9 research outputs found

    R面、C面蓝宝石上生长的InGaN多层量子点的发光性质研究

    No full text
    采用表面钝化和MOCVD低温生长在蓝宝石(0001)面(即C面)和蓝宝石(1(1-bar)02)面(即R面)上形成了InGaN量子点,并构成了该量子点的多层结构。原子力显微镜测试的结果表明单层InGaN量子点平均宽约40nm,高约15nm;而多层量子点上层的量子点则比单层的InGaN量子点大。R面蓝宝石衬底上生长的InGaN量子点和C面蓝宝石衬底上生长的InGaN量子点相比,其PL谱不仅强度高,而且没有多峰结构。这是由于在C面蓝宝石衬底上生长的InGaN/GaN多层量子点沿生长方向[0001]存在较强的内建电场,而在R面蓝宝石衬底上得到的多层量子点沿着生长方向[11(2-bar)0]没有内建电场。InGaN量子点变温光致发光(PL)谱研究发现量子点相关的峰有快速红移现象,这是量子点系统所特有的PL谱特征。用在R面蓝宝石上生长的InGaN量子点作有源层有望避免内建电场的影响,得到高量子效率且发光波长稳定的发光器件

    表面应力诱导InGan量子点的生长及其性质

    No full text
    为了得到高性能的GaN基发光器件,有源层采用MOCVD技术和表面应力的不均匀性诱导方法在生长了InGaN量子点,并通过原子力显微镜(AFM),透射电子显微镜(TEM)和光致发光(PL)谱对其微观形貌和光学性质进行了观察和研究,AFM和TEM观察结果表

    铟镓氮薄膜的光电特性

    No full text
    用金属有机物气相外延设备,在氮化镓/蓝宝石复合衬底上快速外延生长铟镓氮薄膜,并对其进行了X射线三晶衍射、光致发光、反射光谱及霍尔测量等实验测试。确定该薄膜为单晶,其中In组分可以从0增加到0.26;在光致激发下发光光谱为单峰,且峰值波长在360~555nm范围内可调;其发光机理被证实为膜内载流子经带隙跃迁而直接复合;并具有很高的电子浓度。但InGaN薄膜的结晶质量却随着In含量的增加而变差

    InGaN量子点的诱导生长和发光特性研究

    No full text
    降低InGaN的维数是提高GaN基发光器件发光效率的一种非常有效的方法,本文的工作主要集中在高密度InGaN量子点的生长和分析上。在MOCVD设备上,经过钝化和低温两个特殊工艺条件,在高温GaN表面生长了一层低温岛状GaN,形成表面形貌的起伏,进而导致表面应力的不均匀分布。在这一层低温岛状GaN的诱导性作用下生长并形成InGaN量子点。通过原子力显微镜、透射电子显微镜和光致发光谱对其微观形貌和光学性质进行了观察和研究。从原子力显微镜以及透射电子显微镜观察得到的结果表

    GaN的声表面波特性研究

    No full text
    采用金属有机物化学气相外延方法在(0001)面蓝宝石上生长了高质量、高阻的未掺杂(0001)面GaN薄膜。为精确测量GaN薄膜材料的声表面波特性,在GaN薄膜表面上沉积了金属叉指换能器,叉指换能器采用等叉指结构,叉指的数目为40对,叉指间距为15μm。采用脉冲法测量了声表面波在自由表面和金属表面上的速度,并通过计算得到了机电耦合系数(κ^2)。所测量的声表面波速度(ν)为5667m/s,机电耦合系数(κ^2)为1.9%

    钝化低温法生长多层InGaN量子点的结构和光学特性

    No full text
    采用一种新方法生长多层InGaN/GaN量子点,研究所生长样品的结构和光学特性。该方法采用了低温生长和钝化工艺,所以称之为钝化低温法。第一层InGaN量子点的尺寸平均宽度40nm,高度15nm,量于点密度为6.3×10^10/cm^2。随着层数的增加,量子点的尺寸也逐渐增大。在样品的PL谱测试中,观察到在In(Ga)As材料系中普遍观察到的量子点发光的温度特性——超长红移现象。它们的光学特性表

    Detection and isolation of free cancer cells from ascites and peritoneal lavages using optically induced electrokinetics (OEK)

    No full text
    Detection of free gastric cancer cells in peritoneal lavages and ascites plays a vital role in gastric cancer. However, due to the low content of cancer cells in patients&#39; peritoneal lavages, traditional detection methods lack sensitivity and cannot satisfy clinical demand. In this study, we used an optically induced electrokinetics (OEK) microfluidic method for label-free separation and characterization of patient gastric cancer cells. This method showed high effectiveness and sensitivity. We successfully separated cancer cells from a simulated peritoneal lavage mixture of gastric cancer cell lines and peritoneal lavage cells in a ratio of 1:1000. We further separated gastric cancer cells from six patients&#39; ascites with purity up to 71%. In addition, we measured the cell membrane capacitances, which may be used as a biomarker for gastric cancer cells. Thus, our method can be used to effectively and rapidly detect peritoneal metastasis and to acquire cellular electrical information.</p
    corecore