract]]本研究係以Bacillus cereus TKU006、Serratia ureilytica TKU013、Pseudomonas sp.TKU015三株幾丁質酶/幾丁聚醣酶生產菌發酵製備出粗酵素液。以酵素法水解懸浮態幾丁質、水溶性幾丁聚醣,製備不同水解時間之酵素水解物並以其進行抗菌及抗果蠅實驗,探討酵素水解物之對E.coli、B.subtilis及果蠅幼蟲之抑制活性。 抗E.coli測試中,WSC酵素水解物依水解程度不同,對E.coli與B.subtilis在抗菌效果上有顯著的不同抑制效果,樣品WSC/013/1h有最佳抑制效果,IC50為0.1%。抗B.subtilis測試中,樣品WSC/015/12h有最佳抑制效果,IC50在0.07%以下。 在果蠅幼蟲毒殺實驗,酵素水解懸浮態幾丁質之水解物中,CC/015水解物以水解第1小時之樣品對果蠅有最佳毒殺效果,致死率達87.5%。[[abstract]]Preparation of crude enzyme solutions from three chitinase/chito- sanase-produced strains, Bacillus cereus TKU006, Serratia ureilytica TKU013, and Pseudomonas sp.TKU015 to hydrolyze prepared from colloidal chitin(CC) and water soluable chitosan(WSC). Hydrolysates were collected at several points in time. The bio- activity of these hydrolysates against bacteria, Drosophila larval were studied. The inhibitory activity has a significant difference between against E.coli and B.subtilis treating with different hydrolysates. WSC hydrolysates prepared using TKU013 enzyme at hydrolysis time of 1h which had better antibacterial activity against E.coli, IC50=0.1%. WSC/015/12h had better antibacterial activity against B.subtilis, IC50<0.07%. CC/015/0h used in anti-Drosophila activity tests shows best insecticidal effect(morality=87.5%).[[tableofcontents]]目錄 頁次 授權書 簽名頁 誌謝 中文摘要 ·································································································· I 英文摘要 ································································································· II 目錄 ········································································································ III 圖目錄 ····································································································VI 表目錄 ··································································································· VII 第一章 緒論 ........................................................................................... 1 第二章 文獻回顧 ................................................................................... 3 2.1 幾丁質與幾丁聚醣 .................................................................... 3 2.1.1 幾丁質 ............................................................................. 3 2.1.2 幾丁聚醣 ......................................................................... 3 2.2 幾丁質酶與幾丁聚醣酶 ............................................................ 4 2.2.1 幾丁質酶 ......................................................................... 4 2.2.2 幾丁聚醣酶 ..................................................................... 4 IV 2.3 水解幾丁質、幾丁聚醣之方法 ............................................... 4 2.3.1 化學法(表2.1) ................................................................ 4 2.3.2 酵素法(表2.2) ................................................................ 7 2.4 幾丁聚醣抗菌上之研究 ............................................................ 9 2.5 幾丁質、幾丁聚醣之應用 ...................................................... 11 第三章 材料與方法 ............................................................................. 12 3.1 實驗菌株、果蠅 ..................................................................... 12 3.2 實驗材料 ................................................................................ 12 3.3 實驗儀器 ................................................................................ 13 3.4 液態培養 ................................................................................ 13 3.5 幾丁質酶、幾丁聚醣酶粗酵素液之製備 .............................. 15 3.6 懸浮態幾丁質製備 ................................................................. 15 3.7 酵素活性 ................................................................................ 