91 research outputs found

    An overstoichiometric Nd–Fe–B hard magnetic material

    Get PDF
    A commercial Nd-rich Nd–Fe–B-based hard magnetic material was studied. The obtained results were compared before and after recording of the thermomagnetic curve up to 800 °C. The curve itself showed clearly besides Curie points of the Nd2Fe14B phase and α-Fe also another critical temperature. Mössbauer spectroscopic (MS) phase analysis and X-ray diffraction analysis (XRD) showed in addition to the commonly known phases Nd2Fe14B and NdFe4B4 also some paramagnetic and ferromagnetic iron atoms (MS) and Fe17Nd2 intermetallics (XRD). During the exerted thermal treatment, the content of the Nd2Fe14B and NdFe4B4 phases remained almost unchanged, while iron atoms from remnant minor phases built a separate α-Fe phase. The XRD pattern also showed the presence of some minor Nd phase. The results of Squid magnetic measurements suggest a nanocrystalline decoupled structure of the Nd-rich alloy in the optimized magnetic state. Measurement of the magnetization loop showed, in spite of small changes in the phase composition, that magnetic properties of the quality material deteriorated during the thermal treatment

    Metastatic MHC class I-negative mouse cells derived by transformation with human papillomavirus type 16

    Get PDF
    In the endeavour to develop a model for studying gene therapy of cancers associated with human papillomaviruses (HPVs), mouse cells were transformed with the HPV type 16 (HPV16) and activated H-ras oncogenes. This was done by contransfection of plasmid p16HHMo, carrying the HPV16 E6/E7 oncogenes, and plasmid pEJ6.6, carrying the gene coding for human H-ras oncoprotein activated by G12V mutation, into secondary C57BL/6 mouse kidney cells. An oncogenic cell line, designated MK16/1/IIIABC, was derived. The epithelial origin of the cells was confirmed by their expression of cytokeratins. No MHC class I and class II molecules were detected on the surface of MK16/1/IIIABC cells. Spontaneous metastases were observed in lymphatic nodes and lungs after prolonged growth of MK16/1/IIIABC-induced subcutaneous tumours. Lethally irradiated MK16/1/IIIABC cells induced protection against challenge with 105homologous cells, but not against a higher cell dose (5 × 105). Plasmids p16HHMo and pEJ6.6 were also used for preventive immunization of mice. In comparison with a control group injected with pBR322, they exhibited moderate protection, in terms of prolonged survival, against MK16/1/IIIABC challenge (P< 0.03). These data suggest that MK16/1/IIIABC cells may serve as a model for studying immune reactions against HPV16-associated human tumours. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Robust Simulations and Significant Separations

    Get PDF
    We define and study a new notion of "robust simulations" between complexity classes which is intermediate between the traditional notions of infinitely-often and almost-everywhere, as well as a corresponding notion of "significant separations". A language L has a robust simulation in a complexity class C if there is a language in C which agrees with L on arbitrarily large polynomial stretches of input lengths. There is a significant separation of L from C if there is no robust simulation of L in C. The new notion of simulation is a cleaner and more natural notion of simulation than the infinitely-often notion. We show that various implications in complexity theory such as the collapse of PH if NP = P and the Karp-Lipton theorem have analogues for robust simulations. We then use these results to prove that most known separations in complexity theory, such as hierarchy theorems, fixed polynomial circuit lower bounds, time-space tradeoffs, and the theorems of Allender and Williams, can be strengthened to significant separations, though in each case, an almost everywhere separation is unknown. Proving our results requires several new ideas, including a completely different proof of the hierarchy theorem for non-deterministic polynomial time than the ones previously known

    TOI-2046b, TOI-1181b, and TOI-1516b, three new hot Jupiters from TESS: planets orbiting a young star, a subgiant, and a normal star

    Get PDF
    We present the confirmation and characterization of three hot Jupiters, TOI-1181b, TOI-1516b, and TOI-2046b, discovered by the TESS space mission. The reported hot Jupiters have orbital periods between 1.4 and 2.05 d. The masses of the three planets are 1.18 ± 0.14 MJ, 3.16 ± 0.12 MJ, and 2.30 ± 0.28 MJ, for TOI-1181b, TOI-1516b, and TOI-2046b, respectively. The stellar host of TOI-1181b is a F9IV star, whereas TOI-1516b and TOI-2046b orbit F main sequence host stars. The ages of the first two systems are in the range of 2–5 Gyrs. However, TOI-2046 is among the few youngest known planetary systems hosting a hot Jupiter, with an age estimate of 100–400 Myrs. The main instruments used for the radial velocity follow-up of these three planets are located at Ondřejov, Tautenburg, and McDonald Observatory, and all three are mounted on 2–3 m aperture telescopes, demonstrating that mid-aperture telescope networks can play a substantial role in the follow-up of gas giants discovered by TESS and in the future by PLATO

    COVID-19 infection in adult patients with hematological malignancies: a European Hematology Association Survey (EPICOVIDEHA)

