16 research outputs found

    锯片切割圆弧的刀具补偿算法

    Get PDF
    在石材加工中,锯片是最常用的切割工具。由于锯片切削点(刀位轨迹)相对于数控系统的控制点(数控轨迹)存在偏置,为了实现机床的正确加工,必须通过补偿将指定的刀位轨迹转换为相应的数控轨迹,进而完成数控加工编程。针对加工图元为直线和圆弧时的多种工况进行详尽研究,总结出相应的偏置补偿算法,并实际加工验证。加工结果表明,采用该算法编程加工的工件满足预期的精度要求

    中国经济学70年:回顾与展望——庆祝新中国成立70周年笔谈(下)

    Get PDF
    2019年是中华人民共和国70华诞,也是决胜全面建成小康社会第一个百年奋斗目标的关键之年。新中国成立70年来,在中国共产党的坚强领导下,我们从封闭落后迈向开放进步,从温饱不足迈向全面小康,从积贫积弱迈向繁荣富强,创造了一个又一个人类发展史上的伟大奇迹。为了系统地总结和提炼中国70年经济发展的内在规律,把实践经验上升为系统化的经济学说,不断开拓当代中国马克思主义政治经济学新境界,本刊特邀部分著名经济学家撰写了这一组文章,以飨读者

    粉煤灰-矿粉-水泥三元胶凝材料对混凝土抗压强度的影响

    Get PDF
    为研究粉煤灰-矿粉-水泥三元胶凝材料对混凝土抗压强度的影响,测试混凝土标准养护3、7、14、28和56 d龄期的抗压强度,分析凝土抗压强度与胶凝材料各组分的关系。实验结果表明,混凝土抗压强度与粉煤灰-矿粉-水泥三元体系组分的掺量比例有密切关系。粉煤灰和矿粉双掺时,由于粒径不同会相互填充,从而产生超叠加效应,使掺加粉煤灰和矿粉的混凝土抗压强度得到明显改善。水泥、矿粉、水泥及粉煤灰的组合、粉煤灰和矿粉的组合对混凝土的抗压强度有增强作用,其中粉煤灰和矿粉的协同效应对混凝土抗压强度增强最为明显。随着龄期增加,粉煤灰和矿粉的协同效应对混凝土抗压强度的增强作用逐渐减弱,与28 d抗压强度相比,其对56 d抗压强度贡献降低了55.9%;粉煤灰及水泥-粉煤灰-矿粉的三元组合对混凝土抗压强度的影响逐渐降低,与28 d抗压强度相比,粉煤灰及水泥-粉煤灰-矿粉的三元组合对56 d抗压强度的降低效应分别减少了40.9%和67.3%。国家自然科学基金项目(51778551)福建省科技厅青年创新项目(2016J0514

    石子级配对混凝土工作性的影响

    Get PDF
    基于研究石子级配对混凝土工作性的影响,对混料设计方法设计了10组三级配石子混凝土配合比,测试了不同石子级配的混凝土的坍落度和扩展度,并对测试结果进行优化。结果表明:石子级配对混凝土工作性有重要影响,良好的石子级配可有效改善混凝土的工作性。采用混料设计的方法设计的混凝土配合比,可在尽量少实验量的基础上快速有效得到满足工作性要求的石子比例

    流化床甲烷化基础与应用最新进展

    No full text
    由于CO甲烷化的快速表面反应、强放热特性,相比固定床,采用小颗粒催化剂的流化床甲烷化技术在反应活性和催化剂稳定性方面具有明显的技术优势。从高耐磨催化剂、流化床反应器及其创新、短流程两段甲烷化技术构建及其验证等方面总结了流化床甲烷化技术开发的最新进展。优化催化剂前体制备方法、调变催化剂组成可获得具有较高骨架强度和均匀性的催化剂一次微粒,进而通过优化的喷雾造粒工艺和填充黏结剂,制备出具有可调变粒度分布、高强度和高球形度的流化床用粉末催化剂,但其黏结剂的添加明显影响催化剂的低温活性。通过改性如Al2O3和FCC催化剂的球形颗粒,进而负载活性组分,开发了制备高活性、磨损指数小于1.5的流化床甲烷化Ni基催化剂的另一种技术方法。实验室研究证实了流化床甲烷化反应速率极快,在分布板上数毫米处即可实现可能的最高转化率,且在转化率和催化剂稳定性方面明显优于固定床,不仅由于流态化催化剂床层温度均匀,而且催化剂在床层内不停循环,加快了颗粒表面的更新。增大空速和表观气速,流化床的催化剂床层膨胀,反应气体与催化剂颗粒表面间的有效接触面积增加,使得流化床甲烷化对空速和表观气速的可调范围大。操作在更高气速条件的输送床甲烷化避免了操作气速的上限限制,可大幅降低反应器尺寸,有效提高单位截面的原料气负荷能力。输送床甲烷化可采用高热导率的催化剂颗粒传递反应热,相对于气体移热效率高、能力大。流化床甲烷化已在生物废弃物利用和焦炉煤气甲烷化方面开展了侧线示范,形成了相对多段绝热固定床工艺更简单的短流程两段甲烷化新工艺

