5 research outputs found

    Scanning NV magnetometry of focused-electron-beam-deposited cobalt nanomagnets

    Full text link
    Focused-electron-beam-induced deposition is a promising technique for patterning nanomagnets for spin qubit control in a single step. We fabricate cobalt nanomagnets in such a process, obtaining cobalt contents and saturation magnetizations comparable to or higher than those typically obtained using electron-beam lithography. We characterize the nanomagnets using transmission electron microscopy and image their stray magnetic field using scanning NV magnetometry, finding good agreement with micromagnetic simulations. The magnetometry reveals the presence of magnetic domains and halo side-deposits, which are common for this fabrication technique. Finally, we estimate dephasing times for electron spin qubits in the presence of disordered stray fields due to these side-deposits

    A quantum sensing metrology for magnetic memories

    Full text link
    Magnetic random access memory (MRAM) is a leading emergent memory technology that is poised to replace current non-volatile memory technologies such as eFlash. However, the scaling of MRAM technologies is heavily affected by device-to-device variability rooted in the stochastic nature of the MRAM writing process into nanoscale magnetic layers. Here, we introduce a non-contact metrology technique deploying Scanning NV Magnetometry (SNVM) to investigate MRAM performance at the individual bit level. We demonstrate magnetic reversal characterization in individual, < 60 nm sized bits, to extract key magnetic properties, thermal stability, and switching statistics, and thereby gauge bit-to-bit uniformity. We showcase the performance of our method by benchmarking two distinct bit etching processes immediately after pattern formation. Unlike previous methods, our approach unveils marked differences in switching behaviour of fully contacted MRAM devices stemming from these processes. Our findings highlight the potential of nanoscale quantum sensing of MRAM devices for early-stage screening in the processing line, paving the way for future incorporation of this nanoscale characterization tool in the semiconductor industry

    Position determination using ultrasound sensor module SEN 136B5B

    No full text
    Ultrazvučni senzor je senzor koji služi za određivanje položaja objekta u prostoru temeljem ultrazvučnih valova i njihove fizikalne prirode. Princip rada ultrazvučnog senzora temelji se na piezoelektričnom efektu. Piezoelektrični efekt je pojava električne polarizacije u materijalu koji se savija pod pritiskom. Takav materijal se koristi za izradu ultrazvučnog senzora i priključenjem na napon, materijal se savija i proizvodi ultrazvučne valove koji se reflektiraju od objekt i vraćaju prema senzoru uzrokujući ponovno savijanje materijala i nastanak električnog impulsa. Širina primljenog električnog impulsa je proporcionalan udaljenosti objekta od senzora. U radu je korištena razvojna okolina eZ430-RF2500 na kojoj je implementiran mikrokontroler MSP430F2274. Za ostvarenje funkcionalnosti senzora izrađen je programski kod u Code Composer Studio okruženju kojim se programira mikrokontroler. Funkcionalnost senzora je ispitana brojnim mjerenjima. Utvrđen je raspon kuta i udaljenosti unutar kojih senzor uspješno određuje položaj objekta. Napravljen je eksperiment utvrđivanja objekta u 3D prostoru sustavom od više senzorskih čvorova. Konačno, napravljen je funkcionalni algoritam za određivanje položaja objekta u prostoru.Ultrasound sensor is used for object position determination and it is based on ultrasound waves and their physical nature. The working principle of ultrasonic sensor is based on the piezoelectric effect. The piezoelectric effect is the appearance of an electric polarization in a material that strains under stress. Input voltage applied to such material causes it to flex and transmit ultrasonic waves and generates voltage when incoming ultrasonic waves flex it. Generated electric signal width is proportional to the object distance. This paper is based on the use of eZ430-RF2500 development tool which is implemented with microcontroller MSP430F2274. To accomplish full sensor functionality, a program code was implemented in Code Composer Studio environment. Sensor functionality was tested by experiments. Therefore, the range of angles and distances within which the sensor correctly determines the position of the object was established. An experiment was conducted determining object in 3D space by multiple sensor nodes. Finally, the algorithm is designed for functional position determination of the object in space

