9 research outputs found
Recent progress of nano scale science and technology in chemical power sources
90年代纳米科学技术特别是纳米材料的应用已经扩展到化学电源领域。本文举例介绍了用于镍-碱性电池的纳米相氢氧化镍、Ab5型纳米晶态贮氢合金以及在锂离子电池中用作阴极材料的锰钡矿型MnO2纳米纤维、聚吡咯包覆尖晶石型lIMn2O4纳米管、聚吡咯/V2O5纳米复合材料,用作阳极材料的碳纳米管、纳米掺杂碳材料、纳米二氧化锡,用作固态电解质的纳米填料修饰聚氧乙烯基复合材料等几种新型纳米化学电源材料的制备、结构、形貌以及电化学性质,并且简要介绍了厦门大学化学电源研究中心纳米材料的研究进展。An increasing interest has been focused on nano scale science and technology in the field of chemical power sources.Some novel nano materials as well as synthesis methods have been prepared and designed.The synthesis methods,structure,morphological and electrochemical properties of several nano materials applied in Ni alkaline batteries and lithium ion batteries are reviewed in this papaer.The recent progress of nano materials in our chemical power sources research center is also reported.国家“863”高技术发展计划课题;中国大洋矿产资源研究开发课题;国家自然科学基金;福建省自然科学基
Electrochemical intercalation performances of new cathode materials——Manganese nodule for lithium ion rechargeable batteries
研究了天然锰结核作为锂离子蓄电池阴极材料的可行性 ,从其组成结构与电化学嵌锂行为作了广泛全面的研究和评价。研究结果表明 ,锰结核的电化学性质是由钡镁锰矿和水羟锰矿加和的结果 ;锰结核的锂离子嵌入脱出电位在 2 .6V和 3V附近 ,在 2 .5~ 4.1V之间充放电 2 0 0多次后 ,放电容量降至约 10 1mA/ g ,保持率为 92 .5 % ,具有较好的充放电可逆性能 ,表明层状结构的钠水锰矿和水羟锰矿是一种良好的锂离子嵌入脱出电极材料 ,它是一种具有应用前景的新型锂电池和锂离子电池阴极材料。A comprehensive research and evaluation for manganese nodule as cathode material for lithium ion batteries was made. The composition, structure and micro-morphology, the electrochemical properties and the optimization of its charge/discharge performance were studied. The interstitial multi-metallic cations in tunnels and interlayers, such as Mg 2+ ,Ni 2+ ,Co 2+ ,Ca 2+ ,Cu 2+ ,etc.,and the lattice water contributed to equalization of chemical valence and structural stabilization of manganese nodule.The results show that the electrochemical properties of manganese nodule are attributed to Todorokite and Vernadite. In a appropriate electrolyte, such as LiClO 4/PC+DME, and the electrolyte of avoiding over-intercalating, the lattice water may not be harmful to the electrochemical performance. The Li insertion and extraction potentials of manganese nodule are about 2.6 V and 3 V, respectively. The cyclic voltammetry curves show that the broad current peaks reflect the characteristics of amorphous state of manganese nodule. Manganese nodule shows a good reversible discharge capacity (101 mAh·g -1 , 85% of the highest discharge capacity) at about 2.5-4.1 V after more than 200 cycles in 1mol/L LiClO 4/PC+DME. It is proved that manganese nodule is a promising novel natural cathode material for lithium ion batteries.中国大洋矿产资源研究开发资助课题! (DY 95 0 4 0 6
一种现场动态监测点蚀过程的新方法
利用光电化学显微技术(PHOTOElECTrOCHEMICAlMICrOSCOPy,PEM)现场(In-SITu)跟踪研究了钢筋电极在含氯离子的模拟混凝土孔溶液中(PH=13.8)处于点蚀孕育及发生阶段的局部光电流变化情况。实验发现,在点蚀发生区域钢筋钝化膜的光电流随着点蚀过程的发生而逐渐降低。这一现象可能与溶液中氯离子穿透钝化膜并在钢筋/钝化膜界面富集,进而从钝化膜底部逐渐溶解钝化膜的历程有关。另外局部光电流的变化在一定程度上也反映了腐蚀产物的富集与扩散特征。国家自然科学基
The Applications of Confocal Raman Micro-Spectroscopy for study of practical electrode materials
本文简要介绍了实验室内有关利用共焦显微拉曼光谱于某些实用电极材料 (表面 )性能研究的结果 .具体的研究实例包括 :尖晶石锂锰氧化物中Li+ 的嵌入 脱出过程 ,AB5 型金属氢化物电极表面氧化物的性能和钢筋电极表面钝化膜及其孔蚀过程 .Some recent research work about applications of confocal Raman micro spectroscopy for study of practical electrode materials carried out in our lab has been briefly introduced. The examples include study of electrochemical Li + intercalation process, characterization of surface oxide film on AB 5 type electrodes and passive film and pitting corrosion of Rebar electrodes.作者联系地址:厦门大学固体表面物理化学国家重点实验室!化学系,物理化学研究所,福建厦门361005,厦门大学固体表面物理化学国家重点实验室!化学系,物理化学研究所,福建厦门361005,厦门大学固体表面物理化学国家重点实验室!化学系,物理化学研究所,福建厦门361005,厦门大学固体表面物理化学国Author's Address: State Key Lab for Phys. Chem. of Solid Surface, Xiamen Univ., Xiamen, 361005,Chin
