35 research outputs found

    Molecular forms of IGF binding protein 2 and their presence in various pathophysiological states

    Get PDF
    Π’Π΅Π·ΡƒΡ˜ΡƒΡ›ΠΈ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ 2 Π·Π° Ρ„Π°ΠΊΡ‚ΠΎΡ€Π΅ раста сличнС инсулину (IGFBP-2) Ρƒ Ρ†ΠΈΡ€ΠΊΡƒΠ»Π°Ρ†ΠΈΡ˜ΠΈ сС ΠΌΠΎΠΆΠ΅ Ρ˜Π°Π²ΠΈΡ‚ΠΈ Ρƒ Ρ‚Ρ€ΠΈ ΠΎΠ±Π»ΠΈΠΊΠ°: ΠΊΠ°ΠΎ комплСкс, ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€ ΠΈ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… молСкулских маса. Π£ ΠΎΠΊΠ²ΠΈΡ€Ρƒ ΠΎΠ²Π΅ докторскС Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π΅ јС ΡƒΡ‚Π²Ρ€Ρ’Π΅Π½ΠΎ Π΄Π° IGFBP-2 Π³Ρ€Π°Π΄ΠΈ комплСксС са Ξ±-2-ΠΌΠ°ΠΊΡ€ΠΎΠ³Π»ΠΎΠ±ΡƒΠ»ΠΈΠ½ΠΎΠΌ (Ξ±2М).Π Π΅Π»Π°Ρ‚ΠΈΠ²Π½ΠΈ ΡƒΠ΄Π΅ΠΎ комплСкса IGFBP-2/Ξ±2М Ρƒ ΡƒΠΊΡƒΠΏΠ½ΠΎΠΌ IGFBP-2 Π½Π΅ зависи Π΄ΠΈΡ€Π΅ΠΊΡ‚Π½ΠΎ ΠΎΠ΄ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π΅ IGFBP-2 ΠΈ Ξ±2М, Π²Π΅Ρ› зависи ΠΎΠ΄ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… (ΠΏΠ°Ρ‚ΠΎ)Ρ„ΠΈΠ·ΠΈΠΎΠ»ΠΎΡˆΠΊΠΈΡ…ΡƒΡΠ»ΠΎΠ²Π° Ρƒ којима сС ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°ΠΌ Π½Π°Π»Π°Π·ΠΈ. Π£ ΠΎΠ²ΠΎΠΌ Ρ€Π°Π΄Ρƒ су испитанС Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ Π·Π° изоловањС, ΠΌΠ΅Ρ€Π΅ΡšΠ΅ ΠΈ ΠΊΠ°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ˜Ρƒ комплСкса IGFBP-2/Ξ±2М. Π’Π°ΠΊΠΎΡ’Π΅ јС испитана ΠΏΡ€ΠΎΠΌΠ΅Π½Π° ΠΈ ΠΌΠΎΠ³ΡƒΡ›Π° ΡƒΠ»ΠΎΠ³Π° комплСкса ΠΊΠΎΠ΄ ΠΏΠ°Ρ†ΠΈΡ˜Π΅Π½Π°Ρ‚Π° са Ρ‚ΡƒΠΌΠΎΡ€ΠΎΠΌ.ΠŸΠΎΠ·Π½Π°Ρ‚ΠΎ јС Π΄Π° ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€ IGFBP-2 Π²Π΅Π·ΡƒΡ˜Π΅ IGF Π»ΠΈΠ³Π°Π½Π΄Π΅ са Π²Π΅Π»ΠΈΠΊΠΈΠΌ Π°Ρ„ΠΈΠ½ΠΈΡ‚Π΅Ρ‚ΠΎΠΌ ΠΈ Ρ‚Ρ€Π°Π½ΡΠΏΠΎΡ€Ρ‚ΡƒΡ˜Π΅ ΠΈΡ… Π΄ΠΎ Ρ‚ΠΊΠΈΠ²Π° Π³Π΄Π΅ сС, Π½Π°ΠΊΠΎΠ½ ΠΏΡ€ΠΎΡ‚Π΅ΠΎΠ»ΠΈΠ·Π΅ IGFBP-2, ΠΎΡ‚ΠΏΡƒΡˆΡ‚Π°Ρ˜Ρƒ ΠΈ Π²Π΅Π·ΡƒΡ˜Ρƒ Π·Π° спСцифичнС Ρ›Π΅Π»ΠΈΡ˜ΡΠΊΠ΅ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π΅. Осим ΠΊΠ°ΠΎ носач IGF ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π°, IGFBP-2 испољава ΠΈ нСзависна ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‡ΠΊΠ° ΠΈ ΠΌΠΈΡ‚ΠΎΠ³Π΅Π½Π° Π΄Π΅Ρ˜ΡΡ‚Π²Π°. Π’Π΅Π·ΡƒΡ˜ΡƒΡ›ΠΈ сС Π·Π° интСгринскС Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π΅ (првСнствСно Π·Π° Ξ±5Ξ²1), IGFBP-2 ΡΡ‚ΠΈΠΌΡƒΠ»ΠΈΡˆΠ΅ покрСтљивост Ρ›Π΅Π»ΠΈΡ˜Π΅ ΠΈ њСно одвајањС ΠΎΠ΄ ΠΎΠΊΠΎΠ»ΠΈΠ½Π΅, доприносСћи мСтастатском ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Ρƒ. НСки Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΈ ΠΌΠΎΠ³Ρƒ слабо Π²Π΅Π·Π°Ρ‚ΠΈ IGF Π»ΠΈΠ³Π°Π½Π΄Π΅ ΠΈ ΠΈΠ½Ρ‚Π΅Ρ€Π°Π³ΠΎΠ²Π°Ρ‚ΠΈ са Ρ›Π΅Π»ΠΈΡ˜Π°ΠΌΠ°. О комплСксима IGFBP-2 Ρƒ Ρ†ΠΈΡ€ΠΊΡƒΠ»Π°Ρ†ΠΈΡ˜ΠΈ Π΄ΠΎ сада нијС Π±ΠΈΠ»ΠΎ ΠΏΠΎΠ΄Π°Ρ‚Π°ΠΊΠ° Ρƒ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ.