20 research outputs found

    Chronostar. II. Kinematic age and substructure of the Scorpius-Centaurus OB2 association

    Full text link
    The nearest region of massive star formation - the Scorpius-Centaurus OB2 association (Sco-Cen) - is a local laboratory ideally suited to the study of a wide range of astrophysical phenomena. Precision astrometry from the Gaia mission has expanded the census of this region by an order of magnitude. However, Sco-Cen's vastness and complex substructure make kinematic analysis of its traditional three regions, Upper Scorpius, Upper Centaurus-Lupus and Lower Centaurus-Crux, challenging. Here we use Chronostar, a Bayesian tool for kinematic age determination, to carry out a new kinematic decomposition of Sco-Cen using full 6-dimensional kinematic data. Our model identifies 8 kinematically distinct components consisting of 8,185 stars distributed in dense and diffuse groups, each with an independently-fit kinematic age; we verify that these kinematic estimates are consistent with isochronal ages. Both Upper Centaurus-Lupus and Lower Centaurus-Crux are split into two parts. The kinematic age of the component that includes PDS 70, one of the most well studied systems currently forming planets, is 15±\pm3 Myr.Comment: Submitted to MNRAS. 19 pages, 9 figure

    The GALAH Survey: Lithium-strong KM dwarfs

    Get PDF
    Identifying and characterizing young stars in the Solar neighbourhood is essential to find and describe planets in the early stages of their evolution. This work seeks to identify nearby young stars showing a lithium 6708 Å absorption line in the GALAH survey. A robust, data-driven approach is used to search for corresponding templates in the pool of 434 215 measured dwarf spectra in the survey. It enables a model-free search for best-matching spectral templates for all stars, including M dwarfs with strong molecular absorption bands. 3147 stars have been found to have measurable lithium: 1408 G and 892 K0–K5 dwarfs (EW(Li) > 0.1 Å), 335 K5–K9 (>0.07 Å) and 512 M0–M4 dwarfs (>0.05 Å). Stars with such lithium features are used to investigate the possibility of searching for young stars above the main sequence based merely on their parallaxes and broad-band photometry. The selection of young stars above the main sequence is highly effective for M dwarfs, moderately effective for K dwarfs and ineffective for G dwarfs. Using a combination of the lithium information and the complete 6D kinematics from Gaia and GALAH, 305 new candidate moving group members have been found, 123 of which belong to the Scorpius–Centaurus association, 36 to the Pleiades and 25 to the Hyades clusters.Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. M Z acknowledges funding from the Australian Research Council (grant DP170102233). TN acknowledges funding from the Australian Research Council (grant DP150100250). TZ and KC acknowledge financial support of the Slovenian Research Agency (research core funding No. P1-0188 and project N1-0040). SB acknowledges funds from the Alexander von Humboldt Foundation in the framework of the Sofja Kovalevskaja Award endowed by the Federal Ministry of Education and Research

    The GALAH survey: accurate radial velocities and library of observed stellar template spectra

    Get PDF
    GALAH is a large-scale magnitude-limited southern stellar spectroscopic survey. Its second data release (GALAH DR2) provides values of stellar parameters and abundances of 23 elements for 342 682 stars (Buder et al.). Here we add a description of the public release of radial velocities with a typical accuracy of 0.1 km s−1 for 336 215 of these stars, achievable due to the large wavelength coverage, high resolving power, and good signal-to-noise ratio of the observed spectra, but also because convective motions in stellar atmosphere and gravitational redshift from the star to the observer are taken into account. In the process we derive medians of observed spectra that are nearly noiseless, as they are obtained from between 100 and 1116 observed spectra belonging to the same bin with a width of 50 K in temperature, 0.2 dex in gravity, and 0.1 dex in metallicity. Publicly released 1181 median spectra have a resolving power of 28 000 and trace the well-populated stellar types with metallicities between −0.6 and +0.3. Note that radial velocities from GALAH are an excellent match to the accuracy of velocity components along the sky plane derived by Gaia for the same stars. The level of accuracy achieved here is adequate for studies of dynamics within stellar clusters, associations, and streams in the Galaxy. So it may be relevant for studies of the distribution of dark matter.TZ, GT, and KC acknowledge financial support of ˇ the Slovenian Research Agency (research core funding No. P1-0188 and project N1-0040). TZ acknowledges the grant from the distinguished visitor programme of the RSAA at the Australian National University. JK is supported by a Discovery Project grant from the Australian Research Council (DP150104667) awarded to J. BlandHawthorn and T. Bedding. ARC acknowledges support through the Australian Research Council through grant DP160100637. LD, KF, and Y-ST are grateful for support from Australian Research Council grant DP160103747. SLM acknowledges support from the Australian Research Council through grant DE140100598. LC is the recipient of an ARC Future Fellowship (project number FT160100402). Parts of this research were conducted by the Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), through project number CE17010001