    Get PDF
    Background: Patients with hematological malignancies (HM) are at high risk of mortality from SARS-CoV-2 disease 2019 (COVID-19). A better understanding of risk factors for adverse outcomes may improve clinical management in these patients. We therefore studied baseline characteristics of HM patients developing COVID-19 and analyzed predictors of mortality. Methods: The survey was supported by the Scientific Working Group Infection in Hematology of the European Hematology Association (EHA). Eligible for the analysis were adult patients with HM and laboratory-confirmed COVID-19 observed between March and December 2020. Results: The study sample includes 3801 cases, represented by lymphoproliferative (mainly non-Hodgkin lymphoma n = 1084, myeloma n = 684 and chronic lymphoid leukemia n = 474) and myeloproliferative malignancies (mainly acute myeloid leukemia n = 497 and myelodysplastic syndromes n = 279). Severe/critical COVID-19 was observed in 63.8% of patients (n = 2425). Overall, 2778 (73.1%) of the patients were hospitalized, 689 (18.1%) of whom were admitted to intensive care units (ICUs). Overall, 1185 patients (31.2%) died. The primary cause of death was COVID-19 in 688 patients (58.1%), HM in 173 patients (14.6%), and a combination of both COVID-19 and progressing HM in 155 patients (13.1%). Highest mortality was observed in acute myeloid leukemia (199/497, 40%) and myelodysplastic syndromes (118/279, 42.3%). The mortality rate significantly decreased between the first COVID-19 wave (March–May 2020) and the second wave (October–December 2020) (581/1427, 40.7% vs. 439/1773, 24.8%, p value < 0.0001). In the multivariable analysis, age, active malignancy, chronic cardiac disease, liver disease, renal impairment, smoking history, and ICU stay correlated with mortality. Acute myeloid leukemia was a higher mortality risk than lymphoproliferative diseases. Conclusions: This survey confirms that COVID-19 patients with HM are at high risk of lethal complications. However, improved COVID-19 prevention has reduced mortality despite an increase in the number of reported cases.EPICOVIDEHA has received funds from Optics COMMITTM (COVID-19 Unmet Medical Needs and Associated Research Extension) COVID-19 RFP program by GILEAD Science, United States (Project 2020-8223)

    Acoustic telemetry reveals strong spatial preferences and mixing during successive spawning periods in a partially migratory common bream population

    Get PDF
    Partial migration, whereby a population comprises multiple behavioural phenotypes that each have varying tendencies to migrate, is common among many animals. Determining the mechanisms by which these phenotypes are maintained is important for understanding their roles in population structure and stability. The aim here was to test for the temporal and spatial consistency of migratory phenotypes in a common bream Abramis brama (‘bream’) population, and then determine their social preferences and extent of mixing across three successive annual spawning periods. The study applied passive acoustic telemetry to track the movements of bream in the River Bure system of the Norfolk Broads, a lowland wetland comprising highly connected riverine and lacustrine habitats. Analyses revealed that individual migratory phenotype was highly consistent across the three years, but this was not predicted by fish sex or length at tagging. During the annual spawning periods, network analyses identified off-channel areas visited by both resident and migrant fish that, in non-spawning periods, were relatively independent in their space use. Within these sites, the co-occurrence of bream was non-random, with individuals forming more preferred and avoided associations than expected by chance. These associations were not strongly predicted by similarity in fish length, sex or behavioural phenotype, indicating that the resident and migrant phenotypes mixed during their annual spawning periods. The results suggested these different phenotypes, with spatially distinct resource use in non-spawning periods, comprised a single metapopulation, with this having important implications for the management of this wetland resource

    Extrasolar enigmas: from disintegrating exoplanets to exoasteroids

    Full text link
    Thousands of transiting exoplanets have been discovered to date, thanks in great part to the {\em Kepler} space mission. As in all populations, and certainly in the case of exoplanets, one finds unique objects with distinct characteristics. Here we will describe the properties and behaviour of a small group of `disintegrating' exoplanets discovered over the last few years (KIC 12557548b, K2-22b, and others). They evaporate, lose mass unraveling their naked cores, produce spectacular dusty comet-like tails, and feature highly variable asymmetric transits. Apart from these exoplanets, there is observational evidence for even smaller `exo-'objects orbiting other stars: exoasteroids and exocomets. Most probably, such objects are also behind the mystery of Boyajian's star. Ongoing and upcoming space missions such as {\em TESS} and PLATO will hopefully discover more objects of this kind, and a new era of the exploration of small extrasolar systems bodies will be upon us.Comment: Accepted for publication in the book "Reviews in Frontiers of Modern Astrophysics: From Space Debris to Cosmology" (eds Kabath, Jones and Skarka; publisher Springer Nature) funded by the European Union Erasmus+ Strategic Partnership grant "Per Aspera Ad Astra Simul" 2017-1-CZ01-KA203-03556
    corecore