Π£ Ρ€Π°Π΄Ρƒ јС ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π΄Π° сС врста молСкулских ΠΎΠ±Π»ΠΈΠΊΠ° IGFBP-2 Π½Π΅ мСња ΠΏΠΎΠ΄ ΡƒΡ‚ΠΈΡ†Π°Ρ˜Π΅ΠΌ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… (ΠΏΠ°Ρ‚ΠΎ)Ρ„ΠΈΠ·ΠΈΠΎΠ»ΠΎΡˆΠΊΠΈΡ… Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°, ΠΊΠ°ΠΎ ΡˆΡ‚ΠΎ су ΡΡ‚Π°Ρ€Π΅ΡšΠ΅, Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎ Π±Π°Π²Ρ™Π΅ΡšΠ΅ спортом, оксидативни стрСс, ΠΏΠΎΠ²Π΅Ρ›Π°Π½a ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜a Π»ΠΈΠΏΠΈΠ΄Π° ΠΈΠ»ΠΈ Π³Π»ΡƒΠΊΠΎΠ·Π΅, измСњСна ΠΏΡ€ΠΎΡ‚Π΅ΠΎΠ»ΠΈΡ‚ΠΈΡ‡ΠΊΠ° активност, Π°Π»ΠΈ сС мСња ΡšΠΈΡ…ΠΎΠ²Π° ΠΊΠΎΠ»ΠΈΡ‡ΠΈΠ½Π° ΠΈ мСђусобни однос. Π‘Ρ‚Π°Ρ€Π΅ΡšΠ΅ΠΌ сС ΠΏΠΎΠ²Π΅Ρ›Π°Π²Π° ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π° ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Π° ΠΈ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Π°Ρ‚Π° IGFBP-2 Ρƒ Ρ†ΠΈΡ€ΠΊΡƒΠ»Π°Ρ†ΠΈΡ˜ΠΈ, ΠΊΠ°ΠΎ ΠΈ Ξ±2М, Π° ΡΠΌΠ°ΡšΡƒΡ˜Π΅ сС ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π° комплСкса IGFBP-2/Ξ±2М. Јони Ρ†ΠΈΠ½ΠΊΠ° (II) подстичу ΠΎΠ»ΠΈΠ³ΠΎΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ˜Ρƒ Ξ±2M, Π°Π»ΠΈ Π½Π΅ ΡƒΡ‚ΠΈΡ‡Ρƒ Π½Π° ΡΡ‚Π²Π°Ρ€Π°ΡšΠ΅ комплСкса. ΠŸΠ΅ΠΏΡ‚ΠΈΠ΄Π½Π° сСквСнца RGD, која јС Π²Π°ΠΆΠ½Π° Π·Π° ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Ρƒ IGFBP-2 са ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΠ½ΠΎΠΌ, нијС ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Π° сСквСнца Π·Π° ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Ρƒ IGFBP-2 са Ξ±2М.Код ΠΏΠ°Ρ†ΠΈΡ˜Π΅Π½Π°Ρ‚Π° са Ρ‚ΡƒΠΌΠΎΡ€ΠΎΠΌ Π΄Π΅Π±Π΅Π»ΠΎΠ³ Ρ†Ρ€Π΅Π²Π° јС ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½Π° ΠΏΠΎΠ²Π΅Ρ›Π°Π½Π° ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π° ΡƒΠΊΡƒΠΏΠ½ΠΎΠ³ IGFBP-2 Ρƒ Ρ†ΠΈΡ€ΠΊΡƒΠ»Π°Ρ†ΠΈΡ˜ΠΈ Ρƒ односу Π½Π° Π·Π΄Ρ€Π°Π²Π΅ Ρ™ΡƒΠ΄Π΅, ΠΊΠ°ΠΎ ΠΈ измСњСн мСђусобни однос молСкулских Ρ„ΠΎΡ€ΠΌΠΈ. ΠŸΠΎΠ²Π΅Ρ›Π°Π½Π° јС ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π° ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Π° ΠΈ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Π°Ρ‚Π°, Π° смањСна комплСкса. Π£ Ρ‚ΠΊΠΈΠ²Ρƒ Π΄Π΅Π±Π΅Π»ΠΎΠ³ Ρ†Ρ€Π΅Π²Π° су Π½Π°Ρ’Π΅Π½ΠΈ само ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€ ΠΈ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΈ...In circulation, insulin-like growth factor binding protein 2 (IGFBP-2), can be found in three main forms: as a complex, monomer and assembley of fragments of differents molecular masses. In making this dissertation it was found that IGFBP-2 forms complexes with Ξ±-2-macroglobulin (Ξ±2M).Relative amount of IGFBP-2/Ξ±2M complex in total IGFBP-2 concentration does not depend on concentrations of IGFBP-2 and Ξ±2M, but from various (patho)physiological conditions in organism. In this work, different methods for isolation, measurement and characterisation of IGFBP-2/Ξ±2M complex were examined. An investigation on potential role of these complexes in patients with tumor was also conducted.It is known that IGFBP-2 monomer binds IGF ligands with high affinity and transports them to tissues where, after proteolysis, they are released, and bound to specific receptors. Except being the IGF carrier, IGFBP-2 exerts IGF-independent metabolic and mitogenic actions. It can bind to integrin receptors (primarily to Ξ±5Ξ²1) and stimulate cell motility and detachement from their surroundings, contributing to metastatic potential. Some fragments can loosely bind IGF ligands and interact with cells. Until know, there was no literature data about IGFBP-2 complexes in circulation.In this work, it was shown that the distribution of molecular species of IGFBP-2 does not change under the influence of different (patho)physiological factors, such as aging, intensive physical activity, oxidative stress, increased concentration of lipids and glucose, impaired proteolytic activity, but by the quantity and their mutual ratio change. With aging, the concentration of IGFBP-2 monomers and fragments, and Ξ±2M, in circulation increases, while the concentration of IGFBP-2/Ξ±2M complex decreases. Zinc ions encourage the Ξ±2M oligomerisation, but have no influence on complex formation. RGD peptide sequence, which is important for IGFBP-2 interaction with integrins, is not a contact sequence for interaction between IGFBP-2 and Ξ±2M.In serum of patients with colon cancer, increased concentration of IGFBP-2 was detected, as well as different relation of molecular forms. The concentration of monomer and fragments increased, while the concentration of complexes decreased..

