1,380 research outputs found
Significant late Jurassic counterclockwise rotations of the Yanshiping region, east North Qiangtang terrane, implication on Lhasa - Qiangtang initial collision
Abstract HKT-ISTP 2013
A
Axially connected nanowire core-shell p-n junctions: a composite structure for high-efficiency solar cells
The complementary contribution of each order topology into the synchronization of multi-order networks
ACKNOWLEDGMENTS This work is supported by the National Natural Science Foundation of China (Grant No. 12072262).Peer reviewedPostprin
Thermodynamic model of coherent island formation on vicinal substrate
A thermodynamic model has been proposed to address the formation of coherent island on the vicinal substrate. The morphological transition from square based island to elongated based one with various substrate misorientations is described. The initial stage of nucleation and growth process of islands in Stranski-Krastanow system is studied by taking into account the elastic deformations and the change of energy in the case of two-dimensional growth mode. The theoretical analysis shows the minimum nucleation barrier of island is on the decrease with increment of substrate misorientation, which means the nucleation of island on vicinal substrate is more favorable than that on flat substrate. By using the fitting data of experimental results done by Persichetti et al., [Phys. Rev. Lett. 104, 036104 (2010) and Phys. Rev. B 82, 121309(R) (2010)], we provide a meaningful explanation of the experimental observations
1 D Hierarchical MnCo2O4 Nanowire@MnO2 Sheet Core–Shell Arrays on Graphite Paper as Superior Electrodes for Asymmetric Supercapacitors
Heterostructured metal oxide core–shell architectures have attracted considerable attention owing to their superior electrochemical performance in supercapacitors compared to a single structure. Here, we report a simple and effective synthesis of hierarchical MnCo2O4 nanowire@MnO2 sheet core–shell nanostructures anchored on graphite paper for use in supercapacitors. The proposed electrode exhibits a specific capacitance of 2262 F g−1 at 1 A g−1. In addition, good rate capability and excellent cycling performance are observed. An asymmetric supercapacitor with operating potential at 1.6 V is demonstrated using MnCo2O4@MnO2 as cathode and graphene/nickel foam (NF) as anode. The MnCo2O4@MnO2//graphene/NF asymmetric device shows a high energy density of 85.7 Wh kg−1 at a power density of 800 W kg−1 while maintaining a high energy density of 34.7 Wh kg−1 at 24 kW kg−1. Moreover, the device demonstrates a long-term cycling stability of 81.6 % retention of its initial specific capacitance
Asymmetric hybrid plasmonic waveguides with centimeter-scale propagation length under subwavelength confinement for photonic components
Abstract
An asymmetric hybrid plasmonic metal-wire waveguide is proposed by combining the advantages of symmetric and hybrid plasmonic modes. The idea of asymmetric structure eliminates the adverse effect of a substrate and enhances the optical performance of the waveguide. The guiding properties of the proposed waveguide are intensively investigated using the finite elements method. The results exhibit a quite long propagation length of 2.69 cm with subwavelength confinement. More importantly, an extremely large figure of merit of 139037 is achieved. Furthermore, the proposed waveguides can be used as directional couplers. They can achieve a coupling length of only 1.01 μm at S = 0.1 μm with negligible loss. A strong dependence of coupling length on the operating wavelength makes the proposed waveguide promising for realizing wavelength-selective components at telecommunication wavelengths.</jats:p
- …
