11 research outputs found

    Intercomparison of weather generators for hydrological applications at varied scales

    No full text
    氣象資料(如降雨量、溫度以及蒸發)在水文氣象方面的研究相當重要,然而,由於大部分氣象資料在紀錄上經常會有缺漏,或其年限不足以進行長期水文模擬。近幾十年來發展的氣象資料產生器(weather generators)可用來產生保有觀測資料統計特性之長期氣象資料,有效解決了上述問題。 絕大多數氣象資料產生器皆由國外學者所開發,鮮少有利用台灣地區資料進行測試,此外,氣象資料產生器種類眾多,可分為單站 (single-site) 與多站 (multi-site),對於雨量的模擬方法不全相同;本研究旨在挑選最適合台灣地區的氣象資料產生器。 本研究利用四種氣象資料產生器,即Modified Wilks approach、Stochastic Climate Library (SCL)、Multi-site stochastic weather generator École de Technologie Supérieure (MulGETS)、以及Weather GENerator (WGEN),模擬翡翠水庫以及八掌溪集水區內各測站之降雨,將降雨模擬結果分月份與季節進行統計特性的比較,爾後輸入HEC-HMS模式模擬流量,比較不同方法之間的模擬結果;本研究亦利用氣象資料產生器對分布於全台之多個氣象測站進行雨量模擬,以事件分析以及主成分分析比較颱風時期(七至九月)之模擬雨量空間分佈與觀測雨量之異同。不同空間尺度(集水區與全台灣)之分析結果可助於評選出最適之氣象資料產生器。 綜合所有研究區域的模擬結果,可以知道MulGETS降雨模擬時,能夠保留觀測值的空間分布,另外,在降雨量的模擬結果上,透過多種統計指標的比較,MulGETS的表現相當不錯,幾乎優於其他氣象資料產生器。而在流量模擬上,MulGETS和SCL之模擬結果相近,皆能有效保留流域內的大流量,WGEN-lumped在降雨分布較均勻的區域內也能夠合理的表現出流域的大流量。在經由各種評比後,得知MulGETS相當適合用來模擬台灣地區之天氣資料。Meteorological data such as precipitation, temperature, and evaporation are of critical importance to hydro-meteorological research. However, missing and insufficient data records are common but unfavorable conditions for long-term hydrological simulation and applications. Weather generators (WGs) are thus designed to generate weather data that preserve the observed statistical characteristics and provide a preferable period of records for various applications. Over the past few decades, the development of WGs has been evolving from single- to multi-site WGs to account for the spatial coherence of weather data. Although related literature is abundant, investigations into WGs at different climate regions are seldom found. The purpose of this study is to assess and select the most adequate WGs for hydrological applications in Taiwan. In this study, we adopted four WGs including the Modified Wilks approach, Stochastic Climate Library (SCL), Multi-site stochastic weather generator École de Technologie Supérieure (MulGETS), and Weather GENerator (WGEN). We assessed the four WGs by comparing the statistics of generated rainfall data with that of observed in the Feitsui reservoir and Bajhang river basins. We also used HEC-HMS to examine the simulated flow, driven by the generated rainfall data. The other part of this study, as a larger-scale assessment, is to generate and assess rainfall data of the 21 major weather stations over Taiwan. We applied principal component analysis (PCA) to both the observed and generated rainfall data in the typhoon period (July to September) for this assessment. The outcomes from the watershed- and island-scale assessments should be a clear indicator of the most adequate WG. In sum, MulGETS can not only preserve the similar statistical characteristics of observed rainfall at the watershed scale but also provide a reasonable spatial distribution of rainfall over Taiwan. MulGETS and SCL can retain large discharge with the highest efficiency, yet the WGEN-lumped approach can also produce large discharge with uniform spatial distribution of rainfall across the watershed. Even though MulGETS showed marked overall performance, seasonal differences in the performance of these WGs can be identified.摘要............................................i Abstract.......................................ii 目錄............................................iv 表目錄..........................................vii 圖目錄..........................................viii 第一章 緒論......................................1 1.1. 研究動機與目的...............................1 1.1.1. 研究動機...................................1 1.1.2. 研究目的....................................2 1.2. 研究架構......................................2 第二章 文獻回顧.....................................4 2.1. 氣象資料產生器面向.............................4 2.2. 水文模式面向...................................6 第三章 研究區域與數據................................8 3.1. 氣象局局屬測站.................................8 3.2. 翡翠水庫......................................10 3.3. 八掌溪流域.....................................12 第四章 研究方法.....................................15 4.1. 氣象資料產生器.................................15 4.1.1. Weather GENerator(WGEN).....................16 4.1.2. Wilks Approach..............................17 4.1.3. Modified Wilks Approach.....................21 4.1.4. Multi-site weather Generator of École de Technologie Supérieure (MulGETS)...............................24 4.1.5. Stochastic Climate Library (SCL)............27 4.2. 水文模擬系統 (HEC-HMS).........................31 4.2.1. 模式簡介.....................................31 4.2.2. 模式參數設定與檢定............................34 4.3. 主成分分析(Principal components analysis, PCA)..35 4.4. 統計指標........................................36 4.5. 相對誤差 (Relative Error, RE)...................39 第五章 結果與討論.....................................40 5.1. 中央氣象局局屬測站...............................40 5.1.1. 氣象資料產生器模擬結果.........................41 5.1.2. 降雨空間分布...................................62 5.2. 翡翠水庫........................................70 5.2.1. 氣象資料產生器模擬結果.........................70 5.2.2. 水文模式模擬結果...............................90 5.3. 八掌溪流域......................................97 5.3.1. 氣象資料產生器模擬結果.........................97 5.3.2. 水文模式模擬結果..............................117 第六章 結論與建議....................................123 6.1. 結論...........................................123 6.2. 建議...........................................124 參考文獻............................................126 附錄................................................130 附.1. 中央氣象局局屬測站雨量模擬結果..................130 附.2. 翡翠水庫雨量模擬結果...........................162 附.3. 八掌溪流域雨量模擬結果.........................194 附.4. HEC-HMS參數...................................22