    流化床甲烷化基础与应用最新进展

    No full text
    由于CO甲烷化的快速表面反应、强放热特性,相比固定床,采用小颗粒催化剂的流化床甲烷化技术在反应活性和催化剂稳定性方面具有明显的技术优势。从高耐磨催化剂、流化床反应器及其创新、短流程两段甲烷化技术构建及其验证等方面总结了流化床甲烷化技术开发的最新进展。优化催化剂前体制备方法、调变催化剂组成可获得具有较高骨架强度和均匀性的催化剂一次微粒,进而通过优化的喷雾造粒工艺和填充黏结剂,制备出具有可调变粒度分布、高强度和高球形度的流化床用粉末催化剂,但其黏结剂的添加明显影响催化剂的低温活性。通过改性如Al2O3和FCC催化剂的球形颗粒,进而负载活性组分,开发了制备高活性、磨损指数小于1.5的流化床甲烷化Ni基催化剂的另一种技术方法。实验室研究证实了流化床甲烷化反应速率极快,在分布板上数毫米处即可实现可能的最高转化率,且在转化率和催化剂稳定性方面明显优于固定床,不仅由于流态化催化剂床层温度均匀,而且催化剂在床层内不停循环,加快了颗粒表面的更新。增大空速和表观气速,流化床的催化剂床层膨胀,反应气体与催化剂颗粒表面间的有效接触面积增加,使得流化床甲烷化对空速和表观气速的可调范围大。操作在更高气速条件的输送床甲烷化避免了操作气速的上限限制,可大幅降低反应器尺寸,有效提高单位截面的原料气负荷能力。输送床甲烷化可采用高热导率的催化剂颗粒传递反应热,相对于气体移热效率高、能力大。流化床甲烷化已在生物废弃物利用和焦炉煤气甲烷化方面开展了侧线示范,形成了相对多段绝热固定床工艺更简单的短流程两段甲烷化新工艺

    流化床甲烷化基础与应用最新进展

    No full text
    由于CO甲烷化的快速表面反应、强放热特性,相比固定床,采用小颗粒催化剂的流化床甲烷化技术在反应活性和催化剂稳定性方面具有明显的技术优势。从高耐磨催化剂、流化床反应器及其创新、短流程两段甲烷化技术构建及其验证等方面总结了流化床甲烷化技术开发的最新进展。优化催化剂前体制备方法、调变催化剂组成可获得具有较高骨架强度和均匀性的催化剂一次微粒,进而通过优化的喷雾造粒工艺和填充黏结剂,制备出具有可调变粒度分布、高强度和高球形度的流化床用粉末催化剂,但其黏结剂的添加明显影响催化剂的低温活性。通过改性如Al2O3和FCC催化剂的球形颗粒,进而负载活性组分,开发了制备高活性、磨损指数小于1.5的流化床甲烷化Ni基催化剂的另一种技术方法。实验室研究证实了流化床甲烷化反应速率极快,在分布板上数毫米处即可实现可能的最高转化率,且在转化率和催化剂稳定性方面明显优于固定床,不仅由于流态化催化剂床层温度均匀,而且催化剂在床层内不停循环,加快了颗粒表面的更新。增大空速和表观气速,流化床的催化剂床层膨胀,反应气体与催化剂颗粒表面间的有效接触面积增加,使得流化床甲烷化对空速和表观气速的可调范围大。操作在更高气速条件的输送床甲烷化避免了操作气速的上限限制,可大幅降低反应器尺寸,有效提高单位截面的原料气负荷能力。输送床甲烷化可采用高热导率的催化剂颗粒传递反应热,相对于气体移热效率高、能力大。流化床甲烷化已在生物废弃物利用和焦炉煤气甲烷化方面开展了侧线示范,形成了相对多段绝热固定床工艺更简单的短流程两段甲烷化新工艺
    corecore