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Higher-order interactions improve our capability to model real-world complex systems ranging from physics and neu-
roscience to economics and social sciences. There is great interest nowadays in understanding the contribution of
higher-order terms to the collective behavior of the network. In this work, we investigate the stability of complete
synchronization of complex networks with higher-order structures. We demonstrate that the synchronization level of
a network composed of nodes interacting simultaneously via multiple orders is maintained regardless of the intensity
of coupling strength across different orders. We articulate that lower-order and higher-order topologies work together
complementarily to provide the optimal stable configuration, challenging previous conclusions that higher-order inter-
actions promote the stability of synchronization. Furthermore, we find that simply adding higher-order interactions
based on existing connections, as in simple complexes, does not have a significant impact on synchronization. The
universal applicability of our work lies in the comprehensive analysis of different network topologies, including hy-
pergraphs and simplicial complexes, and the utilization of appropriate rescaling to assess the impact of higher-order
interactions on synchronization stability.

Networks with higher-order interactions have emerged as
a significant component in modeling real-world complex
systems. They describe systems whose variables interact
with multiple variables simultaneously, forming complex
structures beyond those found in networks whose nodes
interact in a pairwise manner. Exploring the contribution
of higher- order interactions to the synchronization of net-
works is of major interest. Previous works have claimed
that the introduction of higher-order interactions to net-
works whose nodes are connected by either pairwise inter-
actions or lower-order interactions can promote synchro-
nization based on the network topology. In this work, we
demonstrate that this assertion does not hold. We first
show that the inclusion of higher-order interactions to a
network with a lower-order structure does indeed lead to
synchronization enhancement, but only if the higher-order
interactions are included without an unbiased rescaling in
the coupling strengths of the connections. By using our de-
rived unbiased rescaling, which incorporates information
about the topologies of the connections and does not fa-
vor one order structure in detriment of another, we show
that the inclusion of higher-order interactions does not al-
ter the state of synchronization. In fact, there is an optimal
value of the coupling strength for which the state of syn-
chronization is maximal by the inclusion of higher-order
structures to networks formed by lower-order structures.
It is the lower-order and higher-order topologies work-
ing together complementarily that provide the optimal sta-
ble configuration. This demonstrates that the focus of re-
search in this topic should shift from seeking to achieve
enhancement or inhibition of synchronization by includ-
ing higher-order structures, to the goal of seeking to find

configurations where both the lower-order and the higher-
order interactions mutually contribute to the increase of
synchronization.

I. INTRODUCTION

Networks are widely utilized to model coupled dynamical
processes in science and technology1,2. Traditionally, these
models have focused on pairwise interactions between dy-
namical units, represented by the edges or links of a graph3.
However, higher-order interactions, involving simultaneous
interactions among groups of units, have been shown to be
ubiquitous. Examples of such higher-order interactions can
be found in the brain4,5, ecological communities6,7, and col-
laboration networks8,9. Recently, there has been signifi-
cant research aimed at understanding how the interplay be-
tween higher-order structures and dynamical processes gov-
erns collective behaviors10,11. To effectively capture connec-
tions of different orders, some network structures, such as
hypergraphs12–14 and simplicial complexes15,16 have been in-
troduced to represent the higher-order networks.

Synchronization17,18 is a collective behavior that strongly
relies on the underlying interaction structure. It has many cru-
cial applications in various systems. A handful of studies have
observed synchronization in neuronal networks19–22, sen-
sor networks23, multilayer networks24–27, and time-varying
networks28. Recent works showed that higher-order inter-
actions have notable effects on synchronization. For in-
stance, they can promote explosive synchronization29–32,
multistability33,34, cluster synchronization31, chimera35–37,



2

etc. For the stability of synchronization, the Master Stabil-
ity Function has been applied to the stability analysis of sev-
eral special cases of higher-order networks38,39. Along with
these studies, mathematical approaches, such as the mean-
field approximation14,29,35 and the Laplacian description39,40

have been extended to incorporate higher-order structures.
One of the most prominent and extensively studied network

models for analyzing the stability of synchronization in com-
plex networks is the Kuramoto network model41–44, which has
also been generalized to higher order. Through linearization,
the stability of the complete synchronous mode in the higher-
order Kuramoto network is associated with the properties of
the generalized Laplacian40,45. Beyond the Kuramoto net-
work, a general framework was proposed in Ref.39 to study
the stability of synchronization in a generic system with ar-
bitrary interaction orders and coupling functions. Following
it, similar stability analyses were proposed to study the emer-
gency of complete synchronization in directed hypergraphs46

and networks with multiple interaction layers47.
Previous works45,48,49 have considered using a higher-order

proportion α,α ∈ [0,1] to address the influence of specific or-
der interactions on the collective behavior of higher-order net-
works. Considering a multi-order network formed by 2-order
structures (one pairwise order-1 and the other higher-order),
they first normalized the coupling strength among nodes be-
longing to a specific order structure by dividing it by the aver-
age degree of connection in that structure. Then, they multi-
plied the coupling strength of higher-order interactions by α ,
and that of the lower-order interactions by (1−α). By em-
ploying this strategy, networks were constructed with a com-
bination of order-1 and higher-order terms, ensuring that the
overall coupling strength among units remains consistent as
higher-order structures are incorporated into the model. By
examining how the synchronization changes with α , those
studies drew conclusions regarding the role of higher-order
interactions. For example, the work in Ref.45 suggested that
synchronization is promoted by the higher-order structure, if
they are hypergraphs, but not promoted if they are simplicial
complexes.

