100,069 research outputs found
Delineating effects of tensor force on the density dependence of nuclear symmetry energy
In this talk, we report results of our recent studies to delineate effects of
the tensor force on the density dependence of nuclear symmetry energy within
phenomenological models. The tensor force active in the isosinglet
neutron-proton interaction channel leads to appreciable depletion/population of
nucleons below/above the Fermi surface in the single-nucleon momentum
distribution in cold symmetric nuclear matter (SNM). We found that as a
consequence of the high momentum tail in SNM the kinetic part of the symmetry
energy is significantly below the well-known Fermi gas
model prediction of approximately . With about 15%
nucleons in the high momentum tail as indicated by the recent experiments at
J-Lab by the CLAS Collaboration, the is negligibly small.
It even becomes negative when more nucleons are in the high momentum tail in
SNM. These features have recently been confirmed by three independent studies
based on the state-of-the-art microscopic nuclear many-body theories. In
addition, we also estimate the second-order tensor force contribution to the
potential part of the symmetry energy. Implications of these findings in
extracting information about nuclear symmetry energy from nuclear reactions are
discussed briefly.Comment: Talk given by Chang Xu at the 11th International Conference on
Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1,
2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference
Series (JPCS
ADAPTIVE FEC WITH DYNAMICALLY BLOCK SIZE CONTROL FOR VIDEO STREAMING OVER WIRELESS NETWORK
[[conferencetype]]國際[[conferencedate]]20150718~20150718[[booktype]]電子版[[iscallforpapers]]Y[[conferencelocation]]日本/東
控股股东股权质押与企业创新投入
近年来,上市公司控股股东股权质押已经成为中国资本市场的一种普遍现象。与此同时,国家大力鼓励创新,企业创新已成为中国经济转型升级的必然选择。本文利用2011-2015年中国A股上市公司,实证分析了控股股东股权质押与企业创新投入之间的关系。研究发现:(1)控股股东股权质押会抑制企业创新投入,且这种作用在控股股东持股比例较低和两职合一的公司中会更加显著;(2)进一步研究发现,控股股东股权质押对企业创新投入的负面影响只有在股权质押率较高和距离平仓线越近时才会发挥作用。国家自然科学基金项目(71672157、71572165、71790601)和国家自然科学基金青年科学基金项目(71502150)的资
Too massive neutron stars: The role of dark matter?
The maximum mass of a neutron star is generally determined by the equation of
state of the star material. In this study, we take into account dark matter
particles, assumed to behave like fermions with a free parameter to account for
the interaction strength among the particles, as a possible constituent of
neutron stars. We find dark matter inside the star would soften the equation of
state more strongly than that of hyperons, and reduce largely the maximum mass
of the star. However, the neutron star maximum mass is sensitive to the
particle mass of dark matter, and a very high neutron star mass larger than 2
times solar mass could be achieved when the particle mass is small enough. Such
kind of dark-matter- admixed neutron stars could explain the recent measurement
of the Shapiro delay in the radio pulsar PSR J1614-2230, which yielded a
neutron star mass of 2 times solar mass that may be hardly reached when
hyperons are considered only, as in the case of the microscopic Brueckner
theory. Furthermore, in this particular case, we point out that the dark matter
around a neutron star should also contribute to the mass measurement due to its
pure gravitational effect. However, our numerically calculation illustrates
that such contribution could be safely ignored because of the usual diluted
dark matter environment assumed. We conclude that a very high mass measurement
of about 2 times solar mass requires a really stiff equation of state in
neutron stars, and find a strong upper limit (<= 0.64 GeV) for the particle
mass of non-self- annihilating dark matter based on the present model.Comment: Astroparticle Physics (2012) in Pres
Extended quark mean-field model for neutron stars
We extend the quark mean-field (QMF) model to strangeness freedom to study
the properties of hyperons () in infinite baryon matter and
neutron star properties. The baryon-scalar meson couplings in the QMF model are
determined self-consistently from the quark level, where the quark confinement
is taken into account in terms of a scalar-vector harmonic oscillator
potential. The strength of such confinement potential for quarks is
constrained by the properties of finite nuclei, while the one for quark is
limited by the properties of nuclei with a hyperon. These two
strengths are not same, which represents the SU(3) symmetry breaking
effectively in the QMF model. Also, we use an enhanced coupling with
the vector meson, and both and hyperon potentials can be
properly described in the model. The effects of the SU(3) symmetry breaking on
the neutron star structures are then studied. We find that the SU(3) breaking
shifts earlier the hyperon onset density and makes hyperons more abundant in
the star, in comparisons with the results of the SU(3) symmetry case. However,
it does not affect much the star's maximum mass. The maximum masses are found
to be with hyperons and without hyperons. The
present neutron star model is shown to have limitations on explaining the
recently measured heavy pulsar.Comment: 7 pages, 7 figures, Phys. Rev. C (2014) accepte
- …