15 3.7.1 幾丁質酶活性測定 ...................................................... 15 3.7.2 幾丁聚醣酶活性測定 .................................................. 16 3.8 進行酵素水解之基質的製備 ................................................. 16 3.8.1 基質之製備 .................................................................. 16 3.8.2 酵素水解之基質的製備 .............................................. 17 3.9 N-乙醯幾丁寡糖製備 ........................................................... 17 V 3.10 總糖含量測定(Dubois et al., 1956) ...................................... 17 3.11 還原糖含量測定(Miller, 1959) .............................................. 17 3.12 抗菌活性測試 ....................................................................... 19 3.12.1 抗大腸桿菌活性測試 ................................................ 19 3.12.2 抗枯草桿菌活性測試 ................................................ 19 3.13 毒殺果蠅幼蟲活性試驗 ....................................................... 20 3.14 質譜分析(MALDI-TOF-MASS) ........................................... 20 第四章 結果與討論 ............................................................................. 21 4.1 幾丁質酶/幾丁聚醣酶生產菌之選擇 ..................................... 21 4.2 幾丁質/幾丁聚醣酶之粗酵素液製備..................................... 21 4.3 粗酵素液活性測定 ................................................................. 21 4.4 總糖與還原糖變化量 .............................................................. 24 4.5 抗菌活性 ................................................................................. 29 4.5.1 抗大腸桿菌活性測試 ................................................... 29 4.5.2 抗枯草桿菌活性測試 ................................................... 30 4.6 抗菌之綜合討論 ...................................................................... 31 4.7 毒殺果蠅幼蟲活性測定 .......................................................... 41 第五章 結論 ......................................................................................... 51 參考文獻 ............................................................................................... 52 VI 圖目錄 圖2.1 幾丁質、幾丁聚醣、纖維素之分子結構 ................................... 5 圖4.1、三種粗酵素液水解CC 不同時間總糖、還原糖含量之變化 (A)B. cereus TKU006 (B)S. ureilytica TKU013 (C)Pseudomonas sp. TKU015) ... 27 圖4.2、三種粗酵素液水解WSC 不同時間總糖、還原糖含量之變化 (A)B. cereus TKU006 (B)S. ureilytica TKU013 (C)Pseudomonas sp. TKU015) ............................................................................................................... 28 圖4.3、WSC 及WSC/006/1h、WSC/013/1h 與WSC/015/1h 水解物濃 度對抗大腸桿菌之影響 ........................................................................ 33 圖4.4、水解時間對WSC/013 水解物抗大腸桿菌之影響(樣品濃度為 0.1%) ...................................................................................................... 34 圖4.5、水解時間對WSC/015 水解物抗大腸桿菌之影響(樣品濃度為 0.1%) ...................................................................................................... 35 圖4.6、WSC 及WSC/006/1h、WSC/013/1h 與WSC/015/1h 水解物濃 度對抗枯草桿菌之影響。 .................................................................... 36 圖4.7、水解時間對WSC/006 水解物抗枯草桿菌之影響(樣品濃度為 0.08%) .................................................................................................... 37 圖4.8、水解時間對WSC/013 水解物抗枯草桿菌之影響(樣品濃度為 0.05%)………………………………………………………………………………………………….38 圖4.9、水解時間對WSC/015 水解物抗枯草桿菌之影響(樣品濃度為 0.05%)………………………………………………………………………………………………….39 圖4.10、添加不同劑量幾丁質、幾丁聚醣、纖維素之果蠅幼蟲致死率 ............................................................................................................... 44 VII 圖4.11、CC/015不同水解時間水解物對果蠅幼蟲毒殺效果(添加劑量: 30μL) ...................................................................................................... 45 圖4.12、WSC(●)、WSC/015/1h(○) 添加不同劑量樣品對果蠅幼蟲毒 殺效果 ................................................................................................... 