As the stability of multi-order networks is a function that
does not only depend on the coupling strength and the average
degree, but rather on the whole network structure50,51 and the
coupling functions39, the normalization (dividing by the aver-
age degree) and parametrization (multiplying by α ) used in
Refs.40,45 is prone to oversight the role of higher-order interac-
tions in shaping the collective behavior of the whole network.
Therefore, claims about whether higher-order interactions can
or not promote synchronization should be taken with caution.

In this work, we introduce a further parametrization to the
network, a rescaling factor R. This rescaling factor is derived
from the eigenmode of the variational equations and takes into
account the coupling strength, structure of the network, and
coupling function. We demonstrate that it is always possible
to find a constant rescaling that can make a network with ar-
bitrary interaction order exhibit an equivalent stability of syn-
chronization compared to another network with any other in-
teraction order. Specifically, we provide examples using Ku-
ramoto networks as a prototype to assert that there is always a

low-order pairwise network that can achieve the same level of
stability as a higher-order network.

To study the impact of higher-order interactions more fairly,
we introduce this rescaling factor to a network with two inter-
action orders. Subsequently, we employ the Maximum Trans-
verse Lyapunov Exponent (MTLE) to examine the synchro-
nization stability within this rescaled network. In contrast
to the findings in Ref.45, we articulate that the addition of
higher-order structures neither promotes nor inhibits synchro-
nization. The synchronization scenario is actually even more
diverse. The stability (measured by the MTLE) is maximal
at an optimal value of α . It is not whether higher order that
improves (or not) synchronization, but simply that these two
topologies work together complementarily to provide the opti-
mal stable configuration. If the higher-order structure is a sim-
plicial complex, the underlying topology remains the same as
the interaction order increases. The higher-order proportion
α does not have significant influence on the synchronization
so that the MTLEs remain roughly invariant with α . Espe-
cially, when the Laplacians commute, we demonstrate that the
MTLE is a constant function with α . Furthermore, if the net-
work grows in size, regardless of the type of the higher-order
structure, the MTLEs remain roughly invariant. Thus, the sta-
bility of the multi-order network does not typically depend on
higher-order interactions proportion α .

II. RESULTS

A. The rescaling between networks with interactions of
different orders

We consider a coupled dynamical system with order d in-
teractions. Its evolution is governed by

ẋi = f(xi)+σd

N

∑
j1=1

. . .
N

∑
jd=1

a(d)i j1... jd
g(d)

(
xi,x j1 , . . . ,x jd

)
, (1)

where xi ∈ Rm is the vector state of node i, with i = 1, . . . ,N.
The uncoupled dynamics of each node is identical, which is
ẋi = f(xi) .σd is the coupling strength of the (d + 1)− body
interactions. g(d) : R(d+1)×m → Rm is the coupling function
of order d, which satisfies the synchronization noninvasive
condition g(d)(x,x, . . . ,x) = 0. The interaction architecture of
order d is encoded in the adjacency tensor

(
a(d)i j1... jd

)
, where

a(d)i j1... jd
= 1, if nodes (i, j1, . . . , jd) belong to an order d inter-

action simultaneously, and a(d)i j1... jd
= 0, otherwise.

To analyze the stability of the synchronization, we intro-
duce a small perturbation δxi = xi − xs around the synchro-
nization manifold xs(t) = x1(t) = . . . = xN(t). Applying the
linear stability analysis to higher-order networks (Ref.39), we
obtain the variational equations given by

δ ẋi = Jf(xs)δxi −σd

N

∑
j=1

L(d)
i j JG(d)

δx j, (2)

where L(d) is the generalized Laplacian of order d, a
higher-order extension of the classical Laplacian of the
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graph (see Appendix B for its definition). J is the Jaco-
bian operator. The Jacobian matrices for function f and
coupling function g(d)

(
xi,x j1 , . . . ,x jd

)
are represented by

Jf(xs) and JG(d) = J1g(d) (xs, . . . ,xs) + J2g(d) (xs, . . . ,xs) +

. . . + Jdg(d) (xs, . . . ,xs), in which Jkg(d) (xs, . . . ,xs) is
∂g(d)

(
xi, . . . ,x jd

)
/ ∂x jk

∣∣
(xs,...,xs)

.
By combining all N variational equations with the Kro-

necker product, we derive the equation for the perturbation
δx =

[
δxT

1 ,δxT
2 , . . . ,δxT

N
]T , which is

δ ẋ =
[
IN ⊗ Jf(xs)−σdL(d)⊗ JG(d)

]
δx. (3)

Following the steps to derive the Master Stability Equa-
tion in Refs.52,53, Eq. (3) can be decoupled into N indepen-
dent eigenmodes by diagonalizing the generalized Laplacian
L(d), that is V−1L(d)V = diag(λ1,λ2, . . . ,λN), where 0 = λ1 <
λ2 ≤ . . . ≤ λN are eigenvalues and V = [v1,v2, . . . ,vN ] is
the matrix of the eigenvectors. By the transformation ξ =(
V−1 ⊗ Im

)
δx, we obtain the dynamics for each eigenmode

ξ̇i =
[
Jf(xs)−λi

(
σdL(d)

)
JG(d)

]
ξi, (4)

where λi :R(N×N) →R is a function calculating the i-th eigen-
value of a matrix. Among all the N eigenmodes, the second
eigenmode ξ2 corresponding to the smallest non-zero eigen-
value of the Laplacian is the dominant mode. For the case of
the unbounded synchronization region (synchronization will
not be lost as the coupling strength increases), if the second
eigenmode is stable, all the other eigenmodes are stable. The
identical second eigenmode indicates equivalent stability of
synchronization. From Eq. (4), assuming that all the systems
with different orders have the same Jf(xs), the stability of syn-
chronization is determined by the coupling strength (σd), the
coupling structure (λi), and the Jacobian of coupling function
(JG(d)).

