5 research outputs found

    Representative strategy as brand image re-creation

    No full text
    台灣啤酒在台灣雖然是無人不知的國民品牌,不過時間一久同樣面臨到品牌老化的問題,故本研究的文獻回顧從品牌老化與再造的部分切入,探討品牌生命週期、造成品牌老化的原因以及品牌再造的策略運用,同時套入臺灣菸酒公司-啤酒事業部的個案,深入剖析台灣啤酒的發展歷程、品牌老化問題和廣告代言人策略,並聚焦台啤歷年的代言人進一步歸納整理,建立代言人評量表來檢視各代言人的適配性,最後分析其關鍵成敗因素並對台灣啤酒未來的廣告代言人人選提出具體建議,希望對台啤未來的品牌發展有所幫助

    Mass Spectrometry for Analysis of Antibiotics and Environmental Pollutants

    No full text
    本研究主要是利用質譜定性、定量分析技術,針對生化樣品的抗生素及底泥和水樣品中汙染物開發分析方法。第一部分以超臨界流體萃取結合氣相層析質譜儀分析蝦肉基質中所含的氯黴素系列抗生素,將衍生化試劑添加至收集液中,避免與含水與蛋白質的樣品直接接觸。此方式可以提升超臨界流體萃取同時衍生化的效率。分析0.5g蝦肉中三種氯黴素的線性範圍為20 ~ 5000 pg/g,偵測極限為8.7~17.4 pg/g,精密度以相對標準偏差表示,在15.3% 以下。應用此技術於市售養殖蝦肉樣品之檢測,在八件蝦肉樣品中有五件樣品測出氟甲磺氯黴素,濃度在47 ng/g 至 592 ng/g 之間,可知此方法具備足夠的偵測靈敏度以分析蝦肉中微量的氯黴素化合物。而此前處理方法的步驟簡便,亦可作為分析其他固體樣品的參考。 第二部份利用頂空固相微萃取技術當作超臨界流體萃取的收集部分,針對河川底泥中全氟羧酸進行定量分析,將超臨界萃取、衍生化和頂空固相微萃取真正整合成一步驟,並結合氣相層析串聯質譜儀的負離子化學游離法選擇反應偵測模式以提高偵測靈敏度與選擇性,也可避免使用液相質譜儀時可能來自儀器本身的干擾訊號。分析底泥中四種全氟羧酸的線性範圍為5~ 5000 ng/g,偵測極限值為0.39~0.54 ng/g,應用此技術於河川的底泥之檢測,在七件底泥樣品中有六件測出全氟羧酸,濃度在282 ng/g 至4473 ng/g 之間。 第三部分採用離子對試劑增加分散液相微萃取的效率,並使用高選擇性和靈敏度的氣相層析串聯質譜技術偵測分析,使用氣相層析儀的注射口進行衍生化,針對全氟羧酸於水樣品基質中之萃取、衍生化及偵測條件進行最佳化探討,分析線性範圍為250 pg/mL~2000 ng/mL,偵測極限值為37 pg/mL,R.S.D 低於13%。將此技術應用於河水和海水之檢測,可測得水樣品中濃度在0.6 ng/mL 至604.9 ng/mL 之間,證明以離子對-分散液相微萃取檢測河川中全氟羧酸的流佈 情形具有其可行性。This study investigated the applications of mass spectrometry combined with various extraction for trace analysis in complicate matrices. There were three projects were performed. The first project evaluated supercritical fluid extraction in situ derivatization to determine the trace amounts of amphenicols in shrimp. Quantification was performed by using electron capture negative chemical ionization-gas chromatography/mass spectrometry. The new method of supercritical fluid extraction in situ derivatization was found to be linear over the concentration range of 20 to 5000 pg/g, with detection limits ranging from 8.7 to 17.4 pg/g. The relative standard deviation was less than 15.3% (n=5). Florfenicol was detected ranging from 47 ng/g to 592 ng/g in five samples. The results presented here indicate that supercritical fluid extraction in situ derivatization is for the trace analysis of amphenicol bacteriostats in shrimp samples. The second project evaluated headspace solid phase microextraction in situ supercritical fluid extraction to determine the trace amounts of perfluorocarboxylic acids in sediments. This method was one-step sample preparation including filling samples, derivatization, clean up and absorption. Quantitation was performed by using gas chromatography coupled