46 圖4.13、WSC/006 不同水解時間水解物對果蠅幼蟲毒殺效果(添加劑 量:30μL) .............................................................................................. 47 圖4.14 WSC/013 不同水解時間水解物對果蠅幼蟲毒殺效果(添加劑量: 30μL) ...................................................................................................... 48 圖4.15 CC/015/1h 水解物樣品經製備所得寡糖之MALDI-TOF-MASS 分 析圖 ....................................................................................................... 49 圖4.16 (A)WSC/006/1h 及(B)WSC/013/1h 水解物樣品經製備所得寡糖 之MALDI-TOF- MASS 分析圖 ................................................................ 50 表目錄 表2.1、化學法水解幾丁質、幾丁聚醣優劣之比較 ............................. 6 表2.2、酵素法水解幾丁質、幾丁聚醣優劣之比較 ............................. 8 表2.3、幾丁聚醣在抗菌上之討論 ...................................................... 10 表3.1、以B. cereus TKU006、S. ureilytica TKU013、Pseudomonas sp. TKU015 生產幾丁質酶及幾丁聚醣酶之發酵條件 .............................. 14 表3.2 DNS 試劑的組成 ........................................................................ 18 表4.1、B. cereus TKU006、S. ureilytica TKU013、Pseudomonas sp. TKU015 三株細菌所生產之幾丁質酶、幾丁聚醣酶粗酵素液活性 .. 23 表4.2、三組酵素水解物中分別對E.coil 及B.subtilis 抗菌效果較佳之 樣品的IC50............................................................................................ 40[[note]]學號: 698160545, 學年度: 9

    電驛劣品檢測器製作

    No full text
    [[abstract]]本專題乃是以工業配線之接線做為控制電路,控制所有的電路動作。 運用電驛本身線圈的激磁,常閉接點b打到常開接點a,線圈消磁,常開接點a打到常閉接點b的特性,來設計快速簡易的裝置。 利用台電110V 60HZ的電,經由變壓器轉換想要的電壓,輸送到開關,再利用開關及繼電器控制電驛,判斷電驛的優劣,來達成控制電路所需動作

    Cleavage Analysis of Implant Structure Subjected to Load

    No full text
    摘 要 使用有限元素的觀念,配合幾何形狀相似元素之特性,所推導出的無限小元素方法,對螺栓植入物系統的螺栓形狀、植入的深度及受力的方向(軸力、水平力、斜方向的力),進行螺栓植入物及黏結材料間之奇異性應力分析。 並利用奇異性分析所得之應力,配合理論推導而得奇異點附近應力與距離之關係式,求得奇異點的應力集中因子及奇異性應力階數值。並將數值分析所得之奇異點的應力集中因子及奇異性應力階數值﹐搭配破裂力學的觀念,提出螺栓植入物最大抗拉荷載之評估模式。然後由最大抗拉荷載評估模式分析之結果,得知在相同奇異性應力階數值下,同一材料破壞應力集中因子為定值。 利用相同材料破壞應力集中因子為定值的觀念,將螺栓植入物數值分析模式引入人工植牙系統,對人工植牙系統進行奇異性探討。將數值分析所得人工植牙系統各奇異點的應力集中因子及奇異性應力階數值來判別人工植牙系統之極限荷載及最大應力處。並對相同奇異性應力階數值之奇異點,就不同植體植入深度的應力集中因子進行比較,求得植體最佳植入深度。ABSTRACT A super element, formulated by taking the advantage of the element property for similar element shape, is used to investigate the stress concentration and cleavage tendency of implant structure. Incorporating with this super element, the finite element solutions for the studies of the implant structure such as anchor bolt and the dental implant are performed. The osseointegrated dental implant is embedded in the bone for restoring the masticatory and chewing function of edentulous patients. It is analogous to the anchor bolt embedded in the concrete. The location of the weakness point in the implant structure is determined. The researches conducted herein are emphasized on the stress intensity factors and the singular order for cleavage studies. The validity of the analysis approach is verified using the experimental data of the anchor bolt tests. The proposed method is efficient and economical in the analysis of the implant problem.封面 中文摘要 英文摘要 總目錄 表目錄 圖目錄 符號說明 第一章 緒論 1-1 導言 1-2 文獻回顧 1-2-1 人工植牙試驗結果與數值分析 1-2-2 奇異性質理論推島與數值分析 1-3 研究動機 第二章 分析方法及特例分析 2-1 奇異點附近奇異性應力之理論推導 2-2 分析方法 2-3 應力奇異性階數 2-3-1 雙材料裂縫終止於交界面之問題 2-3-2 相異材料雙楔功勞形物單邊界相接之問題 2-3-2 相異材料雙楔功勞形物雙邊界相接之問題 2-4 應力集中因數 第三章 植體應力奇異性探討 3-1 植牙系統之奇異性 3-1-1 植體橫斷面形狀為方形 3-1-2 植體橫斷面形狀為鋸齒狀 3-1-3 植體末端鋸齒幾何形狀之影響 3-2 骨頭與植體交界面間隙大小之影響 第四章 植體抗拉荷載評估模式 4-1 螺栓最大荷載之評估模式植牙系統之奇異性 4-2 人工植牙系統下部結構之破壞處 第五章 結論與建議 5-1 結論 5-1-1 奇異性之分析 5-1-2 植牙系統奇異性之分析 5-1-3 植體抗拉荷重評估模式 5-2 建議 參考文獻 附錄一 A 雙材料介面上任意角度裂縫 A-1 問題陳述 A-2 利用Mellin transform求解 A-3 裂縫尖端點之奇異性應力分佈 B 相異材料邊界相接之雙楔形物 B-1 問題陳述 B-2 利用Mellin transform求解 B-3 雙楔形物尖端點之奇異性應力分佈 C 相異材料邊界相接之雙楔形物 C-1 問題陳述 C-2 利用Mellin transform求解 C-3 雙楔形物頂點之奇異性應力分佈 附錄
    corecore