Based on the above analysis, the synchronization stability
of two systems with interaction orders d1 and d2 are equiv-
alent, if their second eigenmodes are the same. We suppose
the Jacobian Jf(xs) is identical for systems with any order. To
achieve this equivalence, we introduce a rescaling R, which
satisfies Rλ2

(
σd1L(dl)

)
JG(d1) = λ2

(
σd2L(d2)

)
JG(d2). Then

the definition of a rescaling comes as

R =
λ2

(
σd2L(d2)

)
JG(d2)

λ2
(
σd1L(d1)

)
JG(d1)

. (5)

To achieve a constant rescaling R, which does not depend
on system states, the Jacobian matrices JG(d1) and JG(d2)

should be the same (e.g., the natural coupling39 ) or be con-
stants (e.g., sin

(
∑

d
k=1 θ jk −dθi

)
or the linear coupling func-

tions).

B. The equivalent synchronization stability of rescaled
Kuramoto network and higher-order Kuramoto network

In this section, we focus on the rescaling of an order-1 Ku-
ramoto network, which consists of only pairwise interactions,

and demonstrate its dynamics approaching the synchroniza-
tion manifold, which is equivalent to that of an order-2 Ku-
ramoto network with three-body interactions only. By "equiv-
alent," we refer to the similarity in the evolution of the order
parameter and the proximity of unit trajectories to the syn-
chronization manifold in both networks. Notably, after rescal-
ing, Eq. (4), the second eigenmodes of both networks are
identical. All the simulations in this work are conducted both
on hypergraphs and simplicial complexes (see Appendix A for
their definitions, and how to construct them).

It should be noted that the purpose of this section is to con-
struct two networks with different orders but the same syn-
chronization stability. In the next section, we will build a
multi-order network based on these two networks. Although
we prove that higher-order and lower-order networks can have
the same synchronization stability, this is not the main reason
for us to draw the conclusion that high-order interactions nei-
ther promote nor inhibit the stability of synchronization.

The order-1 Kuramoto network is described by

θ̇i = ω +σ1

N

∑
j1=1

a(1)i j1
sin(θ j1 −θi) , (6)

where θi is the phase of node i,ω is the natural frequency, and
a(1)i j1

is the element of the adjacency matrix that encodes the
network topology.

The order-2 Kuramoto network is described by

θ̇i = ω +σ2

N

∑
j1=1

N

∑
j2=1

a(2)i j1 j2
sin(θ j1 +θ j2 −2θi) , (7)

where a(2)i j1 j2
is the element of the order-2 adjacency tensor. If

a(2)i j1 j2
= 1, there exists a 3-body interaction involving nodes

(i, j1, j2), otherwise, a(2)i j1 j2
= 0.

Since in the Kuramoto network, the Jacobian JG(d) = d is
a constant (see Appendix C for details). According to Eq. (5),
the rescaling of the order-1 Kuramoto network is

R =
λ2

(
σ2L(2)

)
JG(2)

λ2
(
σ1L(1)

)
JG(1)

=
2σ2λ2

(
L(2)
)

σ1λ2
(
L(1)
) . (8)

And the rescaled order-1 Kuramoto network is given by

θ̇i = ω +Rσ1

N

∑
j1=1

a(1)i j1
sin(θ j1 −θi) . (9)

We proceed to demonstrate the equivalence of synchroniza-
tion between the rescaled order-1 Kuramoto network in Eq.
(9) and the order-2 Kuramoto network in Eq. (7). When
two dynamical systems exhibit the same linear stability of the
complete synchronous manifold, trajectories close to the syn-
chronization manifold approach the synchronization manifold
similarly. Assuming that the network is sufficiently stable, tra-
jectories should take a similar time to approach the manifold.
But, in the case of the systems studied here, linear stability
implies Lyapunov stability, and thus, similar stability results
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FIG. 1. (a) depicts the order parameters over time for the order-
1 Kuramoto network (yellow), order-2 Kuramoto network (blue),
and rescaled order-1 Kuramoto network (red). In (a), all the net-
works are represented by hypergraphs. In (b), those three Ku-
ramoto networks are represented by simplicial complexes. (c)-(e)
correspond to the phase evolution of the Kuramoto networks in (b).
Here, the parameters are natural frequency ω = 1, coupling strength
σ1 = 1/< k(1) >,σ2 = 1/

(
2 < k(2) >

)
,< k(d) > is the averaged de-

gree, the number of nodes N = 100, edge probability for d-hyperedge
p1 = 0.8, p2 = 0.01, and edge probability for the simplicial complex
p = 0.5. As observed in the evolution of order parameters in (a) and
(b), the rescaled Kuramoto network and the order-2 Kuramoto net-
work exhibit equivalent stability of synchronization.

can be obtained for simulations that consider initial conditions
far from the synchronization manifold. To describe the syn-
chronization evolution over time, we utilize the global order
parameter r. According to the mean-field theory in Ref.54, we
have r(t)eiΨ(t) = 1/N ∑

N
j=1 eiθ(t) j , where θ j is the phase of the

j-th node, Ψ is the averaged phase, r ranges from 0 to 1 , and
r = 1 indicates the complete synchronization. If the perturbed
system returns to r = 1 more quickly, it signifies greater sta-
bility of synchronization.