STUDY ON THE EFFECT of INHIBITORS ON PASSIVE FILM of REBAR BY PHOTOELECTROCHEMICAL METHOD
采用光电化学的方法研究了复合缓蚀剂对钢筋钝化膜的影响.结果表明复合缓蚀剂的加入没有改变钢筋钝化膜的晶体结构和电子性质,它仍然是无定形n型的半导体成相膜,但对抑制点蚀核的形成有明显作用,且对钝化膜的生长速度有加快作用,从而有可能使钝化膜的组成发生改变.An in situ photoelectrochemical study was made to compare passive films on rebar formed in simulated concrete pore solution with or without inhibitors.The results indicated that the crystal structure and electron property of passive film were not changed due to adding composite inhibitors.It was still a n type amorphous semiconductive film.But pitting nucleus initiation was inhibited obviously and the growth rate of passive film was increased by adding inhibitors so that the composition of the film might be changed.厦门大学国家表面物理化学重点实验室资助;江苏省自然科学基
The Photoelectrochemical Studies of Passive Films on REBAR Electrodes in Simulated Cement Pore Solution
利用光电化学方法研究了钢筋在模拟混凝土孔溶液中(pH=9.0~13.8)钝化膜的电子性质,结果表明,钢筋在该溶液中形成的钝化膜是一种无定形的n-型半导体成相膜,膜由多种铁氧化物组成,其组成受溶液中的离子、pH值、成膜电位影响。腐蚀抑制剂NaNO_2影响钝化膜的组成和生长过程,从而提高钢筋的抗氯离子点蚀能力。The electronic properties of the passive film on REBAR electrodes in simulatedcement pore solution(pH=9.0~13.8)have been investigated using in-situ photoelectrochemicalmethods.The results show that the passive film is composed of mixed oxides of ferrum ,and it is anamorphous,n-type semiconductive film. Variations of pH values,ions in the solution and film-formation potentials can affect the composition of the films. There are two main stages in the growthof the film,with two rate functions characterized by linear relation between the film thickness and thelogarithm of time.The addition of inhibitor NaNO_2 changes the composition,structure and growthkinetics of the film,and therefore improves the resistance of pitting corrosion induced by chloride.作者联系地址:南京化工学院应用化学系,固体表面物理化学国家重点实验室,厦门大学化学系Author's Address: Nanjing Institute of Chemical Technology,Dept.of Applied Chemistry, Nanjing 210009Yang Yong;Chen Xuguang;Lin ZugengState Key Laboratory for Physical Chemistry of the Solid Surface,Dept. of Chemistry,Xiamen University,
Structural and Electrochemical Studies on Todorokite/Vernadite as Cathodes for Rechargeable Lithium Ion Batteries
利用XRD、TEM、ICP、低速CV以及恒流充放电等方法研究了一种3V锂离子电池阴极材料的结构及其电化学性能.样品主要由大隧道型结构的钡镁锰矿和层状结构的水羟锰矿组成,该样品的微观形貌为层间距约10nm的叠片状结构.Li+在样品中的嵌入脱出过程具有较好的可逆性和循环稳定性.未经提纯的样品前30次循环的放电比容量达到129mAh/g,100次循环后为96mAh/g.材料结构中嵌入隧道及层间的杂质金属阳离子起着结构支撑以及维持材料的微观结构和电化学性能稳定性的作用.XRD,TEM,ICP,low scan_rate CV and charge/discharge tests were carried out for the studies on the structural and electrochemical behavior of a prepared 3 V manganese oxide cathode for rechargeable lithium ion batteries.XRD analysis revealed that the cathode sample is mainly composed of tunneled Todorokite and layered Vernadite.TEM investigation confirmed that the morphology of the sample is a laminated construction with approximate 10nm layer space.The reversibility of Li + removal/intercalation and structural stability of this sample framework to lithium insertion are good in CV and charge/discharge tests. The discharge capacities were found to be about 129mAh/g obtained on first 30 cycles and remained to be 96mAh/g after 100 charge/discharge cycles.The inlaid cations in the tunnel or interlayer made contribution to the structural and electrochemical stability of this manganese oxide cathode framework.作者联系地址:厦门大学固体表面物理化学国家重点实验室Author's Address: State Key Laboratory for Physical Chemistry of Solid Surface, Inst. of Phys. Chem.,Dept.of Chem.,Xiamen Univ.,Xiamen 36100