to negative chemical ionization-tandem mass spectrometry. The linear range of proposed method was from 5 to 5000 ng/g, with limit of detection ranging from 0.39 to 0.54 ng/g and limit of quantitation ranging from 1.30 to 1.80 ng/g. The developed method was successfully applied to analyze PFCAs in sediments from rivers and beach near industrial areas. The concentrations of PFCAs determined were from 282 to 4473 ng/g. The third project evaluated a novel technique of derivatization in GC injection port after a one-step extraction of trace perfluorocarboxylic acids in aqueous with ion pair formation during dispersive liquid liquid microextraction. The tetrabutylammonium hydrogen sulfate was used as ion pair reagent. The PFCA butyl esters derivatives were formed in the GC injection port and then analyzed by using gas chromatography coupled to tandem mass spectrometry with negative chemical ionization. According to analysis, the linear range was from 250 pg/mL to 2000 ng/mL. Detection limits were achieved at the level of 37-51 pg/mL with relative standard derivation below 13%. It is successfully applied the method proposed to the determination of PFCAs in water samples from urban and industrial areas without tedious pretreatment. The concentrations of PFCAs are detected to range from 0.6 to 604.9 ng/mL.目 錄 摘要……………………………………………………………………………………I Abstract………………………………………………………………………………III 目錄…………………………………………………………………..………………V 表次…………………………………………………………………..………………X 圖次…………………………………………………………………………………XII 第一章、緒論………………………………………….………………………………1 1.1、質譜儀儀器原理…………………………………………………………………1 1.1.1、離子源部分…………………………………………………….………………2 1.1.2、四極矩質量分析器…………………………………………….………………7 1.1.3、串聯質譜儀……………………………………………………….……………9 1.2、樣品前處理技術……………………………………………………..…………12 1.2.1、超臨界流體萃取法………………………………………………...…………12 1.2.1.1、超臨界流體的特性…………………………………………………………12 1.2.1.2、超臨界流體的溶解度………………………………………………………15 1.2.2、固相微萃取法…………………………………………………………...……20 1.2.3、分散液相微萃取……………………………………………………...………32 1.3、研究目標……………………………………………………………......………36 1.4、參考文獻………………………………………………………………………37 第二章、超臨界流體萃取同步衍生化結合氣相層析質譜術偵測蝦肉中氯黴素 系列抗生素………………………………………………………………39 2.1、前言……………………………………………………………………………39 2.2、實驗部分………………………………………………………………………46 2.2.1、藥品及標準溶液……………………………………………………………46 2.2.2、儀器設備……………………………………………………………………46 2.2.2.1、氣相層析質譜儀……………………………………………………………46 2.2.2.2、超臨界流體萃取設備………………………………………………………47 2.2.3、超臨界流體萃取同步衍生化之實驗步驟…………………………………48 2.3、結果與討論……………………………………………………………………50 2.3.1、氯黴素系列衍生物之氣相層析質譜分析…………………………………50 2.3.2、超臨界流體萃取同步衍生化之最佳化條件探討…………………………55 2.3.2.1、修飾劑種類及添加量之探討……………………………………………55 2.3.2.2、超臨界流體萃取溫度之探討……………………………………………60 2.3.2.3、超臨界流體萃取壓力之探討……………………………………………60 2.3.2.4、超臨界流體萃取時間與萃取模式之探討………………………………63 2.3.2.5、超臨界流體收集液種類之探討…………………………………………66 2.3.2.6、超臨界流體收集同步衍生化溫度之探討………………………………69 2.3.3、方法確效……………………………………………………...