In Fig. 1(a), without rescaling, the order parameter of
order-2 Kuramoto network (blue) hits the value 1 earlier than
that of the order-1 Kuramoto network (yellow). This in-
dicates that the perturbed system with higher-order interac-
tions approaches the synchronous state faster than the order-
1 Kuramoto network. However, upon introducing a rescal-
ing to the order-1 Kuramoto network, the rescaled order-1
Kuramoto network (red) and the order-2 Kuramoto network
(blue) achieve complete synchronized almost simultaneously.
This outcome is a consequence of the rescaled Kuramoto net-
work possessing the same synchronous stability as the higher-
order ones. The same consequence can be observed in the
case of the simplicial complex, as shown in Fig. 1(b). Figures.
1(c)-1(e) depict the phase evolution of individual nodes. The
curves representing the order-1 Kuramoto network (yellow)
are wider compared to those of the order-2 Kuramoto network
(green). However, after rescaling, the curves of the rescaled
order-1 Kuramoto network (red) closely resemble those of its
higher-order counterparts, which indicates that the rescaled
Kuramoto network and the higher-order Kuramoto network
recover synchronization at a similar speed.

C. The rescaled multi-order Kuramoto network

In this section, we investigate a multi-order Kuramoto net-
work that includes two interaction orders. Based on the anal-
ysis in Sec. II. B, we know that the coupled order-1 in-
teractions σ1 ∑

N
j1=1 a(1)i j1

sin(θ j1 −θi) and the order-2 interac-

tions σ2 ∑
N
j1=1 ∑

N
j2=1 a(2)i j1 j2

sin(θ j1 +θ j2 −2θi)/R with rescal-
ing contribute equally to the synchronization stability of a Ku-
ramoto network. By combining these two orders, we construct
a rescaled multi-order-2 Kuramoto network, given by

θ̇i = ω +σ1

N

∑
j1=1

a(1)i j1
sin(θ j1 −θi)

+
σ2

R

N

∑
j1=1

N

∑
j2=1

a(2)i j1 j2
sin(θ j1 +θ j2 −2θi) .

(10)

Following Refs.45,49, in order to study the influence of
higher-order interaction, a parameter α is introduced to ad-
just the proportion of higher order. To be consistent with
Ref.45, we set the coupling strength as σ1 = 1/ < k(1) >

,σ2 = 1/
(

2 < k(2) >
)

, where < k(d) > is the average degree
of order-d (see Appendix B for its definition). Consequently,
the multi-order-2 Kuramoto network can be expressed as the
following equation

θ̇i = ω +
(1−α)

< k(1) >

N

∑
j1=1

a(1)i j1
sin(θ j1 −θi)

+
α

2 < k(2) >
1
R

N

∑
j1=1

N

∑
j2=1

a(2)i j1 j2
sin(θ j1 +θ j2 −2θi) ,

(11)

where R is the rescaling defined in Eq. (8), which is

R =
2σ2λ2

(
L(2)
)

σ1λ2
(
L(1)
) =

< k(1) > λ2

(
L(2)
)

< k(2) > λ2
(
L(1)
) , (12)

where λ2

(
L(1)
)

and λ2

(
L(2)
)

are the second eigenvalues of

the generalized Laplacian L(1) and L(2).
Following Refs.40,45, we investigate the synchronization

stability of the rescaled multi-order Kuramoto network in
Eq. (11) using the Maximum Transverse Lyapunov Expo-
nent (MTLE), which refers to the maximum non-zero Lya-
punov Exponent. The MTLE of Eq. (11) can be computed as
the negative of the smallest non-zero eigenvalue of the multi-
order Laplacian, which is described by

Λmax(α) =−λ2

(
(1−α)

< k(1) >
L(1)+

α

R < k(2) >
L(2)
)
, (13)

where λ2 : R(N×N) →R is a function that indicates the second
eigenvalue of a matrix.

To compare the fixed normalization used in Refs.40,45 with
our rescaling, we calculate the MTLE in Eq. (13) of the
rescaled multi-order-2 Kuramoto network in Eq. (11). In Figs.
2(a)-2(c), we consider a hypergraph with p1 = 0.1, p2 = 0.02
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FIG. 2. (a)-(l) depict how the MTLEs change with the higher-
order proportion α . (a)-(c) use the same hypergraph, whose the 1-
hyperedge probability p1 = 0.1 and 2-hyperedge probability p2 =
0.02. For (a), the R in Eq. (10) is set to be 1. For (b), R = 2. For
(c), R = 6.69, which is the rescaling calculated by Eq. (8). (d)-(f)
are about another hypergraph, whose p1 = 0.9 and p2 = 0.002. Sim-
ilarly, (g)-(i) display the MTLEs in a simplicial complex with the
edge probability p = 0.5 and R = 1, R = 2, R = 1.4, respectively.
(j)-(l) are for a simplicial complex with p = 1.