    Position determination using ultrasound sensor module SEN 136B5B

    No full text
    Ultrazvučni senzor je senzor koji služi za određivanje položaja objekta u prostoru temeljem ultrazvučnih valova i njihove fizikalne prirode. Princip rada ultrazvučnog senzora temelji se na piezoelektričnom efektu. Piezoelektrični efekt je pojava električne polarizacije u materijalu koji se savija pod pritiskom. Takav materijal se koristi za izradu ultrazvučnog senzora i priključenjem na napon, materijal se savija i proizvodi ultrazvučne valove koji se reflektiraju od objekt i vraćaju prema senzoru uzrokujući ponovno savijanje materijala i nastanak električnog impulsa. Širina primljenog električnog impulsa je proporcionalan udaljenosti objekta od senzora. U radu je korištena razvojna okolina eZ430-RF2500 na kojoj je implementiran mikrokontroler MSP430F2274. Za ostvarenje funkcionalnosti senzora izrađen je programski kod u Code Composer Studio okruženju kojim se programira mikrokontroler. Funkcionalnost senzora je ispitana brojnim mjerenjima. Utvrđen je raspon kuta i udaljenosti unutar kojih senzor uspješno određuje položaj objekta. Napravljen je eksperiment utvrđivanja objekta u 3D prostoru sustavom od više senzorskih čvorova. Konačno, napravljen je funkcionalni algoritam za određivanje položaja objekta u prostoru.Ultrasound sensor is used for object position determination and it is based on ultrasound waves and their physical nature. The working principle of ultrasonic sensor is based on the piezoelectric effect. The piezoelectric effect is the appearance of an electric polarization in a material that strains under stress. Input voltage applied to such material causes it to flex and transmit ultrasonic waves and generates voltage when incoming ultrasonic waves flex it. Generated electric signal width is proportional to the object distance. This paper is based on the use of eZ430-RF2500 development tool which is implemented with microcontroller MSP430F2274. To accomplish full sensor functionality, a program code was implemented in Code Composer Studio environment. Sensor functionality was tested by experiments. Therefore, the range of angles and distances within which the sensor correctly determines the position of the object was established. An experiment was conducted determining object in 3D space by multiple sensor nodes. Finally, the algorithm is designed for functional position determination of the object in space

    Position determination using ultrasound sensor module SEN 136B5B

    No full text
    Ultrazvučni senzor je senzor koji služi za određivanje položaja objekta u prostoru temeljem ultrazvučnih valova i njihove fizikalne prirode. Princip rada ultrazvučnog senzora temelji se na piezoelektričnom efektu. Piezoelektrični efekt je pojava električne polarizacije u materijalu koji se savija pod pritiskom. Takav materijal se koristi za izradu ultrazvučnog senzora i priključenjem na napon, materijal se savija i proizvodi ultrazvučne valove koji se reflektiraju od objekt i vraćaju prema senzoru uzrokujući ponovno savijanje materijala i nastanak električnog impulsa. Širina primljenog električnog impulsa je proporcionalan udaljenosti objekta od senzora. U radu je korištena razvojna okolina eZ430-RF2500 na kojoj je implementiran mikrokontroler MSP430F2274. Za ostvarenje funkcionalnosti senzora izrađen je programski kod u Code Composer Studio okruženju kojim se programira mikrokontroler. Funkcionalnost senzora je ispitana brojnim mjerenjima. Utvrđen je raspon kuta i udaljenosti unutar kojih senzor uspješno određuje položaj objekta. Napravljen je eksperiment utvrđivanja objekta u 3D prostoru sustavom od više senzorskih čvorova. Konačno, napravljen je funkcionalni algoritam za određivanje položaja objekta u prostoru.Ultrasound sensor is used for object position determination and it is based on ultrasound waves and their physical nature. The working principle of ultrasonic sensor is based on the piezoelectric effect. The piezoelectric effect is the appearance of an electric polarization in a material that strains under stress. Input voltage applied to such material causes it to flex and transmit ultrasonic waves and generates voltage when incoming ultrasonic waves flex it. Generated electric signal width is proportional to the object distance. This paper is based on the use of eZ430-RF2500 development tool which is implemented with microcontroller MSP430F2274. To accomplish full sensor functionality, a program code was implemented in Code Composer Studio environment. Sensor functionality was tested by experiments. Therefore, the range of angles and distances within which the sensor correctly determines the position of the object was established. An experiment was conducted determining object in 3D space by multiple sensor nodes. Finally, the algorithm is designed for functional position determination of the object in space
    corecore