    Molecular forms of IGF binding protein 2 and their presence in various pathophysiological states

    Get PDF
    Π’Π΅Π·ΡƒΡ˜ΡƒΡ›ΠΈ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ 2 Π·Π° Ρ„Π°ΠΊΡ‚ΠΎΡ€Π΅ раста сличнС инсулину (IGFBP-2) Ρƒ Ρ†ΠΈΡ€ΠΊΡƒΠ»Π°Ρ†ΠΈΡ˜ΠΈ сС ΠΌΠΎΠΆΠ΅ Ρ˜Π°Π²ΠΈΡ‚ΠΈ Ρƒ Ρ‚Ρ€ΠΈ ΠΎΠ±Π»ΠΈΠΊΠ°: ΠΊΠ°ΠΎ комплСкс, ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€ ΠΈ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… молСкулских маса. Π£ ΠΎΠΊΠ²ΠΈΡ€Ρƒ ΠΎΠ²Π΅ докторскС Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π΅ јС ΡƒΡ‚Π²Ρ€Ρ’Π΅Π½ΠΎ Π΄Π° IGFBP-2 Π³Ρ€Π°Π΄ΠΈ комплСксС са Ξ±-2-ΠΌΠ°ΠΊΡ€ΠΎΠ³Π»ΠΎΠ±ΡƒΠ»ΠΈΠ½ΠΎΠΌ (Ξ±2М).Π Π΅Π»Π°Ρ‚ΠΈΠ²Π½ΠΈ ΡƒΠ΄Π΅ΠΎ комплСкса IGFBP-2/Ξ±2М Ρƒ ΡƒΠΊΡƒΠΏΠ½ΠΎΠΌ IGFBP-2 Π½Π΅ зависи Π΄ΠΈΡ€Π΅ΠΊΡ‚Π½ΠΎ ΠΎΠ΄ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π΅ IGFBP-2 ΠΈ Ξ±2М, Π²Π΅Ρ› зависи ΠΎΠ΄ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… (ΠΏΠ°Ρ‚ΠΎ)Ρ„ΠΈΠ·ΠΈΠΎΠ»ΠΎΡˆΠΊΠΈΡ…ΡƒΡΠ»ΠΎΠ²Π° Ρƒ којима сС ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°ΠΌ Π½Π°Π»Π°Π·ΠΈ. Π£ ΠΎΠ²ΠΎΠΌ Ρ€Π°Π΄Ρƒ су испитанС Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ Π·Π° изоловањС, ΠΌΠ΅Ρ€Π΅ΡšΠ΅ ΠΈ ΠΊΠ°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ˜Ρƒ комплСкса IGFBP-2/Ξ±2М. Π’Π°ΠΊΠΎΡ’Π΅ јС испитана ΠΏΡ€ΠΎΠΌΠ΅Π½Π° ΠΈ ΠΌΠΎΠ³ΡƒΡ›Π° ΡƒΠ»ΠΎΠ³Π° комплСкса ΠΊΠΎΠ΄ ΠΏΠ°Ρ†ΠΈΡ˜Π΅Π½Π°Ρ‚Π° са Ρ‚ΡƒΠΌΠΎΡ€ΠΎΠΌ.ΠŸΠΎΠ·Π½Π°Ρ‚ΠΎ јС Π΄Π° ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€ IGFBP-2 Π²Π΅Π·ΡƒΡ˜Π΅ IGF Π»ΠΈΠ³Π°Π½Π΄Π΅ са Π²Π΅Π»ΠΈΠΊΠΈΠΌ Π°Ρ„ΠΈΠ½ΠΈΡ‚Π΅Ρ‚ΠΎΠΌ ΠΈ Ρ‚Ρ€Π°Π½ΡΠΏΠΎΡ€Ρ‚ΡƒΡ˜Π΅ ΠΈΡ… Π΄ΠΎ Ρ‚ΠΊΠΈΠ²Π° Π³Π΄Π΅ сС, Π½Π°ΠΊΠΎΠ½ ΠΏΡ€ΠΎΡ‚Π΅ΠΎΠ»ΠΈΠ·Π΅ IGFBP-2, ΠΎΡ‚ΠΏΡƒΡˆΡ‚Π°Ρ˜Ρƒ ΠΈ Π²Π΅Π·ΡƒΡ˜Ρƒ Π·Π° спСцифичнС Ρ›Π΅Π»ΠΈΡ˜ΡΠΊΠ΅ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π΅. Осим ΠΊΠ°ΠΎ носач IGF ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π°, IGFBP-2 испољава ΠΈ нСзависна ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‡ΠΊΠ° ΠΈ ΠΌΠΈΡ‚ΠΎΠ³Π΅Π½Π° Π΄Π΅Ρ˜ΡΡ‚Π²Π°. Π’Π΅Π·ΡƒΡ˜ΡƒΡ›ΠΈ сС Π·Π° интСгринскС Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π΅ (првСнствСно Π·Π° Ξ±5Ξ²1), IGFBP-2 ΡΡ‚ΠΈΠΌΡƒΠ»ΠΈΡˆΠ΅ покрСтљивост Ρ›Π΅Π»ΠΈΡ˜Π΅ ΠΈ њСно одвајањС ΠΎΠ΄ ΠΎΠΊΠΎΠ»ΠΈΠ½Π΅, доприносСћи мСтастатском ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Ρƒ. НСки Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΈ ΠΌΠΎΠ³Ρƒ слабо Π²Π΅Π·Π°Ρ‚ΠΈ IGF Π»ΠΈΠ³Π°Π½Π΄Π΅ ΠΈ ΠΈΠ½Ρ‚Π΅Ρ€Π°Π³ΠΎΠ²Π°Ρ‚ΠΈ са Ρ›Π΅Π»ΠΈΡ˜Π°ΠΌΠ°. О комплСксима IGFBP-2 Ρƒ Ρ†ΠΈΡ€ΠΊΡƒΠ»Π°Ρ†ΠΈΡ˜ΠΈ Π΄ΠΎ сада нијС Π±ΠΈΠ»ΠΎ ΠΏΠΎΠ΄Π°Ρ‚Π°ΠΊΠ° Ρƒ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ.Π£ Ρ€Π°Π΄Ρƒ јС ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π΄Π° сС врста молСкулских ΠΎΠ±Π»ΠΈΠΊΠ° IGFBP-2 Π½Π΅ мСња ΠΏΠΎΠ΄ ΡƒΡ‚ΠΈΡ†Π°Ρ˜Π΅ΠΌ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… (ΠΏΠ°Ρ‚ΠΎ)Ρ„ΠΈΠ·ΠΈΠΎΠ»ΠΎΡˆΠΊΠΈΡ… Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°, ΠΊΠ°ΠΎ ΡˆΡ‚ΠΎ су ΡΡ‚Π°Ρ€Π΅ΡšΠ΅, Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎ Π±Π°Π²Ρ™Π΅ΡšΠ΅ спортом, оксидативни стрСс, ΠΏΠΎΠ²Π΅Ρ›Π°Π½a ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜a Π»ΠΈΠΏΠΈΠ΄Π° ΠΈΠ»ΠΈ Π³Π»ΡƒΠΊΠΎΠ·Π΅, измСњСна ΠΏΡ€ΠΎΡ‚Π΅ΠΎΠ»ΠΈΡ‚ΠΈΡ‡ΠΊΠ° активност, Π°Π»ΠΈ сС мСња ΡšΠΈΡ…ΠΎΠ²Π° ΠΊΠΎΠ»ΠΈΡ‡ΠΈΠ½Π° ΠΈ мСђусобни однос. Π‘Ρ‚Π°Ρ€Π΅ΡšΠ΅ΠΌ сС ΠΏΠΎΠ²Π΅Ρ›Π°Π²Π° ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π° ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Π° ΠΈ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Π°Ρ‚Π° IGFBP-2 Ρƒ Ρ†ΠΈΡ€ΠΊΡƒΠ»Π°Ρ†ΠΈΡ˜ΠΈ, ΠΊΠ°ΠΎ ΠΈ Ξ±2М, Π° ΡΠΌΠ°ΡšΡƒΡ˜Π΅ сС ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π° комплСкса IGFBP-2/Ξ±2М. Јони Ρ†ΠΈΠ½ΠΊΠ° (II) подстичу ΠΎΠ»ΠΈΠ³ΠΎΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ˜Ρƒ Ξ±2M, Π°Π»ΠΈ Π½Π΅ ΡƒΡ‚ΠΈΡ‡Ρƒ Π½Π° ΡΡ‚Π²Π°Ρ€Π°ΡšΠ΅ комплСкса. ΠŸΠ΅ΠΏΡ‚ΠΈΠ΄Π½Π° сСквСнца RGD, која јС Π²Π°ΠΆΠ½Π° Π·Π° ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Ρƒ IGFBP-2 са ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΠ½ΠΎΠΌ, нијС ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Π° сСквСнца Π·Π° ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Ρƒ IGFBP-2 са Ξ±2М.