and evaluate its MTLE with R equal to 1, 2, and the rescaling
factor 6.69 obtained from Eq. (12). Figs. 2(a), 2(b) demon-
strate that with R equal to 1 or 2, the stability of synchro-
nization is improved as α increases. But Fig. 2(c) with our
rescaling R = 6.69 indicates a minimal change in synchro-
nization stability. In Figs. 2(d)-2(f), a new hypergraph is
generated with p1 = 0.9, p2 = 0.002. The MTLEs in Figs.
2(d), 2(e) adopt the same normalization factors as Figs. 2(a),
2(b), however, exhibiting different trends as compared to Figs.
2(a), 2(b). This comparison suggests that when using the same
fixed normalization but different structures, different conclu-
sions regarding the influence of higher-order interactions are
reached. Figures. 2(g)-2(i) present the MTLEs of the rescaled
multi-order-2 Kuramoto network in a simplicial complex with
p = 0.5. Comparing Figs. 2(g) and 2(h), it is evident that
for the same higher-order networks but different normaliza-
tion factors, the MTLEs exhibit distinct behaviors. In Fig.
2(g), R = 1, the MTLE becomes smaller as α increases, in-
dicating that higher-order interactions promote synchroniza-
tion. However, in Fig. 2(h), R = 2, the MTLE follows an
opposite trend. This discrepancy explains why Ref.40 using
R = 1 and Ref.45 using R = 2 arrived at different conclusions
regarding whether higher-order interactions in simplicial com-
plexes promote synchronization stability. These comparisons
demonstrate that the stability of networks with higher-order

interactions is influenced not only by the representations of
higher-order networks but also by specific network structures.
Simply normalizing the coupling strength by the average de-
gree and a fixed value of R for all higher-order structures may
not be sufficient.

Note that in Figs. 2(k) and 2(l), p = 1 indicates an all-to-all
connection between nodes. In this case, we can analytically
calculate the rescaling, which is equal to 2 (see more details
in Appendix B). This is the same as the normalization factor
used in Ref.45. It indicates that the additional factor of 2 ensur-
ing each interaction has an equal coupling weight regardless
of the interaction order, is suitable for all-to-all connections.
But for other connection structures, it may create bias towards
specific orders. Therefore, to study the impact of higher-order
interactions more fairly, it is essential to find a new rescaling
factor.

In fact, the impact of higher-order interactions on synchro-
nization is also related to the topology structures and coupling
functions39. However, the normalization based on average de-
grees and interaction orders ignores the overall topology struc-
tures and coupling functions, which may not properly bal-
ance interactions of different orders. The rescaling defined
in Eq. (5) considering coupling strength, topology structures,
and coupling functions, aims to ensure that every order in a
multi-order network contributes equally to the dynamics from
the perspective of synchronization stability. It should be noted
that the necessity of ensuring the same synchronization stabil-
ity for each individual network in a multi-order network is
reflected in the fact that if the higher-order network itself has
stronger synchronization ability than the lower-order network,
increasing the proportion of the higher-order term can easily
lead to the conclusion that higher-order interactions promote
synchronization.

Figures. 2(c), 2(f), 2(i), and 2(l) show that the values of
rescaling vary with the network structures. When we rescale
the order- 2 interactions using the structure dependent rescal-
ing R, the stability of synchronization in the rescaled multi-
order-2 Kuramoto network does not significantly change with
α in both hypergraphs and simplicial complexes.

D. The stability of synchronization in the rescaled
multi-order Kuramoto network

Now, to analyze the stability of synchronization in the
rescaled multi-order- 2 Kuramoto network in a more detailed
way, we address how its MTLE in Eq. (13) changes with α .
We prove that this MTLE is a convex function, which means
there is either an optimal α∗ for the synchronization stability
or the synchronization stability does not change with α .

Let 0 = λ1 < λ2 ≤ . . . ≤ λN be eigenvalues of the general-
ized multi-order Laplacian L(high). The sum of its k smallest
eigenvalues55 is

k

∑
i=1

λi = inf
{

Tr
(

V T L(high)V
)
|V ∈ RN×k,V TV = 1

}
. (14)

As the matrix multiplication and the trace of the matrix are
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linear, thereby Tr
(

V T L(high)V
)

is a linear function. Then tak-
ing pointwise infimum over these linear (linear means both
concave and convex) functions implies that ∑

k
i=1 λi is a con-

cave function. As in Kuramoto networks, the MTLE Λmax is
equal to minus the second smallest eigenvalue of the Lapla-
cian and λ1 = 0, so that

Λmax =−λ2 =−
2

∑
i=1

λi (15)

is a convex function. According to the properties of convex
functions, the MTLE in Eq. (13) satisfies

Λmax(α) =−λ2

(
(1−α)

< k(1) >
L(1)+

α

R < k(2) >
L(2)
)

≤−(1−α)λ2

(
L(1)

< k(1) >

)
−αλ2

(
L(2)

R < k(2) >

)
,

(16)
that is the minus second eigenvalue of the sum of
the normalized Laplacian (ESL), which is less than
or equal to the minus sum of the second eigenvalue
of the normalized Laplacian (SEL). By plugging R =(
< k(1) > λ2

(
L(2)
))

/
(
< k(2) > λ2

(
L(1)
))

defined in Eq.
(12) into Eq. (16) (see more details in Appendix D), we ob-
tain

Λmax(α)≤−λ2

(
L(1)

< k(1) >

)
=−λ2

(
L(2)

R < k(2) >

)
, (17)

that is Λmax(α) ≤ Λmax(0) = Λmax(1),0 < α < 1, which
means the networks with only order-1 interactions (α = 0) or
with the rescaled only order-2 interactions (α = 1) will have
equivalent stability of synchronization (Λmax(0) = Λmax(1)).
Besides, the upper bound of the MTLE, i.e., the right side of
Eq. (16), is a constant function with α , which is equal to
Λmax(0) and Λmax(1).