    腳踏車發電器減速裝置之設計與實務探討

    No full text
    [[issue]]6

    HPLC 2015

    No full text
    <p>Splat frozen samples of <i>S</i>. <i>feltiae</i> extract (top row) and buffer control (25 mM Tris HCl, pH 8) (bottom row) after warming to – 8°C (Time 0 = left column) and after annealing at– 8°C for 30 min (right column). Scale bar = 100 μm.</p

    CuOx-CaCO3催化剂高效催化生物质乙酰丙酸甲酯制备γ-戊内酯(英文)

    No full text
    γ-戊内酯(GVL)在燃料和化学品上有着巨大的潜在利用价值,如何从生物质木质纤维素出发经济地制备GVL广受关注.目前已有大量的研究致力于利用不同氢源从乙酰丙酸及其酯类催化加氢制备GVL的催化体系.过去的数年里,外加氢气条件下的乙酰丙酸及其酯类加氢制备GVL已经得到了广泛的研究.考虑到液体醇使用和管理相比于氢气更为安全便捷,而且醇类如甲醇、乙醇都是可以从生物质制备的绿色环保的溶剂,利用醇类通过Meerwein-Ponndorf-Verley(MPV)还原作为生物质催化加氢过程中的的溶剂和氢供体已经引起了人们的浓厚兴趣.在脂肪醇中,甲醇的还原势能最高,在MPV还原里的效果不如其他醇,但可以通过甲醇重整制氢的方式来供氢.此外,乙酰丙酸甲酯(ML)可以通过甲醇中酸催化醇解碳水化合物制得,因此可以尝试将碳水化合物醇解制备ML;甲醇重整制氢以及ML加氢结合起来,从而省去繁琐且能耗较大的ML分离步骤.腐殖质的存在和固体催化剂在甲醇中的稳定性是上述两步法策略的最大挑战.本文通过草酸凝胶共沉淀法首次制备了(n)CuOx-CaCO3(n为Cu/Ca摩尔比)双功能催化剂,用于以甲醇为原位氢源,从生物质ML一锅制备GVL反应中.经筛选,(3/2)CuOx-CaCO3催化制备GVL的得率高达95.6%.利用各种表征手段分析了催化剂使用前后的组成和结构变化.结果显示,新制的CuOx-CaCO3催化剂中即可检测到Cu+的存在,且在使用过程中CaCO3可以有效阻止二价铜在氢气氛围下被完全还原成单质铜.对于该体系中的ML加氢,亚铜有着比单质铜更佳的催化性能.循环实验表明,(3/2)CuOx-CaCO3至少可以连续稳定使用8次,其催化活性没有明显损失.此外,在纤维素醇解产物中存在腐殖质的情况下,(3/2)CuOx-CaCO3催化剂仍能够有效催化纤维素醇解得到的ML加氢制备GVL.因此可以利用这个高效廉价的催化剂开发一种便捷的一锅两步法从木质纤维素生物质制备GVL,即将酸催化的纤维素醇解、甲醇重整、ML在甲醇溶剂中加氢三者整合起来.supported by the National Natural Science Foundation of China(21676223,21706223,21776234,21606188);;the Fundamental Research Funds for the Central Universities(20720180084),the Energy development Foundation of Energy College,Xiamen University(2017NYFZ02);;the Natural Science Foundation of Fujian..

    階段三:註冊研究

    No full text
    開放源碼(Open Source)、開放資料(Open Data)、開放研究方法(Open Methodology)三位一體整合學
    corecore