2,643 research outputs found
Fermi surface with Dirac fermions in CaFeAsF determined via quantum oscillation measurements
Despite the fact that 1111-type iron arsenides hold the record transition
temperature of iron-based superconductors, their electronic structures have not
been studied much because of the lack of high-quality single crystals. In this
study, we completely determine the Fermi surface in the antiferromagnetic state
of CaFeAsF, a 1111 iron-arsenide parent compound, by performing quantum
oscillation measurements and band-structure calculations. The determined Fermi
surface consists of a symmetry-related pair of Dirac electron cylinders and a
normal hole cylinder. From analyses of quantum-oscillation phases, we
demonstrate that the electron cylinders carry a nontrivial Berry phase .
The carrier density is of the order of 10 per Fe. This unusual metallic
state with the extremely small carrier density is a consequence of the
previously discussed topological feature of the band structure which prevents
the antiferromagnetic gap from being a full gap. We also report a nearly
linear-in- magnetoresistance and an anomalous resistivity increase above
about 30 T for , the latter of which is likely related to the
quantum limit of the electron orbit. Intriguingly, the electrical resistivity
exhibits a nonmetallic temperature dependence in the paramagnetic tetragonal
phase ( 118 K), which may suggest an incoherent state. Our study provides
a detailed knowledge of the Fermi surface in the antiferromagnetic state of
1111 parent compounds and moreover opens up a new possibility to explore
Dirac-fermion physics in those compounds.Comment: 11 pages, 7 figures, 1 tabl
Attend and Interact: Higher-Order Object Interactions for Video Understanding
Human actions often involve complex interactions across several inter-related
objects in the scene. However, existing approaches to fine-grained video
understanding or visual relationship detection often rely on single object
representation or pairwise object relationships. Furthermore, learning
interactions across multiple objects in hundreds of frames for video is
computationally infeasible and performance may suffer since a large
combinatorial space has to be modeled. In this paper, we propose to efficiently
learn higher-order interactions between arbitrary subgroups of objects for
fine-grained video understanding. We demonstrate that modeling object
interactions significantly improves accuracy for both action recognition and
video captioning, while saving more than 3-times the computation over
traditional pairwise relationships. The proposed method is validated on two
large-scale datasets: Kinetics and ActivityNet Captions. Our SINet and
SINet-Caption achieve state-of-the-art performances on both datasets even
though the videos are sampled at a maximum of 1 FPS. To the best of our
knowledge, this is the first work modeling object interactions on open domain
large-scale video datasets, and we additionally model higher-order object
interactions which improves the performance with low computational costs.Comment: CVPR 201
High-resolution modelling of interactions between soil moisture and convective development in a mountain enclosed Tibetan Basin
Abstract. The Tibetan Plateau plays a significant role in atmospheric circulation and the Asian monsoon system. Turbulent surface fluxes and the evolution of boundary-layer clouds to deep and moist convection provide a feedback system that modifies the plateau's surface energy balance on scales that are currently unresolved in mesoscale models. This work analyses the land surface's role and specifically the influence of soil moisture on the triggering of convection at a cross section of the Nam Co Lake basin, 150 km north of Lhasa using a cloud-resolving atmospheric model with a fully coupled surface. The modelled turbulent fluxes and development of convection compare reasonably well with the observed weather. The simulations span Bowen ratios of 0.5 to 2.5. It is found that convective development is the strongest at intermediate soil moisture. Dry cases with soils close to the permanent wilting point are moisture limited in convective development, while convection in wet soil moisture cases is limited by cloud cover reducing incoming solar radiation and sensible heat fluxes, which has a strong impact on the surface energy balance. This study also shows that local development of convection is an important mechanism for the upward transport of water vapour, which originates from the lake basin that can then be transported to dryer regions of the plateau. Both processes demonstrate the importance of soil moisture and surface–atmosphere interactions on the energy and hydrological cycles of the Tibetan Plateau.