According to Eq. (16) and Eq. (17), the distance between
the MTLE and its constant upper bound is

D(α) = |Λmax(α)−Λmax(0)| . (18)

For example, in Fig. 3(a), the distance d(α) is equal to the
absolute difference between the MTLE (blue dot line) and the
constant upper bound (red dash line). The smaller the dis-
tance, the closer the MTLE is to a straight line.

Figures. 3(a), 3(d), 3(g) correspond to three cases
of the MTLE, which are Λmax(α) < Λmax(0),Λmax(α) ≈
Λmax(0),Λmax(α) = Λmax(0),0 < α < 1. Next, we discuss
the network structures and their stability of synchronization
in each of these cases.

The top panel of Fig. 3 illustrates the hypergraphs with the
same hyperedge probability but a varying number of nodes.
For small hypergraphs, such as Fig. 3(a), the MTLE (blue)
satisfies Λmax(α) < Λmax(0),0 < α < 1. This indicates the
existence of an optimal α∗, at which the MTLE Λmax reaches
its minimum, representing the most stable synchronization.
Since 0 < α∗ < 1 the optimal stable configuration does not
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FIG. 3. (a)-(c) are about hypergraphs (blue) with the same hyperedge
probability p1 = 0.2 and p2 = 0.005. The dot lines in (a), (b) illus-
trate the MTLEs of hypergraphs with the number of nodes N = 50
and N = 800, respectively. The red dash lines are their upper bound,
which is a constant function with α . (c) shows that the distance be-
tween the MTLEs and their constant upper bound decays with the
number of nodes N. (d)-(f) depict the MTLEs in Eq. (13) and the
distance in Eq. (18) for simplicial complexes (green) with the edge
probability p = 0.3. (g)-(i) depict the MTLEs and the distance for
simplicial complexes with the edge probability p = 1. As shown in
(g)-(i), in the all-to-all connected simplicial complex, the MTLE is a
constant and the distance between the MTLEs and their upper bound
is 0.

consist solely of either lower-order interactions (α = 0) or
with only higher-order interactions (α = 1). Therefore, it is
not that higher order improves synchronization, but simply
that these two topologies work together complementarily to
provide the optimal stable configuration.

Then we increase the number of nodes, in Fig. 3(b), the
MTLE (blue) is approximately equal to its constant upper
bound (red), i.e., Λmax(α) ≈ Λmax(0),0 < α < 1. This is
clearly shown in Fig. 3(c), where the distance decays with the
number of nodes. This indicates that the MTLE is approach-
ing a straight line, suggesting that having less or more higher
order becomes irrelevant in very large networks.

The middle panel of Fig. 3 is about simplicial complexes
with an edge probability p = 0.3. Even in a small network
with N = 50, the MTLE is very close to its upper bound, im-
plying that after rescaling, different order interactions have a
similar influence on the stability of synchronization. This can
be attributed to the characteristics of simplicial complexes.
Unlike hyperedges, the higher-order simplexes in this study
are formed by lower-order simplexes, which do not introduce
new connections to the network. This implies that in the sim-
plicial complex, the lower-order Laplacian and the higher-
order Laplacian have the same zero elements and the un-
derlying topology of simplicial complexes remains the same
when adding the higher-order structure to it, which means the
structures with different orders are similar, the change of the
higher-order proportion α will not have a significant impact
on the stability of synchronization.

The bottom panel of Fig. 3 focuses on simplicial complexes
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with an edge probability p = 1, which means the connection
in this simplicial complex is all-to-all. Fig. 3(i) shows that the
distance defined in Eq. (18) is 0, indicating that for the all-
to-all connection, we have Λmax(α) = Λmax(0), 0 < α < 1.
In fact, we can prove that when the Laplacian L(1) and L(2)

commute56, the MTLE in Eq. (13) becomes a constant equal
to its upper bound. As special cases, in simplicial com-
plexes that encode all-to-all connection or m-nearest neigh-
bors connection, the Laplacian matrices of any order commute
(see more details in Appendix E). Therefore, through proper
rescaling, the MTLE of these two types of higher-order net-
works does not change with α . Consequently, higher-order
interactions in the all-to-all network and m-nearest neighbors
network cannot promote or prevent the stability of synchro-
nization.

By comparing the results in hypergraphs and simplicial
complexes, such as Figs. 3(a) and 3(d). we articulate that
when higher-order structures introduce new connections (as in
hypergraphs), the optimal stable configuration includes both
higher-order and lower-order interactions. This ensures that
as more nodes are involved, the structure becomes better con-
nected and more stable. On the other hand, if we only add
higher-order interactions based on the existing connections (as
in simplicial complexes), the connections are not expanded
by higher-order structures, resulting in no significant impact
on the stability of synchronization. Through the former anal-
ysis, we conclude that in the multi-order networks, the big-
ger the higher-order proportion does not mean the higher or
lower synchronization stability. But rather there is an optimal
proportion, which is highly dependent on the structure of the
whole network.