Код ΠΏΠ°Ρ†ΠΈΡ˜Π΅Π½Π°Ρ‚Π° са Ρ‚ΡƒΠΌΠΎΡ€ΠΎΠΌ Π΄Π΅Π±Π΅Π»ΠΎΠ³ Ρ†Ρ€Π΅Π²Π° јС ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½Π° ΠΏΠΎΠ²Π΅Ρ›Π°Π½Π° ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π° ΡƒΠΊΡƒΠΏΠ½ΠΎΠ³ IGFBP-2 Ρƒ Ρ†ΠΈΡ€ΠΊΡƒΠ»Π°Ρ†ΠΈΡ˜ΠΈ Ρƒ односу Π½Π° Π·Π΄Ρ€Π°Π²Π΅ Ρ™ΡƒΠ΄Π΅, ΠΊΠ°ΠΎ ΠΈ измСњСн мСђусобни однос молСкулских Ρ„ΠΎΡ€ΠΌΠΈ. ΠŸΠΎΠ²Π΅Ρ›Π°Π½Π° јС ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π° ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Π° ΠΈ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Π°Ρ‚Π°, Π° смањСна комплСкса. Π£ Ρ‚ΠΊΠΈΠ²Ρƒ Π΄Π΅Π±Π΅Π»ΠΎΠ³ Ρ†Ρ€Π΅Π²Π° су Π½Π°Ρ’Π΅Π½ΠΈ само ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€ ΠΈ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΈ...In circulation, insulin-like growth factor binding protein 2 (IGFBP-2), can be found in three main forms: as a complex, monomer and assembley of fragments of differents molecular masses. In making this dissertation it was found that IGFBP-2 forms complexes with Ξ±-2-macroglobulin (Ξ±2M).Relative amount of IGFBP-2/Ξ±2M complex in total IGFBP-2 concentration does not depend on concentrations of IGFBP-2 and Ξ±2M, but from various (patho)physiological conditions in organism. In this work, different methods for isolation, measurement and characterisation of IGFBP-2/Ξ±2M complex were examined. An investigation on potential role of these complexes in patients with tumor was also conducted.It is known that IGFBP-2 monomer binds IGF ligands with high affinity and transports them to tissues where, after proteolysis, they are released, and bound to specific receptors. Except being the IGF carrier, IGFBP-2 exerts IGF-independent metabolic and mitogenic actions. It can bind to integrin receptors (primarily to Ξ±5Ξ²1) and stimulate cell motility and detachement from their surroundings, contributing to metastatic potential. Some fragments can loosely bind IGF ligands and interact with cells. Until know, there was no literature data about IGFBP-2 complexes in circulation.In this work, it was shown that the distribution of molecular species of IGFBP-2 does not change under the influence of different (patho)physiological factors, such as aging, intensive physical activity, oxidative stress, increased concentration of lipids and glucose, impaired proteolytic activity, but by the quantity and their mutual ratio change. With aging, the concentration of IGFBP-2 monomers and fragments, and Ξ±2M, in circulation increases, while the concentration of IGFBP-2/Ξ±2M complex decreases. Zinc ions encourage the Ξ±2M oligomerisation, but have no influence on complex formation. RGD peptide sequence, which is important for IGFBP-2 interaction with integrins, is not a contact sequence for interaction between IGFBP-2 and Ξ±2M.In serum of patients with colon cancer, increased concentration of IGFBP-2 was detected, as well as different relation of molecular forms. The concentration of monomer and fragments increased, while the concentration of complexes decreased..