This research was funded by the German Research Foundation (DFG) Priority Programme 1372 “Tibetan Plateau: Formation, Climate, Ecosystems” as part of the Atmosphere–Ecology–Glaciology–Cluster (TiP-AEG): FO 226/18- 1,2. The work described in this publication has been supported by the European Commission (Call FP7-ENV-2007-1 grant no. 212921) as part of the CEOP-AEGIS project coordinated by the University of Strasbourg. The map of Nam Co was produced by Sophie Biskop (University of Jena) and Jan Kropacek (University of Tübingen) within DFG-TiP and Phil Stickler of the Cambridge Geography Department Cartography Unit. This publication was funded by the German Research Foundation (DFG) and the University of Bayreuth in the funding programme Open-Access Publishing.This is the final version of the article. It first appeared from European Geosciences Union via http://dx.doi.org/10.5194/hess-19-4023-201
Nodal quasiparticle meltdown in ultra-high resolution pump-probe angle-resolved photoemission
High- cuprate superconductors are characterized by a strong
momentum-dependent anisotropy between the low energy excitations along the
Brillouin zone diagonal (nodal direction) and those along the Brillouin zone
face (antinodal direction). Most obvious is the d-wave superconducting gap,
with the largest magnitude found in the antinodal direction and no gap in the
nodal direction. Additionally, while antinodal quasiparticle excitations appear
only below , superconductivity is thought to be indifferent to nodal
excitations as they are regarded robust and insensitive to . Here we
reveal an unexpected tie between nodal quasiparticles and superconductivity
using high resolution time- and angle-resolved photoemission on optimally doped
BiSrCaCuO. We observe a suppression of the nodal
quasiparticle spectral weight following pump laser excitation and measure its
recovery dynamics. This suppression is dramatically enhanced in the
superconducting state. These results reduce the nodal-antinodal dichotomy and
challenge the conventional view of nodal excitation neutrality in
superconductivity.Comment: 7 pages, 3 figure. To be published in Nature Physic
Flat bands as a route to high-temperature superconductivity in graphite
Superconductivity is traditionally viewed as a low-temperature phenomenon.
Within the BCS theory this is understood to result from the fact that the
pairing of electrons takes place only close to the usually two-dimensional
Fermi surface residing at a finite chemical potential. Because of this, the
critical temperature is exponentially suppressed compared to the microscopic
energy scales. On the other hand, pairing electrons around a dispersionless
(flat) energy band leads to very strong superconductivity, with a mean-field
critical temperature linearly proportional to the microscopic coupling
constant. The prize to be paid is that flat bands can generally be generated
only on surfaces and interfaces, where high-temperature superconductivity would
show up. The flat-band character and the low dimensionality also mean that
despite the high critical temperature such a superconducting state would be
subject to strong fluctuations. Here we discuss the topological and
non-topological flat bands discussed in different systems, and show that
graphite is a good candidate for showing high-temperature flat-band interface
superconductivity.Comment: Submitted as a chapter to the book on "Basic Physics of
functionalized Graphite", 21 pages, 12 figure
Persistent organic pollutants in ocean sediments from the North Pacific to the Arctic Ocean
Concentrations of polychlorinated biphenyls (PCBs), organochlorine pesticides (OC pesticides), and polybrominated diphenyl ethers (PBDEs) are reported in surficial sediments sampled along cruise transects from the Bering Sea to the central Arctic Ocean. OCs and PCBs all had significantly higher concentrations in the relatively shallow water (500 m) of the Bering Sea and Arctic Ocean (e.g., Canada Basin ΣPCB 149 ± 102 pg g−1 dw). Concentrations were similar to, or slightly lower than, studies from the 1990s, indicating a lack of a declining trend. PBDEs (excluding BDE-209) displayed very low concentrations (e.g., range of median values, 3.5–6.6 pg/g dw). In the shelf areas, the sediments comprised similar proportions of silt and clay, whereas the deep basin sediments were dominated by clay, with a lower total organic carbon (TOC) content. While significant positive correlations were observed between persistent organic pollutant (POP) concentrations and TOC (Pearson correlation, r = 0.66–0.75, p <0.05), the lack of strong correlations, combined with differing chemical profiles between the sediments and technical formulations (and/or marine surface waters), indicate substantial chemical processing during transfer to the benthic environment. Marked differences in sedimentation rates between the shallow and deeper water regions are apparent (the ∼5 cm-depth grab samples collected here representing ∼100 years of accumulation for the shelf sediments and ∼1000 years for the deeper ocean regions), which may bias any comparisons. Nonetheless, the sediments of the shallower coastal arctic seas appear to serve as significant repositories for POPs deposited from surface waters