III. DISCUSSION

There is nowadays strong mathematical support to deter-
mine the network configurations that lead to stable complete
synchronous behavior. It is however still elusive whether nat-
ural systems being modeled by higher-order structures have
evolved to that topology to promote or not synchronous be-
havior. This question is also pervasive to understand whether
it is at all an advantage to construct networked systems with
higher-order topology when the goal is to promote or prevent
synchronization. This motivates this work, which seeks to
understand rigorously the equivalence of the stability of the
complete synchronous behavior for complex networks with
different higher-order structures.

In this work, we have investigated the synchronization sta-
bility of a class of higher-order networks, characterized by
constant or identical Jacobians of coupling functions across
all orders. Our findings demonstrate that the synchronization
stability of systems with different interaction orders can be
made equivalent through appropriate rescaling. Further, by
this rescaling, we introduce a method to build a rescaled multi-
order network, in which each order of interactions contributes
equally to synchronization stability. Our results show that in
this rescaled network, compared to the pairwise interactions,
higher-order interactions do not possess a unique impact on

the stability of synchronization. Instead, it is the lower-order
and higher-order topologies working together complementar-
ily that provide the optimal stable configuration.

These results highlight the importance of considering net-
work topology, coupling functions, and a proper rescaling fac-
tor in comprehending the role of higher-order interactions in
synchronization stability. And the role of higher-order inter-
actions could not be revealed without the constant rescaling
proposed in this work.

SUPPLEMENTARY MATERIAL

In the supplementary material, we define the rescaling be-
tween an order-d network and a multi-order network, give ex-
amples of the Laplacian of a hypergraph and a simplicial com-
plex, and provide other supplementary information.
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IV. APPENDIXES

A. Hypergraphs and simplicial complexes

Hypergraphs and simplicial complexes are commonly used
representations of higher-order interactions.

Hypergraphs14: A hypergraph G = (V,E) is a generaliza-
tion of the classical graph, in which V is the set of nodes and
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E is the set of hyperedges. In a hypergraph, interactions be-
tween nodes are represented as hyperedges, which can con-
nect any number of nodes. This property makes hypergraphs
suitable for capturing many-body interactions.

Simplicial Complexes57 : An M-dimensional simplicial
complex S is a collection of simplices S = {α1,α2, . . . ,αM}
in which a d-dimensional simplex αi is formed by connecting
a set of nodes, αi = [v0,v1, . . . ,vd ]. For example, a 1 -simplex
[v0,v1] is an edge that connects two nodes, and a 2-simplex
[v0,v1,v2] is a triangle that connects three nodes. A simpli-
cial complex is a type of hypergraph with an extra condition
that if a simplex exists, then all of its subsets must also ex-
ist. For example, if a triangle [v0,v1,v2] exists, then the edges
and vertices that make up the triangle must also exist, i.e.,
S = {[v0,v1,v2] , [v0,v1] , [v0,v2] , [v1,v2] , [v0] , [v1] , [v2]}.

We consider these two topologies to generate our Kuramoto
networks. The method described in Ref.45 is followed for gen-
erating the random hypergraphs and simplicial complexes. In
the randomly generated hypergraphs58, each hyperedge with
dimension d is formed by selecting any d+1 from the total N
nodes with edge probabilities pd . Hyperedges containing dif-
ferent numbers of nodes are independent. So that additional
connections among nodes can be established by introducing
higher-order hyperedges. In the case of simplicial complexes,
the generation process involves the following steps. First, 1-
simplexes are generated from an Erdös-Rényi graph59 with
edge probability p. Then, 2-simplexes are recognized from
interconnected 1-simplexes. Specifically, if the 1-simplexes
(i, j),( j,k),(i,k) exist, then a 2 -simplex (i, j,k) is formed.

According to the way we generate the simplicial com-
plexes, the presence of lower-order interactions determines
the existence of higher-order interactions. That is, higher-
order simplexes only add higher-order interactions without
adding new connections. The underlying network topology
of the higher-order structure and the lower-order structure re-
mains the same.

B. The generalized higher-order Laplacian

The Laplacian matrix is a useful tool for analyzing the dy-
namics and stability of coupled units. Recently, the Lapla-
cian matrix was generalized to incorporate higher-order inter-
actions. Following the definition in Ref.39, the generalized
Laplacian of order d is

L(d)
i j = d!k(d)i δi j − (d −1)!k(d)i j , (B1)

k(d)i =
1
d!

N

∑
i1=1

N

∑
i2=1

. . .
N

∑
id=1

a(d)i,i1,i2,...,id
, (B2)

k(d)i j =
1

(d −1)!

N

∑
i1=1

N

∑
i2=1

. . .
N

∑
id−1=1

a(d)i, j,i1,i2,...,id−1
, (B3)

where δi j is the Kronecker delta, i.e., δi j = 1 if i = j, else
δi j = 0. The generalized d-degree k(d)i indicates the number

of distinct d-simplices incident to each node. The order-d
adjacency matrix

(
k(d)i j

)
represents the number of distinct d-

simplices incident to each pair of nodes (i, j).
Note that this definition is a bit different from that in the

Ref.39. Because we study the higher-order networks both rep-
resented by simplicial complexes and hypergraphs. If the net-
work is a hypergraph, when a(1)i j = 0,L(d)

i j does not have to

be zero, but if it is a simplicial complex, L(d)
i j must be zero.

What’s more, as we recognize the interconnected lower-order
simplexes as a higher-order simplex, the Laplacian of all or-
ders have the same zero elements.