Growth Kinetics and Breakdown of Passive Films on REBAR Electrodes in Simulated Cement Pore Solution
用恒电位电流衰减法及激光扫描光电化学显微技术研究了在于pH=12.5及13.8的模拟混凝土孔溶液中钢筋钝化膜的生长动力学及相应的破坏过程,实验结果表明,钢筋钝化膜的生长过程存在两个主要阶段,各阶段膜厚均与生长时间存在正比对数关系,但当t<30秒和t>30秒时,膜的生长表现出不同的动力学特征.在钝化膜发生点蚀前,钝化膜的微区光电流表现出一定的预兆.腐蚀抑制剂NaNO_2影响膜的生长过程及膜厚,能提高钢筋的抗氯离子点蚀能力.The growth kinetics and breakdown of passive films on REBAR electrodes insimulated cement solution(pH=12.5 and 13.8)have been investigated using in situphotoelectrochemical methods and potential step method. The results show that there are two mainstages in the growth of the film ,with two rate functions characterized by linear relation between thefilm thickness and the direct logarithm of time. There is a sign in laser-scanning photoelectrochemicalmicroscopic image just before the passive film breaks down. The addition of inhibitor NaNO_2changesthe growth kinetics and thickness of the film ,and therefore improves the resistance of pitting corrosioninduced by chloride.作者联系地址:南京化工大学应用化学系, 固体表面物理化学国家重点实验室,厦门大学化学系Author's Address: Dept.of Applied Chemistry,Nanjing University of Chemical Technology, Nanjing,210009Yang Yong;Chen Xuguang;Lin Zugeng State Key Laboratory for Physical Chemistry of the Solid Surface,Dept.of Chemistry,Xiamen University
Structural and Electrochemical Studies on Lithium Manganese Oxide Containing Li + Prepared by Hydrothermal Method for Lithium Ion Batteries
利 用 X R D、 I C P、 T G A 、 D T A 及 恒 流 充 放 电 等 方 法 研 究 分 析 了 一 种 特 殊 天 然 结 构 Mn O2( N M D) 材料的结 构、组成 以及电 化学嵌锂 特性. X R D 分析 表明,该样 品材料 是由钠水 锰矿以及水羟 锰矿复 合结构组 成的 Mn O2 纳米 纤 维. 充放 电 循环 结果 显 示,其 前 期循 环容 量 可高 达 150m Ah/ g 左 右,但性 能尚不够 稳定. 本文采 用一种 水热法高 压嵌锂处 理,可将 N M D 样品 转变为 具有3 ×3 大隧道结 构的钡 镁锰矿( Todorokite) 型锂 锰氧 化 物,既 增 强了 Li + 嵌 入 隧道 或 层间 结 构 的循环稳定 性. 并 显著提 高锂锰氧 化物电 极材料性 能的 稳定 性,以 充放 电电 流密 度 为0 .8 m A/c m 2 ,经过180 次 循环后 其比容量 仍具有 110 m Ah/ g . 该类 大隧道结 构锂锰 氧化物可 作为一 种3 V 的锂离子电极 材料.In this paper, Todorokite manganese oxides containing Li + with large tunnel structure(sample M5) have been synthesized by hydrothermal methods from natural manganese oxide nano fiber (sample M4). The structure and composition of the samples were characterized and analyzed by XRD, ICP, TGA and DTA. Its electrochemical behavior as a cathode materials for rechargeable lithium ion insertion were studied by galvanostatic charge/discharge measurements. XRD results show that the sample M4 is mainly composed of Birnessite and Vernadite structure. Although the sample M4 shows a high initial capacity of approximately 150 mAh/g, its performances decrease gradually over 30 cycles. It is found that the materials have highly reversible charge/discharge cycling performances after being converted into Todorokite lithium manganese oxide(sample M5). This sample exhibit a single reduction step centered at Ca. 2.8 V and its discharge capacity maintains about 110 mAh/g after 180 cycles at current density of 0.8 mA/cm 2. The novel lithium manganese oxide with a large tunnel structure can be used as 3V cathode material of lithium ion batteries.作者联系地址:厦门大学固体表面物理化学国家重点实验室!厦门大学物理化学研究所化学系厦门361005,厦门大学固体表面物理化学国家重点实验室!厦门大学物理化学研究所化学系厦门361005,厦门大学固体表面物理化学国家重点实验室!厦门大学物理化学研究所化学系厦门361005,厦门大学固体表面物理Author's Address: State Key Lab. for Phys. Chem. of Solid Surf., Inst. of Phys. Chem., Dept. of Chem., Xiamen Univ., Xiamen, 36100