    The GALAH survey: Stellar streams and how stellar velocity distributions vary with Galactic longitude, hemisphere, and metallicity

    Get PDF
    Using GALAH (GALactic Archaeology with HERMES) survey data of nearby stars, we look at how structure in the planar (u, v) velocity distribution depends on metallicity and on viewing direction within the Galaxy. In nearby stars with distance d≲1 kpc, the Hercules stream is most strongly seen in higher metallicity stars [Fe/H] > 0.2. The Hercules stream peak v value depends on viewed galactic longitude, which we interpret as due to the gap between the stellar stream and more circular orbits being associated with a specific angular momentum value of about 1640 km s−1 kpc. The association of the gap with a particular angular momentum value supports a bar resonant model for the Hercules stream. Moving groups previously identified in Hipparcos(HIgh Precision Parallax COllecting Satellite) observations are easiest to see in stars nearer than 250 pc, and their visibility and peak velocities in the velocity distributions depends on both viewing direction (galactic longitude and hemisphere) and metallicity. We infer that there is fine structure in local velocity distributions that varies over distances of a few hundred pc in the Galaxy.Parts of this research were conducted by the Australian Research Council (ARC) Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), through project number CE170100013. JB-H acknowledges a Miller Professorship from the Miller Institute, UC Berkeley, and an ARC Laureate Fellowship which also supports GDS and SS. SM acknowledges support from the ARC through DECRA Fellowship DE140100598. JK is supported by an ARC DP grant awarded to JB-H and TB. MH is supported by ASTRO 3D Centre of Excellence funding to the University of Sydney and an ARC DP grant awarded to KF. LD gratefully acknowledges a scholarship from Zonta International District 24. LD and KF acknowledge support from ARC grant DP160103747. LC is the recipient of an ARC Future Fellowship (project number FT160100402)

    Gaia Data Release 2 - Observational Hertzsprung-Russell diagrams

    Get PDF
    Context. Gaia Data Release 2 provides high-precision astrometry and three-band photometry for about 1.3 billion sources over the full sky. The precision, accuracy, and homogeneity of both astrometry and photometry are unprecedented.: Aims. We highlight the power of the Gaia DR2 in studying many fine structures of the Hertzsprung-Russell diagram (HRD). Gaia allows us to present many different HRDs, depending in particular on stellar population selections. We do not aim here for completeness in terms of types of stars or stellar evolutionary aspects. Instead, we have chosen several illustrative examples.: Methods. We describe some of the selections that can be made in Gaia DR2 to highlight the main structures of the Gaia HRDs. We select both field and cluster (open and globular) stars, compare the observations with previous classifications and with stellar evolutionary tracks, and we present variations of the Gaia HRD with age, metallicity, and kinematics. Late stages of stellar evolution such as hot subdwarfs, post-AGB stars, planetary nebulae, and white dwarfs are also analysed, as well as low-mass brown dwarf objects. Results. The Gaia HRDs are unprecedented in both precision and coverage of the various Milky Way stellar populations and stellar evolutionary phases. Many fine structures of the HRDs are presented. The clear split of the white dwarf sequence into hydrogen and helium white dwarfs is presented for the first time in an HRD. The relation between kinematics and the HRD is nicely illustrated. Two different populations in a classical kinematic selection of the halo are unambiguously identified in the HRD. Membership and mean parameters for a selected list of open clusters are provided. They allow drawing very detailed cluster sequences, highlighting fine structures, and providing extremely precise empirical isochrones that will lead to more insight in stellar physics. Conclusions. Gaia DR2 demonstrates the potential of combining precise astrometry and photometry for large samples for studies in stellar evolution and stellar population and opens an entire new area for HRD-based studies

    The GALAH Survey: Stellar streams and how stellar velocity distributions vary with Galactic longitude, hemisphere and metallicity

    Get PDF
    Using GALAH survey data of nearby stars, we look at how structure in the planar (u,v) velocity distribution depends on metallicity and on viewing direction within the Galaxy. In nearby stars, with distance d < 1 kpc, the Hercules stream is most strongly seen in higher metallicity stars [Fe/H] > 0.2. The Hercules stream peak v value depends on viewed galactic longitude, which we interpret as due to the gap between the stellar stream and more circular orbits being associated with a specific angular momentum value of about 1640 km/s kpc. The association of the gap with a particular angular momentum value supports a bar resonant model for the Hercules stream. Moving groups previously identified in Hipparcos observations are easiest to see in stars nearer than 250 pc, and their visibility and peak velocities in the velocity distributions depends on both viewing direction (galactic longitude and hemisphere) and metallicity. We infer that there is fine structure in local velocity distributions that varies over distances of a few hundred pc in the Galaxy.Comment: accepted for publication in MNRA
    corecore