When the connection is all-to-all, we can express L(d) of
any order with L(1). For order 1, k(1)i = N−1,k(1)i j = (1−δi j).
According to the analysis in the Ref.40,

k(d)i =

(
N −1

d

)
=

(N −2) . . .(N −d)
d!

k(1)i , (B4)

k(d)i j =

(
N −2
d −1

)
(1−δi j) ==

(N −2) . . .(N −d)
(d −1)!

k(1)i j .

(B5)
Then the generalized Laplacian of order d is

L(d)
i j = d!k(d)i δi j − (d −1)!k(d)i j

= (N −2) . . .(N −d)
(

k(1)i δi j − k(1)i j

)
.

= (N −2) . . .(N −d)L(1)
i j

(B6)

As λ2

(
L(1)
)

= N the second eigenvalue of L(d) is

λ2

(
L(d)

)
= N(N − 2) . . .(N − d). By plugging the average

degrees < k(1) >= N−1,
〈

k(2)
〉
= (N−1)(N−2)/2, the sec-

ond eigenvalues λ2

(
L(1)
)
= N,λ2

(
L(2)
)
= N(N − 2) into

Eq. (12), we get that the rescaling is equal to 2.

C. The Jacobian of coupling function in the Kuramoto
model

The order-d coupling function of the Kuramoto model is
g(d)

(
θi,θ j1 , . . . ,θ jd

)
= sin

(
∑

d
k=1 θ jk −dθi

)
. Its Jacobian is

described as JG(d) = ∑
d
k=1 Jkg(d), where

Jkg(d) =
∂ sin

(
∑

d
k=1 θ jk −dθi

)
∂θ jk

∣∣∣∣∣
(θ s,...,θ s)

= cos

(
d

∑
k=1

θ jk −dθi

)∣∣∣∣∣
(θ s,...,θ s)

= cos(0) = 1,k = 1,2, . . . ,d.

(C1)

So that JG(d) = ∑
d
k=1 Jkg(d) = d, which means in the Ku-

ramoto model the Jacobian of its coupling function at the syn-
chronous solution θ s = θ1 = θ2 = . . .= θN is constant.



9

D. The constant upper bound of the MTLE

By plugging R =
(
< k(1) > λ2

(
L(2)

))
/
(
< k(2) > λ2

(
L(1)

))
into λ2

(
L(2)/R < k(2) >

)
, we get

λ2

(
L(2)

R < k(2) >

)
=λ2

 λ2

(
L(1)

)
L(2)

< k(1) > λ2
(
L(2)

)
=λ2

(
L(1)

< k(1) >

)
.

(D1)
Then Eq. (16) becomes

Λmax(α)≤−(1−α)λ2

(
L(1)

< k(1) >

)
−αλ2

(
L(2)

R < k(2) >

)

=−(1−α)λ2

(
L(1)

< k(1) >

)
−αλ2

 λ2

(
L(1)

)
L(2)

< k(1) > λ2
(
L(2)

)


=−λ2

(
L(1)

< k(1) >

)
+αλ2

(
L(1)

< k(1) >

)
−αλ2

(
L(1)

< k(1) >

)

=−λ2

(
L(1)

< k(1) >

)
= λ2

(
L(2)

R < k(2) >

)
.

(D2)
From Eq. (D2), we know that Λmax(0) = Λmax(1) and

Λmax(α)≤ Λmax(0) = Λmax(1),0 < α < 1. The upper bound
of the MTLE is determined by L(1) and

〈
k(1)
〉

, which is a
constant function with α .

E. When the MTLE is equal to its upper bound

According to Eq. (16) and Eq. (17), Λmax(α) = Λmax(0) =
Λmax(1) can be expanded as

Λmax(α) =−λ2

(
(1−α)

< k(1) >
L(1)+

α

R < k(2) >
L(2)

)
=−(1−α)λ2

(
L(1)

< k(1) >

)
−αλ2

(
L(2)

R < k(2) >

)

=−λ2

(
L(1)

< k(1) >

)
=−λ2

(
L(2)

R < k(2) >

)
.

(E1)

As a special case, if the Laplacian L(1) and L(2) commute,
Eq. (E1) holds. Because the commuting matrices can be si-
multaneously diagonalized by the same invertible matrix, this
implies the existence of a matrix P satisfying

P−1
(

(1−α)

< k(1) >
L(1)+

α

R < k(2) >
L(2)

)
P

=
(1−α)

< k(1) >
P−1L(1)P+

α

R < k(2) >
P−1L(2)P = diag(λ1, . . . ,λN) .

(E2)

Based on this, we obtain that the eigenvalues of the sum of
Laplacian matrices are equal to the sum of the eigenvalues
of the Laplacian matrices (i.e., λi

(
L(1)+L(2)

)
= λi

(
L(1)
)
+

λi

(
L(2)
)

, i = 1,2, . . . ,N). As the MTLE is the negative of the
second eigenvalue of the Laplacian matrix, Eq. (E1) is proven.

In the case where the topology of the simplicial complex
corresponds to either an all-to-all connection or an m-nearest
neighbors connection, the Laplacian matrices L(1) and L(2)

can be shown to be circulant matrices. And circulant matri-
ces commute60. Therefore, for these two topologies, L(1) and
L(2) commute, then Eq. (E1) holds. Consequently, the MTLE
is equal to its upper bound, which is a constant function with
α .
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