    The importance of estimation of RAD51 genetic polymorphism in order to predict the occurence and prognosis of colorectal cancer in population in Serbia

    Get PDF
    Gen RAD 51 igra vaΕΎnu ulogu u razmeni homologih lanaca u reparaciji DNK. Dva najčeΕ‘Δ‡a polimorfizma jednog nukleotida kod ovog gena, 135GΛƒC i 172GΛƒT, su povezana sa izmenjenom genskom transkripcijom. Dok je 135GΛƒC veΔ‡ pov ezan sa karcinomima dojke i kolorektuma, 172GΛƒT je daleko manje ispitivan, iako sporadične studije pokazuju da bi mogao biti prognostički faktor kod nekih malignih lezija. Cilj ove studije je da se istraΕΎi RAD51 172GΛƒT polimorfizam kod populacije u Srbiji, njegova povezanost sa kolorektalnim karcinomom, kao i korelacija karakteristika bolesti i odgovor na neoadjuvantnu hemioradioterapiju. Metode: Polimorfizam 172GΛƒT je evaluiran PCR-RFLP metodom iz uzoraka krvi 209 pacijenata sa kolorektalnim karcinomom i 43 zdrava ispitanika koji su sluΕΎili kao kontrolna grupa. Distribucija genotipova je takoΔ‘e analizirana u odnosu na odreΔ‘ene karakterisike tumora u sluajevima u kojim su histopatoloΕ‘ki podaci bili dostupni, kao i u odnosu na dvogodiΕ‘nje preΕΎivljavanje i period do progresije bolesti. Rezultati: Pokazala se značajna povezanost RAD51 172GΛƒT polimorfizma i dezmoplastične reakcije kolorektalnog karcinoma. Alel 172G je značajno učestaliji kod pacijenata sa intenzivnijim dezmoplastičnim odgovorom na tumorsko tkivo. Nije viΔ‘ena značajna razlika u preΕΎivljavanju niti u periodu do progresije bolesti u grupama sa različitim alelima. Zaključak: rezultati ove studije sugeriΕ‘u da bi 172T alel gena RAD51 moΕΎe biti povoljan faktor kod pacijenata sa kolorektalnim karcinomomkod populacije u Srbiji, mada su neophodne veΔ‡e prospektivne studije da bi se ovaj nalaz potvrdio.The RAD51 gene plays an important role in homologous strand exchange in DNA repair. Two common single nucleotide polymorphisms in this gene, 135GΛƒC and 172GΛƒT, were associated with altered gene transcription. While 135GΛƒC was already linked to breast and colorectal cancers in certain populations, 172GΛƒT is far less investigated, although sporadic studies showed it could be a prognostic factor for some cancerous lesions. The aim of this study was to investigate RAD51 172GΛƒT polymorphism in Serbian population, its association with colorectal carcinoma, as well as correlation with disease characteristics and response to neoadjuvant chemoradiotherapy therapy. Methods: The 172GΛƒT polymorphism was evaluated by PCR-RFLP method in blood samples of 209 colorectal cancer subjects and 43 healthy subjects who served as controls. The distribution of genotypes was also analyzed in respect to several tumor characteristics in cases where histopathological data were available, as well as to verall survival and the disease free interval. Results: A significant association between the RAD51 172GΛƒT polymoprhism and desmoplastic reaction of colorectal cancer was demonstrated. The 172G allele was found to be significantly more frequent in patients with more intensive desmoplastic response of the tumor tissue. No significant difference was found regarding ovarall survival and the disease free interval. Conclusions: The results of our study suggest that the 172T allele of RAD51 may be a favoring prognostic factor in patients with colorectal cancer in Serbian population, although larger prospective studies are required to confirm this finding