………………72 2.3.4、真實蝦肉樣品中氯黴素抗生素之偵測……………………...………………74 2.4、結論……………………………………………………………..………………77 2.5、參考文獻………………………………………………………..………………78 第三章、超臨界流體萃取結合頂空固相微萃取與氣相層析串聯質譜術偵測底 泥中全氟羧………………………………………………………………81 3.1、前言……………………..………………………………………………………81 3.2、實驗部分………………..………………………………………………………86 3.2.1、藥品及標準溶液……………...………………………………………………86 3.2.2、儀器設備………………………...……………………………………………86 3.2.2.1、氣相層析串聯質譜儀…………………....…………………………………86 3.2.2.2、超臨界流體萃取設備……………………..…..……………………………87 3.2.2.3、固相微萃取裝置………………………....…………………………………89 3.2.3、超臨界流體萃取同步固相微萃取之實驗步驟…...…………………………89 3.3、結果與討論………………………………………………………..……………90 3.3.1、全氟羧酸系列衍生物之氣相串聯層析質譜分析……………...……………89 3.3.2、超臨界流體萃取同步頂空固相微萃取之最佳化條件探討…...……………95 3.3.2.1、衍生化試劑添加量之探討…………………………………………………95 3.3.2.2、超臨界流體萃取同步衍生化溫度之探討…………………………………98 3.3.2.3、超臨界流體萃取壓力之探討………………………..……………………101 3.3.2.4、超臨界流體萃取時間與萃取模式之探討…………..……………………101 3.3.2.5、收集裝置固相微萃取法條件探討…………………..……………………104 3.3.2.5.1、萃取纖維種類的選擇…………………………...………………………104 3.3.2.5.2、頂空固相微萃取溫度之探討……………...………………………106 3.3.3、方法確效………………………………………………….…………………110 3.3.4、真實底泥樣品中全氟羧酸之偵測…………………….……………………113 3.4、結論……………………………………………………………………………116 3.5、參考文獻………………………………………………………………………117 第四章、離子對–分散液相微萃取結合氣相層析串聯質譜術偵測水中全氟羧 酸……………………………………..…………………………………121 4.1、前言……………………………………………………………………………121 4.2、實驗部分………………………………………………………………………125 4.2.1、藥品及標準溶液………………………….…………………………………125 4.2.2、氣相層析串聯質譜儀………………………….……………………………125 4.2.3、離子對-分散液相微萃取之實驗步驟………………………………………126 4.3、結果與討論……………………………………………………………………127 4.3.1.1、全氟羧酸系列衍生物之氣相串聯層析質譜分析………..………………127 4.3.1.2、注射口衍生化之最佳化條件探討……………………..…………………127 4.3.2、離子對–分散液相微萃取之最佳化條件探討……………………………128 4.3.2.1、萃取溶劑種類之探討………………………………………..……………128 4.3.2.2、分散試劑種類與添加量之探討……………..……………………………131 4.3.2.3、離子對試劑種類與濃度之探討………………..…………………………134 4.3.2.4、鹽類之添加對萃取效率之影響………………..…………………………137 4.3.2.5、水溶液酸鹼值影響…………………………………………..……………137 4.3.3、方法確效……………………………………………………….……………137 4.3.4、真實河水樣品中全氟羧酸之偵測………………………….………………140 4.4、結論……………………………………………………………………………145 第五章、結語………………………………………………….……………………14

    吹氣輔助固相微萃取之方法

    No full text
    一種吹氣輔助固相微萃取之方法,先將樣品液置入一具有一排氣口的容器中,並與固相微萃取裝置連通,接著將非反應性氣體經由導管注入樣品液中,導管末端設有一中空纖維管,非反應性氣體經由中空纖維管壁的微小孔洞逸出至樣品液中,連續產生多數微小氣泡,可提升樣品液中待分析化學物質之揮發量,藉此,利用固相微萃取裝置進行採樣,可改善低揮發性化學物質之偵測靈敏度,其應用範圍廣泛

    超臨界流體萃取方法

    No full text
    一種超臨界流體萃取方法,係先將一樣品置入一第一容器中,並將超臨界流體注入其中,超臨界流體與樣品接觸後可由其中萃取出萃出物,接著超臨界流體連同萃出物經由一限流器注入含有衍生化試劑的第二容器中,再利用一固相微萃取裝置對第二容器中之萃出物以頂空方式進行採樣。此發明不僅可以降低有機溶劑的使用量和對環境的危害;同時更具有高靈敏度與高準確度,並可應用於生活中常接觸物質之微量分析
    corecore