Effects of hepatocyte nuclear factor-1A and -4A on pancreatic stone protein/regenerating protein and C-reactive protein gene expression: implications for maturity-onset diabetes of the young
BACKGROUND: There is a significant clinical overlap between patients with hepatocyte nuclear factor (HNF)-1A and HNF4A maturity-onset diabetes of the young (MODY), two forms of monogenic diabetes. HNF1A and HNF4A are transcription factors that control common and partly overlapping sets of target genes. We have previously shown that elevated serum pancreatic stone protein / regenerating protein A (PSP/reg1A) levels can be detected in subjects with HNF1A-MODY. In this study, we investigated whether PSP/reg is differentially regulated by HNF1A and HNF4A. METHODS: Quantitative real-time PCR (qPCR) and Western blotting were used to validate gene and protein expression in cellular models of HNF1A- and HNF4A-MODY. Serum PSP/reg1A levels and high-sensitivity C-reactive protein (hsCRP) were measured by ELISA in 31 HNF1A- and 9 HNF4A-MODY subjects. The two groups were matched for age, body mass index, diabetes duration, blood pressure, lipid profile and aspirin and statin use. RESULTS: Inducible repression of HNF1A and HNF4A function in INS-1 cells suggested that PSP/reg induction required HNF4A, but not HNF1A. In contrast, crp gene expression was significantly reduced by repression of HNF1A, but not HNF4A function. PSP/reg levels were significantly lower in HNF4A subjects when compared to HNF1A subjects [9.25 (7.85-12.85) ng/ml vs. 12.5 (10.61-17.87) ng/ml, U-test P = 0.025]. hsCRP levels were significantly lower in HNF1A-MODY [0.22 (0.17-0.35) mg/L] compared to HNF4A-MODY group [0.81 (0.38-1.41) mg/L, U-test P = 0.002], Parallel measurements of serum PSP/reg1A and hsCRP levels were able to discriminate HNF1A- and HNF4A-MODY subjects. CONCLUSION: Our study demonstrates that two distinct target genes, PSP/reg and crp, are differentially regulated by HNF1A and HNF4A, and provides clinical proof-of-concept that serum PSP/reg1A and hsCRP levels may distinguish HNF1A-MODY from HNF4A-MODY subjects
Associations between health-related quality of life, physical function and fear of falling in older fallers receiving home care
Falls and injuries in older adults have significant consequences and costs, both personal and to society. Although having a high incidence of falls, high prevalence of fear of falling and a lower quality of life, older adults receiving home care are underrepresented in research on older fallers. The objective of this study is to determine the associations between health-related quality of life (HRQOL), fear of falling and physical function in older fallers receiving home care
Turbulent flux modelling with a simple 2-layer soil model and extrapolated surface temperature applied at Nam Co Lake basin on the Tibetan Plateau
This paper introduces a surface model with two soil-layers for use in a high-resolution circulation model that has been modified with an extrapolated surface temperature, to be used for the calculation of turbulent fluxes. A quadratic temperature profile based on the layer mean and base temperature is assumed in each layer and extended to the surface. The model is tested at two sites on the Tibetan Plateau near Nam Co Lake during four days during the 2009 Monsoon season. In comparison to a two-layer model without explicit surface temperature estimate, there is a greatly reduced delay in diurnal flux cycles and the modelled surface temperature is much closer to observations. Comparison with a SVAT model and eddy covariance measurements shows an overall reasonable model performance based on RMSD and cross correlation comparisons between the modified and original model. A potential limitation of the model is the need for careful initialisation of the initial soil temperature profile, that requires field measurements. We show that the modified model is capable of reproducing fluxes of similar magnitudes and dynamics when compared to more complex methods chosen as a reference
- …