    Interaction between alpha-2-macroglobulin and phycocyanobilin – structural and physiological implications

    Get PDF
    The interaction between phycocyanobilin (PCB), a bioactive chromophore of blue-green cyanobacteria Spirulina’s phycobiliproteins, and human alpha-2-macroglobulin (a2M), a universal anti-proteinase, was investigated in this study under simulated physiological conditions using spectroscopic techniques and a2M activity assay. Protein a2M was found to bind PCB with a moderate affinity, as assessed by spectrofluorimetric titration. The binding constant was calculated to be 6.39105 M 1 at 25Β°C. The binding of PCB to a2M did not cause significant change in the secondary structure of the protein, as determined by circular dichroism. PCB protected a2M from oxidative damage in the presence of AAPH-induced free radical overproduction. PCB binding also effectively preserved a2M anti-proteinase activity. Since a2M is involved in controlling the action of enzymes during the inflammatory process, the protection that PCB expresses could indirectly influence the intensity and direction of the body response to impaired homeostasis, especially under oxidative stress.The Biochemistry Global Summit, 25th IUBMB Congress, 46th FEBS Congress, 15th PABMB Congress, July 9-14, 2022, Lisbon, Portuga

    Interaction between alpha-2-macroglobulin and phycocyanobilin – structural and physiological implications

    Get PDF
    In this study, the interaction between phycocyanobilin (PCB)1, a bioactive chromophore of blue-green algae Spirulina's phycobiliproteins, and alpha-2-macroglobulin (Ξ±2M)2, a universal anti-proteinase, was investigated under simulated physiological conditions using spectroscopic techniques and Ξ±2M activity assay. Using spectrofluorimetric measurements, we found that Ξ±2M binds PCB with a moderate affinity, with a binding constant of 6.3Γ— 105 Mβˆ’1 at 25Β°C. The binding of PCB to Ξ±2M does not cause any significant change in the secondary structure of the protein (circular dichroism measurements). Besides, PCB protects Ξ±2M from structural oxidative alterations under AAPH-induced free radical overproduction. Further, PCB binding effectively preserves Ξ±2M anti-proteinase activity. Since Ξ±2M is involved in controlling the action of enzymes during the inflammatory process, the protection that PCB expresses could indirectly influence the intensity and direction of body response to impaired homeostasis, especially under oxidative stress

    Quantitation of the active alpha-2-macroglobulin by trypsin protease zymography

    Get PDF
    Alpha-2-macroglobulin (Ξ±2M) is a homotetrameric blood glycoprotein having molecular mass of 720 kDa which acts as a general protease inhibitor 1. So far, the methods to estimate the quantity of Ξ±2M and its activity were separate procedures. The quantity is usually measured by immunochemical assays and the anti-protease activity of Ξ±2M by measuring the activity of trypsin bound to Ξ±2M using chromogenic substrate BAPNA 2. A simple and reliable method for determination of the concentration and function of Ξ±2M by zymography was developed. This method is based on the covalent binding of Ξ±2M and trypsin followed by non-reducing PAGE and zymography with gelatine incorporated in the electrophoretic gel. The results have shown that Ξ±2M binds trypsin in a linear, concentration-dependent manner. The sensitivity of the method is 125 nM with an intraassay coefficient of variation 4.2 %. Freezing of Ξ±2M induces its partial denaturation, which can be seen as the reduction in the amount of functional molecule and its reactivity with trypsin. The method was further tested using Ξ±2M from patients with an end-stage renal disease who are known to be under an increased oxidative stress and inflammation, which are expected to modify the structure of proteins. Using Ξ±2M from these patients, lower affinity of Ξ±2M towards trypsin was detected when compaired to Ξ±2M isolated from healthy persons. The reported zymographic method enables measurement of Ξ±2M taking into consideration both its quantity and function, stressing the importance of determination of the amount of physiologically active molecules and not just their total amount present in the sample. Monitoring of the relation quantity/activity becomes very important when the sample originates from an individual exposed to a stress or with a disease accompanied by post-translational modifications of proteins such as diabetes, renal disease or cancer 3. Presented method also enables determination of Ξ±2M in the presence of different modifying chemical substances

    Examining fatty acid interactions with Arthrospira platensis-derived C-phycocyanin

    Get PDF
    Cultured meat requires less land and water and is less polluting, but still costly. The critical challenge in cultivated meat science is identifying and developing bovine serum albumin alternatives as the key component in cell media. Phycobiliproteins (PBPs) from micro- and macroalgae are promising candidates for albumin replacement due to their high abundance and well-known excellent antioxidative and metal-binding activities of covalently attached tetrapyrrole chromophores. Considering the importance of fatty acids (FA) binding by albumin for cell cultivation, the additional prerequisites for developing PBPs as albumin replacement components is their validation for the ability to bind FA. This study aims to examine the ability of C-phycocyanin (C-PC), the major PBP of microalgae Arthrospira platensis, to bind seven fatty acids (stearic, palmitic, oleic, elaidic, linoleic, linolenic and docosahexaenoic acid). For this purpose, we employed various optical spectroscopy techniques (fluorescence, CD, and VIS absorption spectroscopy). The protein fluorescence quenching approach demonstrated FA binding affinities ranging from 0.42 to 2.4 x 105 Mβˆ’1, with the ability of FA to bind at different sites on C-PC. Fatty acid binding induces substantial changes in the VIS absorption spectra of C-PC, indicating the FA are attached in the vicinity of C-PC chromophores. On the other hand, CD spectroscopy did not show significant effects of FA binding on C-PC secondary structure content. Overall, this study revealed C-PC's significant potential in binding FA, the critical prerequisite to replacing albumin for developing animal-free cell media for meat cultivation

    Examining fatty acid interactions with Arthrospira platensis-derived C-phycocyanin

    Get PDF
    Cultured meat requires less land and water and is less polluting, but still costly. The critical challenge in cultivated meat science is identifying and developing bovine serum albumin alternatives as the key component in cell media. Phycobiliproteins (PBPs) from micro- and macroalgae are promising candidates for albumin replacement due to their high abundance and well-known excellent antioxidative and metal-binding activities of covalently attached tetrapyrrole chromophores. Considering the importance of fatty acids (FA) binding by albumin for cell cultivation, the additional prerequisites for developing PBPs as albumin replacement components is their validation for the ability to bind FA. This study aims to examine the ability of C-phycocyanin (C-PC), the major PBP of microalgae Arthrospira platensis, to bind seven fatty acids (stearic, palmitic, oleic, elaidic, linoleic, linolenic and docosahexaenoic acid). For this purpose, we employed various optical spectroscopy techniques (fluorescence, CD, and VIS absorption spectroscopy). The protein fluorescence quenching approach demonstrated FA binding affinities ranging from 0.42 to 2.4 x 105 Mβˆ’1, with the ability of FA to bind at different sites on C-PC. Fatty acid binding induces substantial changes in the VIS absorption spectra of C-PC, indicating the FA are attached in the vicinity of C-PC chromophores. On the other hand, CD spectroscopy did not show significant effects of FA binding on C-PC secondary structure content. Overall, this study revealed C-PC's significant potential in binding FA, the critical prerequisite to replacing albumin for developing animal-free cell media for meat cultivation

    Dietary fatty acids as a new binding partner of C - phycocyanin: a fluorimetric study

    Get PDF
    C-Phycocyanin (C-PC) is a phycobiliprotein from cyanobacteria, where it harvests light energy that is then transferred to chlorophylls during photosynthesis. It has an intense blue color due to a covalently bonded tetrapyrrole chromophore, and owing to this property is used in the food industry as a good natural alternative for food coloring. In addition to its coloring properties, C-PC has anti-inflammatory, antioxidant, anti-cancer, and immune-enhancing effects that qualify it as a dietary supplement already included in various formulations, mainly Spirulina extract powders. Since it is used as a food colorant and as a dietary supplement, it may interact with food ingredients, affecting its stability, digestibility, or antioxidant properties. Palmitic acid and linoleic acid (which can be metabolized to linolenic acid) are abundant in meat, milk, and edible oils, so that they could interact with C-PC. C-Phycocyanin isolated from the cyanobacterium Arthrospira platensis (Spirulina) was incubated with increasing concentrations of these three fatty acids, and its fluorescence intensity was monitored. Incubation resulted in a fluorescence quenching effect, indicating that binding had occurred. The binding equations indicated that the association constants were of the same order of magnitude and that the number of approximate binding sites was more than one (Ka = 4.64 x 10⁴ M-ΒΉ, n = 1.5 for linoleic acid; Ka = 2.88 x 10⁴ M–¹, n = 1.9 for linolenic acid; Ka = 0.44 x 10⁴ M–¹, n = 0.8 for palmitic acid). This moderate interaction between C-PC and fatty acids could influence its behavior as a nutraceutical and food colorant
    corecore